摘要
真菌子实体是重要的药物和食物资源,其中存在丰富多样的伴生微生物。目前,关于子实体内部细菌群落组成的报道已陆续发表,但对于真菌子实体伴生菌的多样性及其生物活性仍知之甚少。子实体与伴生菌之间形成了一个赖以生存的生命有机体,伴生菌能够促进宿主真菌生长,增强其适应性,提高对环境胁迫的抗性,并促进其次生代谢产物的积累。此外,子实体伴生菌还具有抗菌、抗氧化以及抗肿瘤等生物医药活性。本文综述了近年来子实体伴生菌的分离与培养方法,分析了伴生细菌、放线菌和真菌群落多样性,进一步挖掘了子实体伴生菌的生物活性。本文为伴生菌与寄主关系的研究提供了参考,并为子实体伴生菌资源的开发利用奠定了基础。
真菌子实体(fruiting bodies)是真菌在其生命周期中形成的多细胞结构,主要功能是产生并传播有性孢子(如担孢子或子囊孢子),从而实现繁殖,是真菌从营养生长(菌丝体阶段)转向生殖生长的重要标
1 子实体伴生菌多样性分析
近年来,植物或子实体内部微生物群落的生物特性、多样性及外界因素导致的种群动态变化,以及这些微生物产生的新颖活性代谢产物受到了极大关注。目前,微生物群落多样性的主要分析方法包括纯培养法(culture-dependent method)与非培养法(culture-independent method
1.1 纯培养法
纯培养法(culture-dependent method)是最早用于计量微生物群落结构的方法,可以检测环境条件改变导致的微生物群落变
从特定植物组织中分离出的内生菌的数量和多样性可能会因生长培养基的选择而有所不同,尚无一种培养基可以满足所有细菌的营养和生长需
1.2 非培养法
非培养法是直接从环境样本中提取DNA,进行16S rRNA基因的PCR扩增,并结合系统发育分析,这种方法揭示了大量以前未知和难培养的微生物。在一个微生物多样性丰富的环境中,纯培养法只能分离出符合生长需求条件的细菌,但大多数内生菌的生长条件处于未知状态,一些依赖于特殊环境或宿主资源的微生物在实验条件下无法生长。在实验室条件下,只有不到1%的细菌种类是可培养
2 子实体伴生菌的分类
2.1 子实体伴生细菌
细菌在子实体微生物群落中占比较大,如在松露的内部和外部,细菌密集定殖,其密度可达每克子实体(干重) 1
Fruiting body types | Dominant strain (phylum/genus) | Analytic method | References |
---|---|---|---|
Black truffle |
Proteobacteria Bacteroidetes | High-throughput sequencing |
[ |
Cantharellus spp. |
Hafnia Stenotrophomoas Pseudomonas | BOX-PCR fingerprinting |
[ |
C. cibarius |
Proteobacteria Bacteroidetes | High-throughput sequencing |
[ |
Tricholoma matsutake |
Proteobacteria Bacteroidetes Firmicutes | High-throughput sequencing |
[ |
T. matsutake |
Micrococcales Bacillales Caulobacter | High-throughput sequencing |
[ |
Sanghuangporus |
Proteobacteria Bacteroidota Firmicutes | High-throughput sequencing |
[ |
T. matsutake |
Proteobacteria Firmicutes | Culture-dependent method |
[ |
T. ganbajun | Pseudomonas | Culture-dependent method |
[ |
Suillus grevillei |
Pseudomonas Bacillus | Culture-dependent method |
[ |
T. aestivum |
Pseudomonas Buttiauxella | Culture-dependent method |
[ |
2.2 子实体伴生放线菌
在子实体的生长发育过程中,也伴随着大量的伴生放线菌。放线菌G+C含量高,属于革兰氏阳性菌。在所有微生物中,放线菌,尤其是链霉菌属,是大多数活性天然产物的生产者,约2/3的已知天然抗生素被报道由链霉菌产
2.3 子实体伴生真菌
在真菌子实体中,如桑黄、牛肝菌、肉齿菌等,除了宿主真菌外,还伴随着其他真菌生物群落的存在。Ma
3 子实体伴生菌的生物活性
3.1 子实体伴生菌对宿主真菌的影响
真菌子实体中存在大量伴生微生物,而真菌在发育成子实体的过程中,这些伴生菌与宿主真菌联系最为紧密,能够提高宿主真菌的抗性,同时影响其生长和代
3.1.1 子实体伴生菌对宿主真菌生长发育的影响
子实体伴生菌能够显著影响宿主真菌的生长发育,包括菌丝生
3.1.2 子实体伴生菌对宿主真菌次生代谢的影响
一些真菌在发育成子实体过程中,能够分泌活性次级代谢物来增强对宿主植物的侵染能力或抵抗外界环境,而子实体伴生菌能够显著影响宿主的相关次级代谢。Splivallo
3.2 抗菌及其他活性
子实体中的伴生菌本身具有广泛的抗菌活性(
Host fungi | Associated microbes | Activities | References |
---|---|---|---|
Agaricus bisporus | Bacillus | Anti-bacteria/fungi |
[ |
Tuber borchii |
Actinomycete Pseudomonad | Anti-fungi |
[ |
Tricholoma matsutake |
Ewingella americana Pseudomonas endophytica Serratia marcescens Mycetocola lacteus Cedecea neteri | Anti-fungi |
[ |
Volvariella volvacea |
Bacillus sp. C2.2, C3.8, D3.3 |
Antifungal activities against Cercospora lactucae, C. gloeosporioides, Fusarium oxysporum |
[ |
A. bisporus | Pseudomonas sp. AB-114 | Anti-bacteria/fungi |
[ |
T. matsutake | Stenotrophomonas maltophilia | Chitinase, endoglucanase, β-glucosidase, protease, lipase activities |
[ |
T. borchii | Pseudomonas | Indole-3-acetic acid, siderophores, protease, collagenase, carboxymethyl cellulose activities |
[ |
Shiraia sp. S9 | P. fulva SB1 | Antioxidation |
[ |
Inonotus obliquus | Acremonium sp. | Antitumor |
[ |

图1 一些子实体伴生菌的活性代谢物结构式
Figure 1 Structures of some bioactive metabolites from fruiting body-associated microbes.
4 总结与展望
本文对子实体伴生菌的多样性和生物活性进行了综述,归纳了真菌子实体内微生物群落结构的主要研究方法,包括纯培养法和非培养法。通过这些方法揭示了各类真菌子实体内微生物(包括真菌、细菌和放线菌)的群落分布特征,同时探讨了各类子实体伴生菌的生物功能,特别是它们对宿主的影响以及伴生菌自身的生物活性。目前,被挖掘和报道的子实体及其伴生菌合成的活性物质仅占微生物活性成分的一小部分。由于只有少数子实体能够进行人工培育,因此未来的研究可以集中于以下几个方面:(1) 利用纯培养法分离子实体伴生菌,并挖掘能够帮助宿主真菌子实体发育、分化的伴生菌,为药用和食用菌的人工栽培提供有益帮助;(2) 基于非培养法分析子实体菌群,通过查阅文献分析菌株的亲缘关系,通过优化已报道的近缘菌株的培养条件,尝试进行非培养菌株的生长研究,以探究这部分菌群对真菌子实体发育的影响,并发现隐藏在子实体内部的功能性菌群;(3) 采用不同的提取方法获取子实体或者伴生菌的活性代谢物组分,并通过不同的药理或活性模型探究它们的生物功能,再结合分离纯化的方法,对主要的活性成分进行结构表征,结合药效筛选实验,深入挖掘子实体伴生菌的活性潜能;(4) 探讨伴生菌对子实体真菌活性成分的生物合成的调节机制,建立伴生菌-真菌共培养方法,为真菌重要活性代谢物的生物技术生产提供新型的诱导调节技术。
作者贡献声明
沈文浩:综述初稿撰写及修改;郑丽屏:图表制作及综述修改;周建芹:文献分析及综述修改;王剑文:提供研究思路与论文写作指导。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
NAGY LG, TÓTH R, KISS E, SLOT J, GÁCSER A, KOVÁCS GM. Six key traits of fungi: their evolutionary origins and genetic bases[J]. Microbiology Spectrum, 2017, 5(4): 1110-1128. [百度学术]
DANELL E, ALSTRÖM S, TERNSTRÖM A. Pseudomonas fluorescens in association with fruit bodies of the ectomycorrhizal mushroom Cantharellus cibarius[J]. Mycological Research, 1993, 97(9): 1148-1152. [百度学术]
龙良鲲, 姚青, 艾云灿, 朱红惠. 丛枝菌根真菌伴生细菌的研究进展[J]. 生态学报, 2007, 27(12): 5345-5351. [百度学术]
LONG LK, YAO Q, AI YC, ZHU HH. Advance in researches on bacteria associated with arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2007, 27(12): 5345-5351 (in Chinese). [百度学术]
李辉, 刘洋, 白飞荣, 姚粟, 扎西·才吉, 程池. 野生冬虫夏草伴生细菌群落结构及多样性分析[J]. 生物技术通报, 2014, 30(10): 196-200. [百度学术]
LI H, LIU Y, BAI FR, YAO S, ZAHI NAGI, CHENG C. Analysis of bacterial community structure and diversity in wild Ophicordyceps sinensis[J]. Biotechnology Bulletin, 2014, 30(10): 196-200 (in Chinese). [百度学术]
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 食用菌术语: GB/T 12728—2006[S]. 北京: 中国标准出版社, 2006. [百度学术]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Terms of edible mushroom: GB/T 12728—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese). [百度学术]
李强, 李树红, 李小林, 陈诚, 黄文丽, 熊川, 杨志荣, 郑林用. 野生翘鳞肉齿菌子实体内生菌多样性[J]. 应用与环境生物学报, 2015, 21(4): 629-634. [百度学术]
LI Q, LI SH, LI XL, CHEN C, HUANG WL, XIONG C, YANG ZR, ZHENG LY. Diversity of endophytic microorganisms in fresh fruiting bodies of Sarcodon imbricatus[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(4): 629-634 (in Chinese). [百度学术]
张瑞颖, 胡丹丹, 左雪梅, 顾金刚, 胡清秀. 白灵侧耳水渍状斑点病初探[J]. 食用菌学报, 2012, 19(2): 106-110, 123. [百度学术]
ZHANG RY, HU DD, ZUO XM, GU JG, HU QX. Preliminary study on the wet blotch disease of Pleurotus nebrodensis[J]. Acta Edulis Fungi, 2012, 19(2): 106-110, 123 (in Chinese). [百度学术]
PENT M, HILTUNEN M, PÕLDMAA K, FURNEAUX B, HILDEBRAND F, JOHANNESSON H, RYBERG M, BAHRAM M. Host genetic variation strongly influences the microbiome structure and function in fungal fruiting-bodies[J]. Environmental Microbiology, 2018, 20(5): 1641-1650. [百度学术]
辛智海. 鸡油菌纯培养菌株的孢子分离[J]. 山地农业生物学报, 1998, 17(3): 135-139. [百度学术]
XIN ZH. Isolation of Cantherallus cibarius by germination of spores[J]. Journal of Mountain Agriculture and Biology, 1998, 17(3): 135-139 (in Chinese). [百度学术]
许文涛, 郭星, 罗云波, 黄昆仑. 微生物菌群多样性分析方法的研究进展[J]. 食品科学, 2009, 30(7): 258-265. [百度学术]
XU WT, GUO X, LUO YB, HUANG KL. Research progress on analysis methods of diversity of microbial flora[J]. Food Science, 2009, 30(7): 258-265 (in Chinese). [百度学术]
WIJAYAWARDENE NN, BAHRAM M, SÁNCHEZ-CASTRO I, DAI DQ, ARIYAWANSA KGSU, JAYALAL U, SUWANNARACH N, TEDERSOO L. Current insight into culture-dependent and culture-independent methods in discovering ascomycetous taxa[J]. Journal of Fungi, 2021, 7(9): 703. [百度学术]
SUN W, DAI SK, JIANG SM, WANG GH, LIU GH, WU HB, LI X. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea[J]. Antonie Van Leeuwenhoek, 2010, 98(1): 65-75. [百度学术]
OGER P, MANSOURI H, DESSAUX Y. Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines[J]. Molecular Ecology, 2000, 9(7): 881-890. [百度学术]
张鑫. 苔藓内生菌的分离、鉴定及其代谢产物作用研究[D]. 济南: 山东轻工业学院硕士学位论文, 2012. [百度学术]
ZHANG X. Isolation and identification of endophytic fungi from bryophytes and study on their metabolites[D]. Jinan: Master’s Thesis of Shandong Polytechnic University, 2012 (in Chinese). [百度学术]
李云龙, 彭一航, 燕腾, 巩合德. 西南地区夏块菌子实体内的细菌多样性分析[J]. 中国食用菌, 2016, 35(4): 58-62. [百度学术]
LI YL, PENG YH, YAN T, GONG HD. Bacteria diversity research on Tuber aestivum fruiting bodies from southwest of China[J]. Edible Fungi of China, 2016, 35(4): 58-62 (in Chinese). [百度学术]
EEVERS N, GIELEN M, SÁNCHEZ-LÓPEZ A, JASPERS S, WHITE JC, VANGRONSVELD J, WEYENS N. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media[J]. Microbial Biotechnology, 2015, 8(4): 707-715. [百度学术]
XIANG QJ, LUO LH, LIANG YH, CHEN Q, ZHANG XP, GU YF. The diversity, growth promoting abilities and anti-microbial activities of bacteria isolated from the fruiting body of Agaricus bisporus[J]. Polish Journal of Microbiology, 2017, 66(2): 201-207. [百度学术]
张兆娟, 杨应昆, 邹月, 迪力达·叶尔肯别克, 翟超, 孙达, 李萌, 李玉, 刘朴. 从不同地区网柄菌中分离和纯培养的共生放线菌[J]. 菌物研究, 2023, 21(S1): 131-142. [百度学术]
ZHANG ZJ, YANG YK, ZOU Y, DILIDA YEERKENBIEKE, ZHAI C, SUN D, LI M, LI Y, LIU P. Symbiotic Actinomyces isolated and pure cultured from Reticulatus from different areas[J]. Journal of Fungal Research, 2023, 21(S1): 131-142 (in Chinese). [百度学术]
AMANN RI, LUDWIG W, SCHLEIFER KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59(1): 143-169. [百度学术]
PACE NR. A molecular view of microbial diversity and the biosphere[J]. Science, 1997, 276(5313): 734-740. [百度学术]
DEMAIN AL, SANCHEZ S. Microbial drug discovery: 80 years of progress[J]. The Journal of Antibiotics, 2009, 62(1): 5-16. [百度学术]
MUYZER G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Current Opinion in Microbiology, 1999, 2(3): 317-322. [百度学术]
LEE DH, ZO YG, KIM SJ. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism[J]. Applied and Environmental Microbiology, 1996, 62(9): 3112-3120. [百度学术]
LAGUERRE G, ALLARD MR, REVOY F, AMARGER N. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes[J]. Applied and Environmental Microbiology, 1994, 60(1): 56-63. [百度学术]
DUNBAR J, TICKNOR LO, KUSKE CR. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis[J]. Applied and Environmental Microbiology, 2000, 66(7): 2943-2950. [百度学术]
LI Q, LI XL, CHEN C, LI SH, HUANG WL, XIONG C, JIN X, ZHENG LY. Analysis of bacterial diversity and communities associated with Tricholoma matsutake fruiting bodies by barcoded pyrosequencing in Sichuan Province, Southwest China[J]. Journal of Microbiology and Biotechnology, 2016, 26(1): 89-98. [百度学术]
TAKAI K, HORIKOSHI K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes[J]. Applied and Environmental Microbiology, 2000, 66(11): 5066-5072. [百度学术]
LEMOS LN, FULTHORPE RR, TRIPLETT EW, ROESCH LFW. Rethinking microbial diversity analysis in the high throughput sequencing era[J]. Journal of Microbiological Methods, 2011, 86(1): 42-51. [百度学术]
BODROSSY L, SESSITSCH A. Oligonucleotide microarrays in microbial diagnostics[J]. Current Opinion in Microbiology, 2004, 7(3): 245-254. [百度学术]
BOTTARI B, ERCOLINI D, GATTI M, NEVIANI E. Application of FISH technology for microbiological analysis: current state and prospects[J]. Applied Microbiology and Biotechnology, 2006, 73(3): 485-494. [百度学术]
KUYPERS MMM. Sizing up the uncultivated majority[J]. Science, 2007, 317(5844): 1510-1511. [百度学术]
OEHLER DZ, ROBERT F, WALTER MR, SUGITANI K, MEIBOM A, MOSTEFAOUI S, GIBSON EK. Diversity in the Archean biosphere: new insights from NanoSIMS[J]. Astrobiology, 2010, 10(4): 413-424. [百度学术]
BENUCCI GMN, LONGLEY R, ZHANG P, ZHAO Q, BONITO G, YU FQ. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses[J]. PeerJ, 2019, 7: e7744. [百度学术]
CHEN J, LI JM, TANG YJ, XING YM, QIAO P, LI Y, LIU PG, GUO SX. Chinese black truffle-associated bacterial communities of Tuber indicum from different geographical regions with nitrogen fixing bioactivity[J]. Frontiers in Microbiology, 2019, 10: 2515. [百度学术]
LIU D, HE XH, CHATER CCC, PEREZ-MORENO J, YU FQ. Microbiome community structure and functional gene partitioning in different micro-niches within a sporocarp-forming fungus[J]. Frontiers in Microbiology, 2021, 12: 629352. [百度学术]
REN F, ZHANG YG, YU H, ZHANG YA. Ganoderma lucidum cultivation affect microbial community structure of soil, wood segments and tree roots[J]. Scientific Reports, 2020, 10(1): 3435. [百度学术]
BARBIERI E, GUIDI C, BERTAUX J, FREY-KLETT P, GARBAYE J, CECCAROLI P, SALTARELLI R, ZAMBONELLI A, STOCCHI V. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation[J]. Environmental Microbiology, 2007, 9(9): 2234-2246. [百度学术]
ANTONY-BABU S, DEVEAU A, van NOSTRAND JD, ZHOU JZ, le TACON F, ROBIN C, FREY-KLETT P, UROZ S. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles[J]. Environmental Microbiology, 2014, 16(9): 2831-2847. [百度学术]
BARBIERI E, BERTINI L, ROSSI I, CECCAROLI P, SALTARELLI R, GUIDI C, ZAMBONELLI A, STOCCHI V. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad[J]. FEMS Microbiology Letters, 2005, 247(1): 23-35. [百度学术]
GRYNDLER M, SOUKUPOVÁ L, HRŠELOVÁ H, GRYNDLEROVÁ H, BOROVIČKA J, STREIBLOVÁ E, JANSA J. A quest for indigenous truffle helper prokaryotes[J]. Environmental Microbiology Reports, 2013, 5(3): 346-352. [百度学术]
SPLIVALLO R, DEVEAU A, VALDEZ N, KIRCHHOFF N, FREY-KLETT P, KARLOVSKY P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma[J]. Environmental Microbiology, 2015, 17(8): 2647-2660. [百度学术]
GOHAR D, PENT M, PÕLDMAA K, BAHRAM M. Bacterial community dynamics across developmental stages of fungal fruiting bodies[J]. FEMS Microbiology Ecology, 2020, 96(10): fiaa175. [百度学术]
KUMARI D, REDDY MS, UPADHYAY RC. Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp.[J]. Annals of Microbiology, 2013, 63(3): 845-853. [百度学术]
LIU D, PEREZ-MORENO J, ZHANG P, WANG R, CHATER CCC, YU FQ. Distinct compartmentalization of microbial community and potential metabolic function in the fruiting body of Tricholoma matsutake[J]. Journal of Fungi, 2021, 7(8): 586. [百度学术]
MA YJ, GAO WQ, ZHANG F, ZHU XT, KONG WB, NIU SQ, GAO K, YANG HQ. Community composition and trophic mode diversity of fungi associated with fruiting body of medicinal Sanghuangporus vaninii[J]. BMC Microbiology, 2022, 22(1): 251. [百度学术]
OH SY, KIM M, EIMES JA, LIM YW. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds[J]. PLoS One, 2018, 13(2): e0190948. [百度学术]
王冉, 于富强. 云南干巴菌子实体内可培养微生物[J]. 微生物学通报, 2018, 45(5): 1112-1119. [百度学术]
WANG R, YU FQ. Culturable microorganisms associated with basidiocarps of Thelephora ganbajun[J]. Microbiology China, 2018, 45(5): 1112-1119 (in Chinese). [百度学术]
VARESE GC, PORTINAR S, TROTT A, SCANNERINI S, LUPPI-MOSCA AM, MARTINOTTI MG. Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont[J]. Symbiosis, 1996, 21(2): 129-147. [百度学术]
LUCAS X, SENGER C, ERXLEBEN A, GRÜNING BA, DÖRING K, MOSCH J, FLEMMING S, GÜNTHER S. StreptomeDB: a resource for natural compounds isolated from Streptomyces species[J]. Nucleic Acids Research, 2013, 41(Database issue): D1130-D1136. [百度学术]
李鹏, 熊雪, 向准, 和耀威, 刘忠玄, 王晶. 冬小包脚菇可培养内生真菌及菌基土壤真菌物种多样性分析[J]. 福建农业学报, 2022, 37(8): 1082-1091. [百度学术]
LI P, XIONG X, XIANG Z, HE YW, LIU ZX, WANG J. Diversity of culturable endophytes and rhizosphere fungi of Volvariella brumalis[J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 1082-1091 (in Chinese). [百度学术]
丁小维, 刘开辉, 邓百万, 陈文强. 两株牛肝菌内生真菌的分离鉴定及活性初步研究[J]. 中国抗生素杂志, 2011, 36(12): 885-888. [百度学术]
DING XW, LIU KH, DENG BW, CHEN WQ. Isolation, identification and bioactive assays of two endophytic fungi associated with Boletaceae[J]. Chinese Journal of Antibiotics, 2011, 36(12): 885-888 (in Chinese). [百度学术]
岳万松, 熊勇, 陈毅坚. 云南牛肝菌的内生真菌分离、鉴定和ITS序列特征研究[J]. 食品工业科技, 2014, 35(19): 172-176. [百度学术]
YUE WS, XIONG Y, CHEN YJ. Isolation and identification of endophytic fungi from different Boletus in Yunnan and ITS region sequence analysis[J]. Science and Technology of Food Industry, 2014, 35(19): 172-176 (in Chinese). [百度学术]
杨大智, 朱启顺, 杨正斌, 段焰青. 干巴菌子实体内伴生真菌的研究[J]. 中国食用菌, 1997, 16(2): 8-9. [百度学术]
YANG DZ, ZHU QS, YANG ZB, DUAN YQ. Study on the accompany fungi in Thelephora ganbajun’s fruit-body[J]. Edible Fungi of China, 1997, 16(2): 8-9 (in Chinese). [百度学术]
XU R, LI XP, ZHANG X, SHEN WH, MIN CY, WANG JW. Contrasting regulation of live Bacillus cereus No.1 and its volatiles on Shiraia perylenequinone production[J]. Microbial Cell Factories, 2022, 21(1): 172. [百度学术]
YAN XX, WEN YD, HU MH, WU ZQ, TIAN XF. Promotion of the hypocrellin yield by a co-culture of Shiraia bambusicola (GDMCC 60438) with Arthrinium sp. AF-5 fungus[J]. Fermentation, 2021, 7(4): 316. [百度学术]
AYUDHYA SPN, RIFFIANI R, OZAKI Y, ONDA Y, NAKANO S, AIMI T, SHIMOMURA N. Isolation of bacteria from fruiting bodies of Rhizopogon roseolus and their effect on mycelial growth of host mushroom[J]. Mushroom Science and Biotechnology, 2019, 27(4): 134-139. [百度学术]
MA YJ, ZHENG LP, WANG JW. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1[J]. Microbial Cell Factories, 2019, 18(1): 121. [百度学术]
季红瑶. 蓝光和真菌诱导对竹红菌素生产的调节作用研究[D]. 苏州: 苏州大学硕士学位论文, 2020. [百度学术]
JI HY. The regulation of blue light and fruiting-body associated fungi on hypocrellin production of Shiraia bambusicoloa[D]. Suzhou: Master’s Thesis of Soochow University, 2020 (in Chinese). [百度学术]
LI XP, ZHOU LL, GUO YH, WANG JW. The signaling role of extracellular ATP in co-culture of Shiraia sp. S9 and Pseudomonas fulva SB1 for enhancing hypocrellin A production[J]. Microbial Cell Factories, 2021, 20(1): 144. [百度学术]
SBRANA C, AGNOLUCCI M, BEDINI S, LEPERA A, TOFFANIN A, GIOVANNETTI M, NUTI MP. Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth[J]. FEMS Microbiology Letters, 2002, 211(2): 195-201. [百度学术]
MASRUKHIN M, PUTRI AL, SULISTIYANI TR, ILYAS M, PURWANINGSIH I, SASKIAWAN I, NIAM MY. Antifungal activity of bacterial isolates from straw mushroom cultivation medium against phytopathogenic fungi[J]. Journal of Tropical Biodiversity and Biotechnology, 2021, 6(1): 59235. [百度学术]
张俊兰. 食用菌内生菌的分离鉴定及其代谢产物的初步研究[D]. 福州: 福建农林大学硕士学位论文, 2010. [百度学术]
ZHANG JL. Isolation and identification of endophytes from edible fungi and preliminary study on their metabolites[D]. Fuzhou: Master’s Thesis of Fujian Agriculture and Forestry University, 2010 (in Chinese). [百度学术]
BEDINI S, BAGNOLI G, SBRANA C, LEPORINI C, TOLA E, DUNNE C, FILIPPI C, D’ANDREA F, O’GARA F, NUTI MP. Pseudomonads isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture[J]. Symbiosis, 1999, 26(3): 223-236. [百度学术]
ZHOU LL, SHEN WH, MA YJ, LI XP, WU JY, WANG JW. Structure characterization of an exopolysaccharide from a Shiraia-associated bacterium and its strong eliciting activity on the fungal hypocrellin production[J]. International Journal of Biological Macromolecules, 2023, 226: 423-433. [百度学术]
孙勇, 蒋继宏. 一株桦褐孔菌伴生菌的鉴定及对肿瘤细胞的抑制作用[J]. 生物加工过程, 2017, 15(4): 82-86. [百度学术]
SUN Y, JIANG JH. Identification of a strain of companion fungus of Inonotus obliquus and its activity against tumor cell[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(4): 82-86 (in Chinese). [百度学术]
CHEN YT, YUAN Q, SHAN LT, LIN MA, CHENG DQ, LI CY. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus[J]. Oncology Letters, 2013, 5(6): 1787-1792. [百度学术]