摘要
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)在环境中分布广泛,且具有显著的生态和环境毒理效应,因此,对PAHs污染场地的治理与修复备受关注。微生物降解作为多环芳烃污染的修复的方式之一,具有成本低、效率高、环境友好等诸多优点。相较于传统的单一菌株降解方法,共培养微生物体系通常展现出更优的降解效果,具有更强的适应性和抗逆性。本文综述了降解多环芳烃的共培养微生物的菌株种类及其降解机理,并指出了构建共培养体系的策略及不同微生物组合,为共培养微生物菌群应用于有机污染环境的生物强化修复提供了参考。
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一种广泛存在于环境中的持久性有机污染物,具有显著的遗传毒性、致突变性和致癌性,同时对免疫系统也有强烈的抑制作
利用细菌、真菌和藻类等微生物对污染场所的多种污染物进行生物降解已成为当前研究热
构建 “共培养体系” 是一种有效降解和去除PAHs的新治理策略。本文基于 “胁迫条件下共栖体系” 的概念,概述了共培养微生物降解PAHs的研究现状,重点阐述了共培养微生物降解有机污染物的组合体系和降解机理,旨在为共培养微生物菌群应用于有机污染环境的生物强化修复提供有效手段,以及优化共培养微生物组合的科学参考。
1 PAHs胁迫条件下微生物多样性分析
Liu
1.1 细菌
细菌因其快速适应性、活力、多样性和形成较低毒性代谢中间体的能力,在PAHs的生物降解中具有广阔的应用前
1.2 真菌
真菌具有将PAHs共同代谢成几种氧化化合物的能
1.3 藻类
与细菌和真菌降解PAHs相比,关于微藻降解PAHs的研究相对较少。微藻是水生环境中的主要初级生产者,在决定环境中PAHs的命运方面发挥着重要作
2 降解PAHs的微生物共培养体系
2.1 共培养体系构建原则
在污染环境中,高分子量PAHs由于其低水溶性和生物可利用性,进一步限制了微生物对这些化合物的有效利

图1 共培养微生物间的相互作用
Figure 1 Interactions between co-cultured microorganisms.
因此,在构建共培养体系时,需要综合考虑PAHs底物的不同特点、不同单菌的生长状况及其对降解的贡献能力,以及微生物间的特定相互作用。通过对文献中报道的共培养体系与多组学研究成果的综合分析,本文归纳总结了共培养微生物的多种组合模式,包括具有共代谢作用的细菌-细菌体
2.2 共培养微生物组合
在构建共培养体系时,根据上述构建原则及菌种类别的不同,可以分为细菌共培养体系、真菌共培养体系、细菌-真菌共培养体系以及细菌-藻类共培养体系。这些微生物通过不同的代谢途径和相关酶系共同作用,实现对PAHs的有效降解(
微生物 Microorganism | 物种 Species | 污染物类型 Pollutant type | 初始浓度 Initial concentration | 降解率 Degradation ratio (%) | 参考文献 References |
---|---|---|---|---|---|
细菌 Bacteria |
Mycobacterium sp. PO1 Mycobacterium sp. PO2 |
芘 PYR | 100 mg/L | 100.0 |
[ |
Rhodococcus sp. WB9 Mycobacterium sp. WY10 |
菲 PHE | 100 mg/L | 93.0 |
[ | |
真菌 Fungus |
Pleurotus ostreatus PO-3 Penicillium chrysogenum MTCC787 |
苯并芘 BaP | - | 86.1 |
[ |
Paeruginosa sp. PA06 Achromobacter sp. AC15 |
芘 PYR | 600 mg/L | 74.6 |
[ | |
真菌-细菌 Fungus-bacteria |
Scedosporium sp. ZYY Acinetobacter sp. Y2 |
多环芳烃 PAHs | 1 667.33 µg/L | 60.0 |
[ |
Ascomycota sp. Bacillus sp. |
苯并芘 BaP | 30 mg/L | 76.12 |
[ | |
藻类-细菌 Algae-bacteria |
Chlorella sp. MM3 Rhodococcus wratislaviensis 9 |
菲、芘、苯并芘 PHE, PYR, and BaP | 10 mg/L | 100.0 |
[ |
Selenastrum capricornutum Mycobacterium sp. A1-PYR |
芘 PYR | 10 mg/L | 100.0 |
[ |
2.2.1 细菌-细菌共培养体系
在PAHs的生物修复过程中,细菌被视为碳氢化合物降解的关键微生
2.2.2 真菌-真菌共培养体系
真菌-真菌共培养降解PAHs的体系包括木质素降解真菌和非木质素降解真菌两类,它们能够有效去除高分子量PAHs。木质素降解真菌能够利用胞外酶裂解PAHs的芳香环,与细菌胞内酶相比,真菌分泌的用于木质素异化的胞外酶更有利于催化土壤中的PAHs的早期降
2.2.3 真菌-细菌共培养体系
在真菌-细菌共培养降解PAHs的过程中,真菌首先利用其细胞壁和菌丝上的官能团快速吸附PAHs至其表面或内部,并通过胞外酶系统将有机污染物转化为毒性更低且生物利用度更高的中间代谢产物;随后,细菌将这些中间产物作为底物进行进一步的矿
2.2.4 藻类-细菌共培养体系
微藻与细菌共培养产生的相互作用在PAHs降解中起着重要作用。一方面,微藻可以通过光合作用快速产生脂质和碳氢化合
3 共培养微生物降解PAHs的机理
3.1 酶的协同作用
在微生物降解PAHs的过程中,酶的协同作用发挥着关键作用。这种协同作用不仅体现在不同微生物之间酶活性的互补上,还体现在同一菌株内部不同酶之间的相互配合。在降解PAHs的过程中,微生物会分泌特定的酶直接作用于PAHs分子,这些酶能够催化PAHs分子中的化学键断裂、开环等反应,从而将大分子的PAHs逐步降解为小分子物质(

图2 微生物对PAHs的主要降解途
Figure 2 The main degradation pathway of PAHs by microorganism
真菌在参与PAHs降解时,主要依赖包括木质素降解酶,如漆酶、木质素过氧化物酶和锰过氧化物酶,它们能够氧化高分子量的PAHs,形成醌类化合物,然后通过氢化、脱水等功能进一步分解,最终实现PAHs的降
3.2 代谢途径的互补
代谢途径的互补是微生物降解PAHs的另一个重要机制。不同微生物种类具有不同的代谢途径,这些途径能够相互补充,共同推进PAHs的降解进程。Kotterman

图3 细菌共培养降解菲的代谢交叉喂养模
Figure 3 Metabolic cross-feeding model of bacterial co-culture for degrading PH
3.3 群体感应的调控
在共培养微生物降解PAHs的过程中,群体感应(quorum sensing, QS)作为一种重要的细胞间通讯机制,在细菌-细菌和细菌-真菌之间以小信号分子,如酰基高丝氨酸内酯(acyl-homoserine lactones, AHLs)、自诱导物(autoinducer 2, AI-2)和自诱导肽(autoinducer peptides, AIPs)为群体感应系统进行细胞间交
4 总结与展望
PAHs在全球环境中广泛分布且不断累积,其带来的生态和健康风险引发了人们对PAHs污染防控与治理的高度关注。由于PAHs的生物可利用性差,且微生物活性易受各类环境因素影响,单一微生物对PAHs的降解效率往往不佳,降解周期也相对漫长。然而,共培养微生物降解PAHs的方法不仅能提高降解效率,还能促进微生物间的协同效应,增强整体系统的稳定性和适应性,因此在PAHs污染治理中具有广阔的应用前景。本文归纳了具有形成共培养潜力以降解PAHs的菌种及共培养构建原则,并对降解PAHs的共培养微生物组合与降解机理进行了综述。尽管已初步揭示了共培养微生物降解PAHs的一些基本机制,但仍存在诸多亟待解决的问题:(1) 在微生物群落方面,对于微生物群落中不同功能的菌属降解PAHs的机制及其相互作用(如协同、拮抗、竞争、共生等)的具体问题仍需深入研究;(2) 在降解酶表达调控方面,如何有效调控关键降解酶的表达仍不明确;(3) 在环境适应方面,如何应对复杂多变的环境条件以实现PAHs的高效降解仍有待进一步探索。
未来共培养微生物降解PAHs的研究可以从以下几个方面展开:(1) 研究在PAHs胁迫环境下,共培养微生物体系中冗余基因(即非必需但在特定条件下可能发挥重要作用的基因)的表达模式、功能及其对PAHs降解的贡献;(2) 利用基因工程、代谢工程等手段,对天然微生物菌群中在降解PAHs方面起关键作用的微生物进行改造和优化,构建基因工程菌群以此提高其降解效率和抗逆性。通过探索冗余基因和关键微生物在PAHs降解中的作用,以及优化共培养微生物组合、降解条件和生物过程监测方法,有望实现对PAHs污染的高效、经济、可持续治理。
作者贡献声明
王箐:构思论文结构并撰写文章;吕倩婧:提供理论支持;杨灼南:参与论文讨论和构思;靳奥飞:参与论文讨论和构思;张瑞:修改手稿。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
BARBOSA JRF, ROCHA BA, SOUZA MCO, BOCATO MZ, AZEVEDO LF, ADEYEMI JA, SANTANA A, CAMPIGLIA AD. Polycyclic aromatic hydrocarbons (PAHs): updated aspects of their determination, kinetics in the human body, and toxicity[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2023, 26(1): 28-65. [百度学术]
QIAO M, QI WX, LIU HJ, QU JH. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: occurrence, ecotoxicity, and sources[J]. Environment International, 2022, 163: 107232. [百度学术]
DAI CM, HAN YM, DUAN YP, LAI XY, FU RB, LIU SG, LEONG KH, TU Y, ZHOU L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments[J]. Environmental Research, 2022, 205: 112423. [百度学术]
ISMAIL NA, KASMURI N, HAMZAH N. Microbial bioremediation techniques for polycyclic aromatic hydrocarbon (PAHs): a review[J]. Water, Air & Soil Pollution, 2022, 233(4): 124. [百度学术]
ALAO MB, ADEBAYO EA. Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons-polluted wastewater[J]. Journal of Basic Microbiology, 2022, 62(3/4): 223-244. [百度学术]
GOSAI HB, PANSERIYA HZ, PATEL PG, PATEL AC, SHANKAR A, VARJANI S, DAVE BP. Exploring bacterial communities through metagenomics during bioremediation of polycyclic aromatic hydrocarbons from contaminated sediments[J]. Science of the Total Environment, 2022, 842: 156794. [百度学术]
TOMAR RS, RAI-KALAL P, JAJOO A. Impact of polycyclic aromatic hydrocarbons on photosynthetic and biochemical functions and its bioremediation by Chlorella vulgaris[J]. Algal Research, 2022, 67: 102815. [百度学术]
KUMARI S, REGAR RK, MANICKAM N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria[J]. Bioresource Technology, 2018, 254: 174-179. [百度学术]
ARUN A, RAJA PP, ARTHI R, ANANTHI M, KUMAR KS, EYINI M. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach[J]. Applied Biochemistry and Biotechnology, 2008, 151(2): 132-142. [百度学术]
ZHONG Y, LUAN TG, LIN L, LIU H, TAM NFY. Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp.[J]. Bioresource Technology, 2011, 102(3): 2965-2972. [百度学术]
GHOSAL D, GHOSH S, DUTTA TK, AHN Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Frontiers in Microbiology, 2016, 7: 1369. [百度学术]
LIU YL, HU HY, ZANAROLI G, XU P, TANG HZ. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways[J]. Journal of Hazardous Materials, 2021, 403: 123956. [百度学术]
刘玉华, 王慧, 胡晓珂. 不动杆菌属(Acinetobacter)细菌降解石油烃的研究进展[J]. 微生物学通报, 2016, 43(7): 1579-1589. [百度学术]
LIU YH, WANG H, HU XK. Recent advances in the biodegradation of hydrocarbons by Acinetobacter species[J]. Microbiology China, 2016, 43(7): 1579-1589 (in Chinese). [百度学术]
高秀荣, 林姗娜, 孙安琪, 廖用开, 张又驰, 蔡超. 一株多环芳烃降解菌的筛选及其降解特性[J]. 环境工程学报, 2020, 14(6): 1668-1678. [百度学术]
GAO XR, LIN SN, SUN AQ, LIAO YK, ZHANG YC, CAI C. Screening and degradation characteristics of a PAHs-degrading bacteria[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1668-1678 (in Chinese). [百度学术]
WANG WP, WANG L, SHAO ZZ. Polycyclic aromatic hydrocarbon (PAH) degradation pathways of the obligate marine PAH degrader Cycloclasticus sp. strain P1[J]. Applied and Environmental Microbiology, 2018, 84(21): e01261-18. [百度学术]
ZENG J, ZHU QH, LI YJ, DAI YL, WU YC, SUN YH, MIU LY, CHEN H, LIN XG. Isolation of diverse pyrene-degrading bacteria via introducing readily utilized phenanthrene[J]. Chemosphere, 2019, 222: 534-540. [百度学术]
SATHISHKUMAR M, BINUPRIYA AR, BAIK SH, YUN SE. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas[J]. CLEAN-Soil, Air, Water, 2008, 36(1): 92-96. [百度学术]
PATEL AB, MAHALA K, JAIN K, MADAMWAR D. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs)[J]. Bioresource Technology, 2018, 253: 288-296. [百度学术]
BOKADE P, BAJAJ A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: exploring fungal bacterial interactions[J]. Journal of Basic Microbiology, 2023, 63(3/4): 239-256. [百度学术]
TEERAPATSAKUL C, POTHIRATANA C, CHITRADON L, THACHEPAN S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13[J]. The Journal of general and applied microbiology, 2016, 62(6): 303-312. [百度学术]
AGRAWAL N, VERMA P, SHAHI SK. Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump[J]. Bioresources and Bioprocessing, 2018, 5(1): 1-9. [百度学术]
HADIBARATA T, KRISTANTI RA, HAMDZAH M. Biosorption and biotransformation of fluoranthene by the white‐rot fungus Pleurotus eryngii F032[J]. Biotechnology and Applied Biochemistry, 2014, 61(2): 126-133. [百度学术]
丁洁, 陈宝梁, 朱利中. 黄孢原毛平革菌菌球对多环芳烃的生物吸附和生物降解作用[J]. 科学通报, 2012, 57(24): 2276-2284. [百度学术]
DING J, CHEN BL, ZHU LZ. Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution[J]. Chinese Science Bulletin, 2012, 57(24): 2276-2284 (in Chinese). [百度学术]
田晶, 徐小琳, 康彦顺, 汤伟华, 刘思琪. 广谱性多环芳烃降解真菌Aspergillus flavus AD-X-1的筛选及其性能研究[J]. 生物技术通报, 2018, 34(8): 115-122. [百度学术]
TIAN J, XU XL, KANG YS, TANG WH, LIU SQ. Screening and characteristics of a broad spectrum fungus degrading polycyclic-aromatic hydrocarbons: Aspergillus flavus AD-X-1[J]. Biotechnology Bulletin, 2018, 34(8): 115-122 (in Chinese). [百度学术]
ESTEVES F, RUEFF J, KRANENDONK M. The central role of cytochrome P450 in xenobiotic metabolism: a brief review on a fascinating enzyme family[J]. Journal of Xenobiotics, 2021, 11(3): 94-114. [百度学术]
IMAM A, SUMAN SK, KANAUJIA PK, RAY A. Biological machinery for polycyclic aromatic hydrocarbons degradation: a review[J]. Bioresource Technology, 2022, 343: 126121. [百度学术]
AHMAD I. Microalgae—bacteria consortia: a review on the degradation of polycyclic aromatic hydrocarbons (PAHs)[J]. Arabian Journal for Science and Engineering, 2022, 47(1): 19-43. [百度学术]
皮永蕊, 吕永红, 柳莹, 唐永政, 高丽, 包木太. 微藻-细菌共生体系在废水处理中的应用[J]. 微生物学报, 2019, 59(6): 1188-1196. [百度学术]
PI YR, LÜ YH, LIU Y, TANG YZ, GAO L, BAO MT. Application of microalgae-bacteria symbiosis system in wastewater treatment[J]. Acta Microbiologica Sinica, 2019, 59(6): 1188-1196 (in Chinese). [百度学术]
NARRO ML, CERNIGLIA CE, BAALEN CV, GIBSON DT. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6[J]. Applied and Environmental Microbiology, 1992, 58(4): 1351-1359. [百度学术]
罗丽娟. 羊角月牙藻(Selenastrum capricornutum)对高环多环芳烃的降解行为研究[D]. 广州: 中山大学博士学位论文, 2013. [百度学术]
LUO LJ. Study on degradation behavior of high-ring polycyclic aromatic hydrocarbons by Selenastrum capricornutum[D]. Guangzhou: Doctoral Dissertation of Sun Yat-sen University, 2013 (in Chinese). [百度学术]
LEI AP, HU ZL, WONG YS, TAM NFY. Removal of fluoranthene and pyrene by different microalgal species[J]. Bioresource Technology, 2007, 98(2): 273-280. [百度学术]
李苏洁, 陈姗姗, 栾天罡. 藻菌共生处理污水的机制与应用研究进展[J]. 微生物学报, 2022, 62(3): 918-929. [百度学术]
LI SJ, CHEN SS, LUAN TG. Advances in mechanisms and applications of algae-bacteria/fungi symbiosis in sewage treatment[J]. Acta Microbiologica Sinica, 2022, 62(3): 918-929 (in Chinese). [百度学术]
PREMNATH N, MOHANRASU K, RAO RGR, DINESH GH, PRAKASH GS, ANANTHI V, PONNUCHAMY K, MUTHUSAMY G, ARUN A. A crucial review on polycyclic aromatic hydrocarbons-environmental occurrence and strategies for microbial degradation[J]. Chemosphere, 2021, 280: 130608. [百度学术]
FESTA S, COPPOTELLI BM, MORELLI IS. Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil[J]. International Biodeterioration & Biodegradation, 2013, 85: 42-51. [百度学术]
YU GH, SUN YM, HAN HY, YAN X, WANG Y, GE XX, QIAO B, TAN LL. Coculture, an efficient biotechnology for mining the biosynthesis potential of macrofungi via interspecies interactions[J]. Frontiers in Microbiology, 2021, 12: 663924. [百度学术]
BANKOLE PO, OMONI VT, MULLA SI, ADEBAJO SO, ADEKUNLE AA. Co-biomass degradation of fluoranthene by marine-derived fungi Aspergillus aculeatus and Mucor irregularis: comprehensive process optimization, enzyme induction and metabolic analyses[J]. Arabian Journal of Chemistry, 2022, 15(9): 104036. [百度学术]
ESPINOSA-ORTIZ EJ, RENE ER, GERLACH R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants[J]. Critical Reviews in Biotechnology, 2022, 42(3): 361-383. [百度学术]
LUO SS, CHEN BW, LIN L, WANG XW, TAM NFY, LUAN TG. Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth[J]. Environmental Science & Technology, 2014, 48(23): 13917-13924. [百度学术]
WANAPAISAN P, LAOTHAMTEEP N, VEJARANO F, CHAKRABORTY J, SHINTANI M, MUANGCHINDA C, MORITA T, MINAKUCHI CS, INOUE K, NOJIRI H, PINYAKONG O. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium[J]. Journal of Hazardous Materials, 2018, 342: 561-570. [百度学术]
SUN SS, WANG HZ, YAN K, LOU J, DING JH, SNYDER SA, WU LS, XU JM. Metabolic interactions in a bacterial co-culture accelerate phenanthrene degradation[J]. Journal of hazardous materials, 2021, 403: 123825. [百度学术]
BHATTACHARYA S, DAS A, PALANISWAMY M, ANGAYARKANNI J. Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures[J]. Journal of Basic Microbiology, 2016, 57(2): 95-103. [百度学术]
LI J, CHEN WX, ZHOU W, WANG Y, DENG MC, ZHOU SQ. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source[J]. Ecotoxicology, 2021, 30(7): 1487-1498. [百度学术]
ATAKPA EO, ZHOU HH, JIANG LJ, MA YH, LIANG YP, LI YH, ZHANG DD, ZHANG CF. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria[J]. Chemosphere, 2022, 290: 133337. [百度学术]
XIAO L, ZHAO XH, YAO JH, LU Q, FENG XJ, WU SM. Biodegradation and adsorption of benzo[a]pyrene by fungi-bacterial coculture[J]. Ecotoxicology and Environmental Safety, 2024, 283: 116811. [百度学术]
SUBASHCHANDRABOSE SR, VENKATESWARLU K, VENKIDUSAMY K, PALANISAMI T, NAIDU R, MEGHARAJ M. Bioremediation of soil long-term contaminated with PAHs by algal-bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase[J]. Science of the Total Environment, 2019, 659: 724-731. [百度学术]
VARJANI S, UPASANI VN. Bioaugmentation of Pseudomonas aeruginosa NCIM 5514—a novel oily waste degrader for treatment of petroleum hydrocarbons[J]. Bioresource Technology, 2021, 319: 124240. [百度学术]
CUI JQ, HE ZQ, NTAKIRUTIMANA S, LIU ZH, LI BZ, YUAN YJ. Artificial mixed microbial system for polycyclic aromatic hydrocarbons degradation[J]. Frontiers in Microbiology, 2023, 14: 1207196. [百度学术]
LI D, LI K, LIU Y, WANG LP, LIU N, HUANG SM. Synergistic PAH biodegradation by a mixed bacterial consortium: based on a multi-substrate enrichment approach[J]. Environmental Science and Pollution Research, 2023, 30(9): 24606-24616. [百度学术]
RAQUEL S, NATALIA G, LUIS FERNANDO B, MARIA CARMEN M. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures[J]. FEMS Microbiology Ecology, 2013, 83(2): 438-449. [百度学术]
王重阳. 嗜盐微生物对典型多环芳烃的降解及其分子机制的研究[D]. 北京: 清华大学博士学位论文, 2018. [百度学术]
WANG CY. Study on degradation of typical polycyclic aromatic hydrocarbons by halophilic microorganisms and its molecular mechanism[D]. Beijing: Doctoral Dissertation of Tsinghua University, 2018 (in Chinese). [百度学术]
SAKSHI, SINGH SK, HARITASH AK. Bacterial degradation of mixed-PAHs and expression of PAH-catabolic genes[J]. World Journal of Microbiology and Biotechnology, 2023, 39(2): 47. [百度学术]
朱清禾, 曾军, 吴宇澄, 杨洁, 林先贵. 多环芳烃共代谢对苯并[a]蒽微生物降解的影响及机制[J]. 中国环境科学, 2022, 42(2): 808-814. [百度学术]
ZHU QH, ZENG J, WU YC, YANG J, LIN XG. Effect of co-metabolism by polycyclic aromatic hydrocarbon on the microbial degradation of benzo[a]anthracene and its mechanism[J]. China Environmental Science, 2022, 42(2): 808-814 (in Chinese). [百度学术]
CHI YJ, HATAKKA A, MAIJALA P. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes?[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 32-39. [百度学术]
YANTO DHY, TACHIBANA S. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil[J]. Journal of Hazardous Materials, 2014, 278: 454-463. [百度学术]
CUI TW, YUAN B, GUO HW, TIAN H, WANG WM, MA YQ, LI CZ, FEI Q. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping[J]. Biotechnology for Biofuels, 2021, 14(162): 1-11. [百度学术]
OSTREM LOSS EM, YU JH. Bioremediation and microbial metabolism of benzo(a)pyrene[J]. Molecular Microbiology, 2018, 109(4): 433-444. [百度学术]
FREY-KLETT P, BURLINSON P, DEVEAU A, BARRET M, TARKKA M, SARNIGUET A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists[J]. Microbiology and Molecular Biology Reviews, 2011, 75(4): 583-609. [百度学术]
林先贵, 吴宇澄, 曾军, 李烜桢, 张晶, 尹睿. 多环芳烃的真菌漆酶转化及污染土壤修复技术[J]. 微生物学通报, 2017, 44(7): 1720-1727. [百度学术]
LIN XG, WU YC, ZENG J, LI XZ, ZHANG J, YIN R. Transformation of polycyclic aromatic hydrocarbon by fungal laccases and potential application in soil remediation[J]. Microbiology China, 2017, 44(7): 1720-1727 (in Chinese). [百度学术]
BOONCHAN S, BRITZ ML, STANLEY GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures[J]. Applied and Environmental Microbiology, 2000, 66(3): 1007-1019. [百度学术]
迪丽拜尔·吐尔逊. 新疆开菲尔中Bacillus haynesii与Kluyveromyces marxianus共培养降解苯并芘及其协同作用研究[D]. 乌鲁木齐: 新疆师范大学硕士学位论文, 2024. [百度学术]
TURSUN D. Study on co-cultivation of Bacillus haynesii and Kluyveromyces marxianus from Xinjiang kefir for degradation of benzo[a]pyrene and their synergistic effects[D]. Urumqi: Master’s Dissertation of Xinjiang Normal University, 2024 (in Chinese). [百度学术]
SIVAKUMAR G, XU JF, THOMPSON RW, YANG Y, RANDOL-SMITH P, WEATHERS PJ. Integrated green algal technology for bioremediation and biofuel[J]. Bioresource Technology, 2012, 107: 1-9. [百度学术]
CHERNIKOVA TN, BARGIELA R, TOSHCHAKOV SV, SHIVARAMAN V, LUNEV EA, YAKIMOV MM, THOMAS DN, GOLYSHIN PN. Hydrocarbon-degrading bacteria Alcanivorax and Marinobacter associated with microalgae Pavlova lutheri and Nannochloropsis oculata[J]. Frontiers in Microbiology, 2020, 11: 572931. [百度学术]
BORDE X, GUIEYSSE B, DELGADO O, MUÑOZ R, HATTI-KAUL R, NUGIER-CHAUVIN C, PATIN H, MATTIASSON B. Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants[J]. Bioresource Technology, 2003, 86(3): 293-300. [百度学术]
LI XJ, CAI FS, LUAN TG, LIN L, CHEN BW. Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum[J]. Science of the Total Environment, 2019, 689: 287-294. [百度学术]
PATEL JG, NIRMAL KUMAR JI, KUMAR RN, KHAN SR. Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium[J]. Cogent Chemistry, 2015, 1(1): 1064193. [百度学术]
GRUNG M, RUUS A, SCHNEIDER SC, HJERMANN DO, BORGA K. Toxicokinetics of pyrene in the freshwater alga Chara rudis[J]. Chemosphere, 2016, 157: 49-56. [百度学术]
LE CHEVANTON M, GARNIER M, BOUGARAN G, SCHREIBER N, LUKOMSKA E, BERARD JB, FOUILLAND E, BERNARD O, CADORET JP. Screening and selection of growth-promoting bacteria for Dunaliella cultures[J]. Algal Research, 2013, 2(3): 212-222. [百度学术]
BAMFORTH SM, SINGLETON I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 723-736. [百度学术]
ASGHARI S, RAJABI F, TARRAHI R, SALEHI-LISAR SY, ASNAASHARI S, OMIDI Y, MOVAFEGHI A. Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: evaluation of antioxidant systems and identification of intermediate biodegradation compounds[J]. Journal of Applied Phycology, 2020, 32: 411-419. [百度学术]
UL ARIFEEN MZ, MA YN, WU TS, CHU C, LIU X, JIANG JP, LI DX, XUE YR, LIU CH. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor[J]. Chemosphere, 2022, 303: 135062. [百度学术]
KADRI T, ROUISSI T, BRAR SK, CLEDON M, SARMA S, VERMA M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review[J]. Journal of Environmental Sciences, 2017, 51: 52-74. [百度学术]
KIM SJ, KWEON O, JONES RC, EDMONDSON RD, CERNIGLIA CE. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1[J]. Biodegradation, 2008, 19(6): 859-881. [百度学术]
BREZNA B, KWEON O, STINGLEY RL, FREEMAN JP, KHAN AA, POLEK B, JONES RC, CERNIGLIA CE. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1[J]. Applied Microbiology and Biotechnology, 2006, 71: 522-532. [百度学术]
KOTTERMAN MJJ, VIS EH, FIELD JA. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora[J]. Applied and Environmental Microbiology, 1998, 64(8): 2853-2858. [百度学术]
IBRAR M, YANG XW. Reconstructing polyaromatic hydrocarbons degrading pathways in the enriched bacterial consortium and their biosurfactants characterization[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107219. [百度学术]
CHEN YS, HUANG YH, LV HX, ZHAO HM, XIANG L, LI H, MO CH, LI YW, CAI QY. Simultaneous biodegradation of polycyclic aromatic hydrocarbons and phthalates by bacterial consortium and its bioremediation for complex polluted soil and sewage sludge[J]. Bioresource Technology, 2024, 408: 131161. [百度学术]
WU SB, LIU JH, LIU CJ, YANG AD, QIAO JJ. Quorum sensing for population-level control of bacteria and potential therapeutic applications[J]. Cellular and Molecular Life Sciences, 2020, 77: 1319-1343. [百度学术]
GARG N, MANCHANDA G, KUMAR A. Bacterial quorum sensing: circuits and applications[J]. Antonie van Leeuwenhoek, 2014, 105: 289-305. [百度学术]
CHEN Y, KIM JK, HIRNING AJ, JOSIC K, BENNETT MR. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251): 986-989. [百度学术]
YU ZL, HU ZY, XU QM, ZHANG MT, YUAN N, LIU JR, QIU M, YIN JH. The LuxI/LuxR-type quorum sensing system regulates degradation of polycyclic aromatic hydrocarbons via two mechanisms[J]. International Journal of Molecular Sciences, 2020, 21(15): 5548. [百度学术]