摘要
丝状真菌的衰老是一个涉及多种生理生化变化的复杂过程,受外部环境和遗传的共同影响,且伴随细胞功能退化与生理损伤。丝状真菌因其遗传操作容易、生命周期短、便于量化的衰老特征等优势被广泛用于衰老机制研究。本研究对丝状真菌的衰老特征进行综述,并归纳环境因素、线粒体稳定性、氧化应激和代谢水平等影响衰老的因素,解析衰老过程的调控机制,进一步挖掘丝状真菌在工业应用中的应用价值,期望能为人类衰老的研究提供新的研究思路。
衰老一种是受环境和遗传调控相互作用的复杂生物学现象,涉及多种细胞功能的慢性衰退,并且引发疾病,是当前医学领域科学研究的重要方向之
1 丝状真菌衰老的特征
丝状真菌衰老是指随时间推移,其生长、代谢、分化和遗传等方面出现不可逆的功能退化现象;对于绝大多数丝状真菌而言,菌丝生长阶段是可以无限顶端极化生长的,然而,有些物种的丝状真菌生长发育到特定阶段会表现出独特的衰老特
2 丝状真菌衰老的影响因素
丝状真菌衰老是一个涉及多因素、多阶段的过程。丝状真菌生长环境的变化会引起真菌压力应激,改变代谢过程,影响次级代谢产物合成,甚至导致真菌衰老或死
2.1 环境因素影响丝状真菌衰老
2.1.1 温度
温度是一种关键的环境信号,影响丝状真菌孢子萌发、菌丝生长以及生存情况;外界环境温度的波动能引起丝状真菌压力应激,代谢水平改变,不仅会影响丝状真菌生长,严重时还会导致其衰老与死

图1 影响丝状真菌衰老的环境因素及其调控
Figure 1 The environmental factors affecting the senescence of filamentous fungi and their regulation. +: Denotes promotion; -: Denotes inhibition.
2.1.2 光照
光照作为外部信号,影响丝状真菌的生理过程与形态变
2.1.3 pH
在丝状真菌中,引起氧化应激的羟胺和氢氧根离子的解离和生成与pH值相关,丝状真菌生长环境pH的变化会改变相关基因的转录表达来维持细胞稳态,比如某些分泌酶和代谢物等,进一步影响丝状真菌的生长发育与衰
真菌 Fungi | 影响因素 Factors | 对衰老的调控 Regulation of aging | 涉及功能 Functions | 参考文献 References |
---|---|---|---|---|
Aspergillus flavus |
高温 High temperature | + |
细胞膜破坏、细胞壁变薄 Cell membrane disruption, cell wall thinning |
[ |
Penicillium rugulosum |
极低温 Extremely low temperature | + |
活性氧 ROS |
[ |
Geotrichum fragrans |
酸性pH值 Acidic pH | + |
鸟苷酸 GMP |
[ |
Aspergillus flavus |
低温 Low temperature | - |
能量代谢 Energy metabolism |
[ |
Alternaria alternata |
红光 Red light | - |
性发育、次级代谢 Sexual development, secondary metabolism |
[ |
Aspergillus flavus, Aspergillus parasiticus |
白光、蓝光 White light, blue light | - |
次级代谢 Secondary metabolism |
[ |
Neurospora crassa |
白光、红光 White light, red light |
受Ve-1调控 Regulated by Ve-1 |
无性生殖 Asexual reproduction |
[ |
Podospora anserina |
光照 Illumination |
受PaPhy1、PaPhy2调控 Regulated by PaPhy1 and PaPhy2 |
子实体发育 Fruiting body development |
[ |
Aspergillus niger |
高/低pH值 High/Low pH | + |
能量代谢 Energy metabolism |
[ |
Aspergillus fumigatus |
酸性pH值 Acidic pH |
受PacC调控 Regulated by PacC |
无性生殖 Asexual reproduction |
[ |
Aspergillus nidulans |
pH值变化 Changes in pH |
受PalH调控 Regulated by PalH |
泛素化 Ubiquitination |
[ |
+:促进;-:抑制。
+: Promotion; -: Inhibition.
2.2 遗传调控丝状真菌衰老
2.2.1 mtDNA稳定性
mtDNA稳定性在丝状真菌衰老和寿命控制中具有重要意
真菌 Fungi | 涉及功能 Factors | 基因/蛋白 Gene/Protein | 参考文献 References |
---|---|---|---|
Podospora anserina | ADP/ATP | PaAnt |
[ |
Podospora anserina |
自噬 Autophagy | MnSOD |
[ |
Beauveria bassiana |
无性生殖 Asexual reproduction | Atg11 |
[ |
Acremonium chrysogenum |
次级代谢合成 Secondary metabolite synthesis | Acatg1, Acatg8, Acatg11 |
[ |
Magnaporthe oryzae |
自噬调节 Autophagy regulation | TOR |
[ |
Magnaporthe grisea |
无性生殖 Asexual reproduction | MoAtg8, MoAtg4, MoAtg1, MoAtg6, MoAtg14 |
[ |
Fusarium graminearum |
脂质合成 Lipid synthesis | Atg family |
[ |
Neurospora crassa |
DNA错配修复 DNA mismatch repair | msh1 |
[ |
Aspergillus sp. |
氧化应激 Oxidative stress | Nox complex |
[ |
Aspergillus niger |
氧化应激 Oxidative stress | SODA, CcsA |
[ |
Aspergillus niger |
合成代谢 Anabolism | GcnE |
[ |
Metarhizium robertsii |
能量代谢 Energy metabolism | MAA_06480 MAA_02043 |
[ |
Podospora anserina |
细胞呼吸补偿机制 Cellular respiratory compensation mechanism | PaCox1 |
[ |
PaCox17 |
[ | ||
线粒体蛋白稳态 Mitochondrial protein homeostasis | PaLon |
[ | |
PaClpP |
[ | ||
PaIap |
[ | ||
磷脂代谢 Phospholipid metabolism | PaCrd1 |
[ | |
线粒体基因稳态 Mitochondrial genetic homeostasis | PaDnm1 |
[ | |
PaAtpe, PaAtpg, PaMic10, PaMic26 |
[ | ||
凋亡 Apoptosis | PaAif2 |
[ | |
PaAmid1 |
[ | ||
氧化应激 Oxidative stress | PaMth1 |
[ | |
PaSod2, PaSod3 |
[ | ||
自噬 Autophagy | PaAtg1 |
[ | |
PaAtg24 |
[ |
2.2.2 自噬
自噬是一种细胞内部物质循环和降解的重要途径,在丝状真菌生长发育以及无性或有性生殖过程中发挥重要作
2.2.3 ROS稳态
氧化应激是另一个影响丝状真菌衰老的重要因素。在有氧代谢过程中,ROS的生成不可避免,ROS也是导致真菌衰老的主要原
2.2.4 代谢
丝状真菌的代谢水平决定了其生长速度和生物合成能力,其代谢失衡或降低可能导致细胞功能下降,最终促进衰老。在粗糙脉孢菌(N. crassa)中,生物钟相关基因lag-1和ras-1缺失会影响脂类代谢,同时脂质的缺乏会改变真菌昼夜节律性(
2.2.5 其他
丝状真菌在不同的环境条件下,会发生DNA的甲基化水平、组蛋白的乙酰化/去乙酰化、小干扰RNA或长非编码RNA表达等表观遗传修饰改
3 总结与展望
丝状真菌的衰老是一个复杂且多维度的过程,这一过程主要受到环境因素和内在遗传因素的影响。在与真菌衰老所有的影响因素中,线粒体不稳定性(功能障碍和mtDNA不稳定)相关的研究最多,也是导致丝状真菌衰老的主要因
在以往衰老的研究中,端粒作为染色体末端的保护结构,其长度与细胞分裂次数和衰老密切相关。然而,丝状真菌的端粒长度并未显示与衰老直接关联。虽然端粒缩短与细胞衰老或凋亡有
总之,丝状真菌衰老机制的研究正迎来一个充满希望的时代。借助跨学科合作与技术创新,有望在未来加深对衰老的认识,为增进人类福祉与推动可持续发展作出贡献。
作者贡献声明
唐雅碧:资料查询和文章写作;吴佳玲:协助资料查询与文章修改;李晓:论文写作、编辑和文献校对;谢宁:指导论文写作、资料查询和文章修改。
利益冲突
公开声明
参考文献
SCOTT AJ, ELLISON M, SINCLAIR DA. The economic value of targeting aging[J]. Nature Aging, 2021, 1(7): 616-623. [百度学术]
CAMPISI J, KAPAHI P, LITHGOW GJ, MELOV S, VERDIN E. From discoveries in ageing research to therapeutics for healthy ageing[J]. Nature, 2019, 571(7764): 183-192. [百度学术]
周玉枝, 闫明亮, 高丽, 秦雪梅, 杜冠华. 衰老动物模型的研究及其在抗衰老药物活性筛选中的应用[J]. 中草药, 2017, 48(6): 1061-1071. [百度学术]
ZHOU YZ, YAN ML, GAO L, QIN XM, DU GH. Study on aging animal models and its application in activity screening of anti-aging drugs[J]. Chinese Traditional and Herbal Drugs, 2017, 48(6): 1061-1071 (in Chinese). [百度学术]
RIZET G. Longevity of strains of Podospora anserina[J]. Comptes Rendus Hebdomadaires Des Seances de L’Academie Des Sciences, 1953, 237(18): 1106-1109. [百度学术]
SILAR P. Phenotypic instability in fungi[J]. Advances in Applied Microbiology, 2019, 107: 141-187. [百度学术]
MAHESHWARI R, NAVARAJ A. Senescence in fungi: the view from Neurospora[J]. FEMS Microbiology Letters, 2008, 280(2): 135-143. [百度学术]
OSIEWACZ HD. Aging in fungi: role of mitochondria in Podospora anserina[J]. Mechanisms of Ageing and Development, 2002, 123(7): 755-764. [百度学术]
CUMMINGS DJ, MacNEIL IA, DOMENICO J, MATSUURA ET. Excision-amplification of mitochondrial DNA during senescence in Podospora anserina DNA sequence analysis of three unique “plasmids”[J]. Journal of Molecular Biology, 1985, 185(4): 659-680. [百度学术]
CUMMINGS DJ, BELCOUR L, GRANDCHAMP C. Mitochondrial DNA from Podospora anserina[J]. Molecular and General Genetics MGG, 1979, 171(3): 239-250. [百度学术]
STAHL U, KÜCK U, TUDZYNSKI P, ESSER K. Characterization and cloning of plasmid like DNA of the ascomycete Podospora anserina[J]. Molecular & General Genetics, 1980, 178(3): 639-646. [百度学术]
SILAR P. Podospora anserina: from laboratory to biotechnology[M]//Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 283-309. [百度学术]
BOSSY-WETZEL E, BARSOUM MJ, GODZIK A, SCHWARZENBACHER R, LIPTON SA. Mitochondrial fission in apoptosis, neurodegeneration and aging[J]. Current Opinion in Cell Biology, 2003, 15(6): 706-716. [百度学术]
FOX AN, KENNELL JC. Association between variant plasmid formation and senescence in retroplasmid-containing strains of Neurospora spp.[J]. Current Genetics, 2001, 39(2): 92-100. [百度学术]
ORGEL LE. the maintenance of the accuracy of protein synthesis and its relevance to ageing[J]. Proceedings of the National Academy of Sciences of the United States of America, 1963, 49(4): 517-521. [百度学术]
RICHARDS A, VESES V, GOW NAR. Vacuole dynamics in fungi[J]. Fungal Biology Reviews, 2010, 24(3/4): 93-105. [百度学术]
KABEYA Y. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. The EMBO Journal, 2000, 19(21): 5720-5728. [百度学术]
WAN CL, YANG X, LEE DJ, ZHANG QL, LI JN, LIU X. Formation of filamentous aerobic granules: role of pH and mechanism[J]. Applied Microbiology and Biotechnology, 2014, 98(19): 8389-8397. [百度学术]
李璇, 孔谦, 陈中健, 黄文洁, 吴绍文, 陈梦雨, 谭深源, 王婧, 晏石娟. 不同温度下黄曲霉菌菌丝超微形态的比较研究[J]. 菌物学报, 2021, 40(7): 1648-1659. [百度学术]
LI X, KONG Q, CHEN ZJ, HUANG WJ, WU SW, CHEN MY, TAN SY, WANG J, YAN SJ. Comparative study on ultrastructural characteristics of Aspergillus flavus grown under different temperature[J]. Mycosystema, 2021, 40(7): 1648-1659 (in Chinese). [百度学术]
SHAPIRO RS, COWEN LE. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing[J]. mBio, 2012, 3(5): e00238-12. [百度学术]
MALAVAZI I, GOLDMAN GH, BROWN NA. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi[J]. Briefings in Functional Genomics, 2014, 13(6): 456-470. [百度学术]
MARCOU D. Notion de longévité et nature cytoplasmique du déterminant de la sénescence chez quelques champignons[C]//Masson et Cie Publishers, Annales des Sciences Naturelles Botanique. Paris: Masson, 1962: 653-764. [百度学术]
DRIVER AS, KODAVANTI PR, MUNDY WR. Age-related changes in reactive oxygen species production in rat brain homogenates[J]. Neurotoxicology and Teratology, 2000, 22(2): 175-181. [百度学术]
YANG KL, LIU YH, WANG S, WU LH, XIE R, LAN HH, FASOYIN OE, WANG Y, WANG SH. Cyclase-associated protein cap with multiple domains contributes to mycotoxin biosynthesis and fungal virulence in Aspergillus flavus[J]. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4200-4213. [百度学术]
SHIMIZU K, KELLER NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans[J]. Genetics, 2001, 157(2): 591-600. [百度学术]
张梦薇, 陈美榕, 刘舒雯, 胡江峰, 张健. LaeA在丝状真菌次级代谢、生长发育和其他重要生物过程中的作用[J]. 菌物学报, 2020, 39(3): 548-555. [百度学术]
ZHANG MW, CHEN MR, LIU SW, HU JF, ZHANG J. The roles of LaeA in secondary metabolism, growth and development and other important biological processes of filamentous fungi: a review[J]. Mycosystema, 2020, 39(3): 548-555 (in Chinese). [百度学术]
冯慧云, 邢伟, 胡昌华. 丝状真菌新型全局性调控因子LaeA[J]. 微生物学报, 2011, 51(9): 1141-1145. [百度学术]
FENG HY, XING W, HU CH. Research advances in global regulator LaeA of filamentous fungi: a review[J]. Acta Microbiologica Sinica, 2011, 51(9): 1141-1145 (in Chinese). [百度学术]
REYES-DOMINGUEZ Y, BOK JW, BERGER H, SHWAB EK, BASHEER A, GALLMETZER A, SCAZZOCCHIO C, KELLER N, STRAUSS J. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans[J]. Molecular Microbiology, 2010, 76(6): 1376-1386. [百度学术]
WANG B, LV YY, LI XJ, LIN YY, DENG H, PAN L. Profiling of secondary metabolite gene clusters regulated by LaeA in Aspergillus niger FGSC A1279 based on genome sequencing and transcriptome analysis[J]. Research in Microbiology, 2018, 169(2): 67-77. [百度学术]
RODRIGUEZ-ROMERO J, HEDTKE M, KASTNER C, MÜLLER S, FISCHER R. Fungi, hidden in soil or up in the air: light makes a difference[J]. Annual Review of Microbiology, 2010, 64: 585-610. [百度学术]
MIYAKE T, MORI A, KII T, OKUNO T, USUI Y, SATO F, SAMMOTO H, WATANABE A, KARIYAMA M. Light effects on cell development and secondary metabolism in Monascus[J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32(3): 103-108. [百度学术]
HÄGGBLOM P, UNESTAM T. Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternata[J]. Applied and Environmental Microbiology, 1979, 38(6): 1074-1077. [百度学术]
LINDEN H. Circadian rhythms. A white collar protein senses blue light[J]. Science, 2002, 297(5582): 777-778. [百度学术]
IDNURM A, HEITMAN J. Light controls growth and development via a conserved pathway in the fungal kingdom[J]. PLoS Biology, 2005, 3(4): e95. [百度学术]
BAYRAM O, KRAPPMANN S, SEILER S, VOGT N, BRAUS GH. Neurospora crassa Ve-1 affects asexual conidiation[J]. Fungal Genetics and Biology, 2008, 45(2): 127-138. [百度学术]
陈思羽, 李晓, 杜文珍, 耿月华, 刘刚, 谢宁. 丝状真菌Podospora anserina中光敏色素基因的鉴定及功能分析[J]. 微生物学报, 2024, 64(2): 443-460. [百度学术]
CHEN SY, LI X, DU WZ, GENG YH, LIU G, XIE N. Identification and functional analysis of phytochrome gene in filamentous fungus Podospora anserina[J]. Acta Microbiologica Sinica, 2024, 64(2): 443-460 (in Chinese). [百度学术]
FULLER KK, DUNLAP JC, LOROS JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression[J]. Applied Microbiology and Biotechnology, 2018, 102(9): 3849-3863. [百度学术]
PEÑALVA MA, JR ARST HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 426-446. [百度学术]
HESSE SJA, RUIJTER GJG, DIJKEMA C, VISSER J. Intracellular pH homeostasis in the filamentous fungus Aspergillus niger[J]. European Journal of Biochemistry, 2002, 269(14): 3485-3494. [百度学术]
TOLEDO H, SÁNCHEZ CI, MARÍN L, AMICH J, CALERA JA. Regulation of zinc homeostatic genes by environmental pH in the filamentous fungus Aspergillus fumigatus[J]. Environmental Microbiology, 2022, 24(2): 643-666. [百度学术]
BOK JW, KELLER NP. LaeA, a regulator of secondary metabolism in Aspergillus spp.[J]. Eukaryotic Cell, 2004, 3(2): 527-535. [百度学术]
LUCENA-AGELL D, HERVÁS-AGUILAR A, MÚNERA-HUERTAS T, POUGOVKINA O, RUDNICKA J, GALINDO A, TILBURN J, JrARST HN, PEÑALVA MA. Mutational analysis of the Aspergillus ambient pH receptor PalH underscores its potential as a target for antifungal compounds[J]. Molecular Microbiology, 2016, 101(6): 982-1002. [百度学术]
OTTEN ABC, SMEETS HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing[J]. Human Reproduction Update, 2015, 21(5): 671-689. [百度学术]
OSIEWACZ HD, KIMPEL E. Mitochondrial-nuclear interactions and lifespan control in fungi[J]. Experimental Gerontology, 1999, 34(8): 901-909. [百度学术]
BELCOUR L, BEGEL O, MOSSÉ MO, VIERNY C. Mitochondrial DNA amplification in senescent cultures of Podospora anserina: variability between the retained, amplified sequences[J]. Current Genetics, 1981, 3(1): 13-21. [百度学术]
KÜCK U, STAHL U, ESSER K. Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina[J]. Current Genetics, 1981, 3(2): 151-156. [百度学术]
ALBERT B, SELLEM CH. Dynamics of the mitochondrial genome during Podospora anserina aging[J]. Current Genetics, 2002, 40(6): 365-373. [百度学术]
SILAR P, KOLL F, ROSSIGNOL M. Cytosolic ribosomal mutations that abolish accumulation of circular intron in the mitochondria without preventing senescence of Podospora anserina[J]. Genetics, 1997, 145(3): 697-705. [百度学术]
DUFOUR E, BOULAY J, RINCHEVAL V, SAINSARD-CHANET A. A causal link between respiration and senescence in Podospora anserina[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(8): 4138-4143. [百度学术]
OSÍEWACZ HD, ESSER K. The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene[J]. Current Genetics, 1984, 8(4): 299-305. [百度学术]
van DIEPENINGEN AD, MAAS MFPM, HUBERTS DHEW, GOEDBLOED DJ, ENGELMOER DJP, SLAKHORST SM, KOOPMANSCHAP AB, KRAUSE F, DENCHER NA, SELLEM CH, SAINSARD-CHANET A, HOEKSTRA RF, DEBETS AJM. Calorie restriction causes healthy life span extension in the filamentous fungus Podospora anserina[J]. Mechanisms of Ageing and Development, 2010, 131(1): 60-68. [百度学术]
EL-KHOURY R, SAINSARD-CHANET A. Suppression of mitochondrial DNA instability of autosomal dominant forms of progressive external ophthalmoplegia-associated ANT1 mutations in Podospora anserina[J]. Genetics, 2009, 183(3): 861-871. [百度学术]
ENDO M, YOKOI T, HATAZAWA S, KOJIMA Y, TAKAHAMA S, YOSHIHARA R, TANAKA S, HATAKEYAMA S. The msh1 gene is responsible for short life span mutant natural death and functions to maintain mitochondrial DNA integrity[J]. Fungal Genetics and Biology, 2020, 144: 103465. [百度学术]
HELLER J, TUDZYNSKI P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease[J]. Annual Review of Phytopathology, 2011, 49: 369-390. [百度学术]
EMRI T, SÜMEGI-GYŐRI VM, PÁLL K, GILA BC, PÓCSI I. Effect of the combinatorial iron-chelation and oxidative stress on the growth of Aspergillus species[J]. Research in Microbiology, 2022, 173(8): 103969. [百度学术]
DU WL, ZHAI PF, LIU S, ZHANG YW, LU L. The copper chaperone CcsA, coupled with superoxide dismutase SodA, mediates the oxidative stress response in Aspergillus fumigatus[J]. Applied and Environmental Microbiology, 2021, 87(17): e0101321. [百度学术]
OBEREGGER H, ZADRA I, SCHOESER M, HAAS H. Iron starvation leads to increased expression of Cu/Zn-superoxide dismutase in Aspergillus[J]. FEBS Letters, 2000, 485(2/3): 113-116. [百度学术]
LIU SY, LIN JQ, WU HL, WANG CC, HUANG SJ, LUO YF, SUN JH, ZHOU JX, YAN SJ, HE JG, WANG J, HE ZM. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation[J]. PLoS One, 2012, 7(1): e30349. [百度学术]
LI WZ, WANG YL, ZHU JY, WANG ZX, TANG GL, HUANG B. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii[J]. Fungal Biology, 2017, 121(3): 293-303. [百度学术]
SCHULTE E, KÜCK U, ESSER K. Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome[J]. Molecular and General Genetics MGG, 1988, 211(2): 342-349. [百度学术]
STUMPFERL SW, STEPHAN O, OSIEWACZ HD. Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span[J]. Eukaryotic Cell, 2004, 3(1): 200-211. [百度学术]
ADAM C, PICARD M, DÉQUARD-CHABLAT M, SELLEM CH, HERMANN-LE DENMAT S, CONTAMINE V. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain[J]. PLoS One, 2012, 7(5): e38138. [百度学术]
KNUPPERTZ L, OSIEWACZ HD. Autophagy compensates impaired energy metabolism in CLPXP-deficient Podospora anserina strains and extends healthspan[J]. Aging Cell, 2017, 16(4): 704-715. [百度学术]
LÖSER T, JOPPE A, HAMANN A, OSIEWACZ HD. Mitochondrial phospholipid homeostasis is regulated by the i-AAA protease PaIAP and affects organismic aging[J]. Cells, 2021, 10(10): 2775. [百度学术]
SCHECKHUBER CQ, ERJAVEC N, TINAZLI A, HAMANN A, NYSTRÖM T, OSIEWACZ HD. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models[J]. Nature Cell Biology, 2007, 9(1): 99-105. [百度学术]
RAMPELLO NG, STENGER M, WESTERMANN B, OSIEWACZ HD. Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging[J]. Microbial Cell, 2018, 5(4): 198-207. [百度学术]
BRUST D, HAMANN A, OSIEWACZ HD. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension[J]. Current Genetics, 2010, 56(3): 225-235. [百度学术]
HAMANN A, BRUST D, OSIEWACZ HD. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina[J]. Molecular Microbiology, 2007, 65(4): 948-958. [百度学术]
POLLACK JK, HARRIS SD, MARTEN MR. Autophagy in filamentous fungi[J]. Fungal Genetics and Biology, 2009, 46(1): 1-8. [百度学术]
OSIEWACZ HD, SCHÜRMANNS L. A network of pathways controlling cellular homeostasis affects the onset of senescence in Podospora anserina[J]. Journal of Fungi, 2021, 7(4): 263. [百度学术]
LV WY, WANG CY, YANG N, QUE YW, TALBOT NJ, WANG ZY. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum[J]. Scientific Reports, 2017, 7(1): 11062. [百度学术]
KNUPPERTZ L, HAMANN A, PAMPALONI F, STELZER E, OSIEWACZ HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina[J]. Autophagy, 2014, 10(5): 822-834. [百度学术]
HENKEL V, SCHÜRMANNS L, BRUNNER M, HAMANN A, OSIEWACZ HD. Role of sorting nexin PaATG24 in autophagy, aging and development of Podospora anserina[J]. Mechanisms of Ageing and Development, 2020, 186: 111211. [百度学术]
段灵涛, 祝一鸣, 何九卿, 舒灿伟, 周而勋. 真菌细胞自噬的研究进展[J]. 热带生物学报, 2021, 12(2): 253-260. [百度学术]
DUAN LT, ZHU YM, HE JQ, SHU CW, ZHOU EX. Research progress on fungal autophagy[J]. Journal of Tropical Biology, 2021, 12(2): 253-260 (in Chinese). [百度学术]
杨万镇, 涂杰, 刘娜, 盛春泉. 真菌细胞自噬的信号调节和检测策略研究进展[J]. 药学学报, 2020, 55(7): 1431-1438. [百度学术]
YANG WZ, TU J, LIU N, SHENG CQ. Advances in signal regulation and detection strategies for autophagy in fungal cells[J]. Acta Pharmaceutica Sinica, 2020, 55(7): 1431-1438 (in Chinese). [百度学术]
DING JL, LIN HY, HOU J, FENG MG, YING SH. The entomopathogenic fungus Beauveria bassiana employs autophagy as a persistence and recovery mechanism during conidial dormancy[J]. mBio, 2023, 14(2): e0304922. [百度学术]
DING JL, PENG YJ, CHU XL, FENG MG, YING SH. Autophagy-related gene BbATG11 is indispensable for pexophagy and mitophagy, and contributes to stress response, conidiation and virulence in the insect mycopathogen Beauveria bassiana[J]. Environmental Microbiology, 2018, 20(9): 3309-3324. [百度学术]
WANG HT, PAN YY, HU PJ, ZHU YX, LI JY, JIANG XJ, LIU G. The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum[J]. Fungal Genetics and Biology, 2014, 69: 65-74. [百度学术]
NAZIO F, STRAPPAZZON F, ANTONIOLI M, BIELLI P, CIANFANELLI V, BORDI M, GRETZMEIER C, DENGJEL J, PIACENTINI M, FIMIA GM, CECCONI F. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6[J]. Nature Cell Biology, 2013, 15(4): 406-416. [百度学术]
LIU XH, ZHAO YH, ZHU XM, ZENG XQ, HUANG LY, DONG B, SU ZZ, WANG Y, LU JP, LIN FC. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae[J]. Scientific Reports, 2017, 7: 40018. [百度学术]
厉晓东, 卢建平, 李海娇, 林福呈. 丝状真菌的细胞凋亡[J]. 微生物学通报, 2011, 38(2): 242-249. [百度学术]
LI XD, LU JP, LI HJ, LIN FC. Apoptosis in filamentous fungi[J]. Microbiology China, 2011, 38(2): 242-249. [百度学术]
HARMAN D. Free radical theory of aging: dietary implications 1[J]. The American Journal of Clinical Nutrition, 1972, 25(8): 839-843. [百度学术]
KUNSTMANN B, OSIEWACZ HD. The S-adenosylmethionine dependent O-methyltransferase PaMTH1: a longevity assurance factor protecting Podospora anserina against oxidative stress[J]. Aging, 2009, 1(3): 328-334. [百度学术]
KUNSTMANN B, OSIEWACZ HD. Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions[J]. Aging Cell, 2008, 7(5): 651-662. [百度学术]
WARNSMANN V, MEISTERKNECHT J, WITTIG I, OSIEWACZ HD. Aging of Podospora anserina leads to alterations of OXPHOS and the induction of non-mitochondrial salvage pathways[J]. Cells, 2021, 10(12): 3319. [百度学术]
HEINZ D, KROTOVA E, HAMANN A, OSIEWACZ HD. Simultaneous ablation of the catalytic AMPK α-subunit SNF1 and mitochondrial matrix protease CLPP results in pronounced lifespan extension[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 616520. [百度学术]
SELLEM CH, MARSY S, BOIVIN A, LEMAIRE C, SAINSARD-CHANET A. A mutation in the gene encoding cytochrome c 1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina[J]. Fungal Genetics and Biology, 2007, 44(7): 648-658. [百度学术]
MONTIBUS M, PINSON-GADAIS L, RICHARD-FORGET F, BARREAU C, PONTS N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi[J]. Critical Reviews in Microbiology, 2015, 41(3): 295-308. [百度学术]
ZHANG SM, ZHANG XL, CHANG C, YUAN ZY, WANG T, ZHAO Y, YANG XT, ZHANG Y, LA GX, WU K, ZHANG ZM, LI XZ. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses[J]. Chemosphere, 2016, 150: 33-39. [百度学术]
FRIDOVICH I. Superoxide dismutases: defence against endogenous superoxide radical[J]. Ciba Foundation Symposium, 1978(65): 77-93. [百度学术]
邱燕玲. NADPH脱氢酶调控丝状真菌Podospora anserina能量和脂肪酸代谢影响子实体形成的机制研究[D]. 深圳: 深圳大学硕士学位论文, 2020. [百度学术]
QIU YL. Study on the mechanism of NADPH dehydrogenase regulating the energy and fatty acid metabolism of filamentous fungus Podospora anserina and affecting the formation of fruiting bodies[D]. Shenzhen: Master’s Thesis of Shenzhen University, 2020 (in Chinese). [百度学术]
CASE ME, GRIFFITH J, DONG WB, TIGNER IL, GAINES K, JIANG JC, JAZWINSKI SM, ARNOLD J, STUDY GC. The aging biological clock in Neurospora crassa[J]. Ecology and Evolution, 2014, 4(17): 3494-3507. [百度学术]
BENNETT LD, BEREMAND P, THOMAS TL, BELL-PEDERSEN D. Circadian activation of the mitogen-activated protein kinase MAK-1 facilitates rhythms in clock-controlled genes in Neurospora crassa[J]. Eukaryotic Cell, 2013, 12(1): 59-69. [百度学术]
LAKIN-THOMAS PL, BRODY S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(1): 256-261. [百度学术]
YU YD, ZHANG L, LI T, WU N, JIANG L, JI XJ, HUANG H. How nitrogen sources influence Mortierella alpina aging: from the lipid droplet proteome to the whole-cell proteome and metabolome[J]. Journal of Proteomics, 2018, 179: 140-149. [百度学术]
AVERBECK NB, JENSEN ON, MANN M, SCHÄGGER H, OSIEWACZ HD. Identification and characterization of PaMTH1, a putative O-methyltransferase accumulating during senescence of Podospora anserina cultures[J]. Current Genetics, 2000, 37(3): 200-208. [百度学术]
ZHANG BY, LONG QL, WU SS, XU QX, SONG SL, HAN L, QIAN M, REN XH, LIU HX, JIANG J, GUO JM, ZHANG XL, CHANG X, FU Q, LAM EWF, CAMPISI J, KIRKLAND JL, SUN Y. KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype[J]. Nature Aging, 2021, 1(5): 454-472. [百度学术]
MARTIENSSEN RA, COLOT V. DNA methylation and epigenetic inheritance in plants and filamentous fungi[J]. Science, 2001, 293(5532): 1070-1074. [百度学术]
BIANCHESSI V, VINCI MC, NIGRO P, RIZZI V, FARINA F, CAPOGROSSI MC, POMPILIO G, GUALDI V, LAURI A. Methylation profiling by bisulfite sequencing analysis of the mtDNA non-coding region in replicative and senescent endothelial cells[J]. Mitochondrion, 2016, 27: 40-47. [百度学术]
KRITSKY MS, RUSSO VEA, FILIPPOVICH SY, AFANASIEVA TP, BACHURINA GP. The opposed effect of 5-azacytidine and light on the development of reproductive structures in Neurospora crassa[J]. Photochemistry and Photobiology, 2002, 75(1): 79-83. [百度学术]
HARLEY CB, VAZIRI H, COUNTER CM, ALLSOPP RC. The telomere hypothesis of cellular aging[J]. Experimental Gerontology, 1992, 27(4): 375-382. [百度学术]
CHAKRAVARTI D, LaBELLA KA, DePINHO RA. Telomeres: history, health, and hallmarks of aging[J]. Cell, 2021, 184(2): 306-322. [百度学术]
SERVOS J, HAMANN A, GRIMM C, OSIEWACZ HD. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development[J]. PLoS One, 2012, 7(11): e49292. [百度学术]
CHIMI MA, DRÖSE S, WITTIG I, HEIDE H, STEGER M, WERNER A, HAMANN A, OSIEWACZ HD, BRANDT U. Age-related changes in the mitochondrial proteome of the fungus Podospora anserina analyzed by 2D-DIGE and LC-MS/MS[J]. Journal of Proteomics, 2013, 91: 358-374. [百度学术]