摘要
细菌的严紧反应(stringent response)是细菌在面临恶劣生存环境时,通过改变新陈代谢并降低生长速度,以增强存活和适应环境能力的一种适应性反应。此反应由鸟苷四磷酸(guanosine tetraphosphate, ppGpp)和鸟苷五磷酸(guanosine pentaphosphate, pppGpp) (合称(p)ppGpp)的快速积累所介导,在微生物应对环境变化中发挥关键作用。细菌内的(p)ppGpp水平由RelA/SpoT同源蛋白(RelA/SpoT homologues, RSH)调控,包括小警报素合成酶(small alarmone synthetases, SAS)、小警报素水解酶(small alarmone hydrolases, SAH)以及双功能蛋白Rel。此外,近期研究发现了一种新的细菌警报素腺苷四磷酸(adenosine tetraphosphate, ppApp)和腺苷五磷酸(adenosine pentaphosphate, pppApp) (合称(p)ppApp),它能调控细菌的多种生物过程。鉴于不同细菌中涉及(p)ppGpp代谢的酶有所不同,本文对已知的RSH蛋白的结构及其生化特性进行系统的分类与综述,并总结其生物学功能,以促进未来在这一领域的深入研究与发展。
当细菌感知到环境中存在酸碱变化、温度变化、营养不足和抗生素等不良因素时,细菌会通过严紧反应(stringent response)调整自身的生理状态,以节省资源,改变新陈代谢,降低生长速度,从而提高在不同环境中的适应能力和在恶劣环境中的存活

图1 (p)ppGpp代谢在细菌严紧反应中对细菌毒力、抗生素耐药等细菌活动的影响
Figure 1 The effects of (p)ppGpp metabolism on bacterial virulence, antibiotic resistance, and other bacterial activities during the stringent response.
细菌内的(p)ppGpp水平由RelA/SpoT同源蛋白(RelA/SpoT homologues, RSH)家族蛋白生成及调节,包括小警报素合成酶(small alarmone synthetases, SAS)、小警报素水解酶(small alarmone hydrolases, SAH)以及含有合成酶/水解酶结构域的双功能(多结构域)蛋白Re

图2 细菌中RSH的结构域结构图
Figure 2 Domain structure of the RSHs in bacteria. SYN: Synthetase domain; HD: Hydrolase domain; TGS: TGS domain (Threonyl-tRNA synthetase-GTPase-SpoT); Helical: α-helical domain; ZFD: Putative zinc finger domain; ACT: Acetolactate synthetase-chorismate mutase-tyrR domains.
RSH蛋白对(p)ppGpp的代谢主要依靠保守的合成功能域(synthetase domain, Syn)和水解功能域(hydrolase domain, HD)来完成。Rel和SAS蛋白的合成功能域主要负责 (p)ppGpp的合成,由ATP向底物GDP/GTP贡献双磷酸盐(PPi)生成ppGpp/pppGpp和副产物AMP。相比之下,(p)ppGpp的水解则通过Rel和SAH的水解功能域完成,将(p)ppGpp水解为GDP/GTP和PP

图3 (p)ppGpp在细菌中的代谢
Figure 3 Metabolism of (p)ppGpp in bacteria. The synthetase domain (SYN, grey) of RSH enzymes facilitates the transfer of a pyrophosphate group from ATP to the ribose portion of GTP, GDP or GMP, creating pppGpp, ppGpp or pGpp, respectively. This reaction also results in the production of an AMP molecule. The hydrolase domain (HD, yellow) is accountable for reforming GTP, GDP or GMP by removing the pyrophosphate group (PPi). The metabolism of (pp)pGpp also involves enzymes beyond the RSH superfamily. GppA (pink) hydrolyzes pppGpp to ppGpp, while Nudix (blue) hydrolyzes pppGpp/ppGpp to pGpp.
Jimmy
1 (p)ppGpp的合成
1.1 (p)ppGpp合成酶概述
细菌、藻类和植物均能合成RSH家族蛋

图4 代表性长RSH合成酶和小警报素合成酶(SAS)的晶体结构
Figure 4 Crystal structure of representative long RSH and small alarmone synthetase. A: Bifunctional SeRel (Streptococcus dysgalactiae subsp. equisimilis Rel) containing the hydrolase and synthetase domains bound to GPX and GDP, respectively (PDB: 1VJ7 chain B
目前,RSH家族蛋白中负责(p)ppGpp合成的蛋白质主要分为2类:长RSH蛋白和SAS蛋白。长RSH蛋白除了具备功能域外,通常还包含额外的调控结构域,这些结构域已被证实参与了更复杂的细菌生存调控过程。相比之下,SAS蛋白结构较为简单,仅含有负责(p)ppGpp合成的功能域,而不具备其他调控结构域。本研究总结了几种已报道的典型SAS蛋白(包括RelQ、RelP、ActRel、RelV)的生化功能及活性特点(
Bacteria | SAS type | Biochemical function | Other references |
---|---|---|---|
Staphylococcus aureus | RelP (tetramer) |
Substrates: GMP, GDP, GTP, IDP, ITP Prefers: GDP>GTP>GM Stronger (pp)pGpp-synthesis activity than Rel Activated by Z |
[ |
RelQ (tetramer) |
Substrates: GMP, GDP, GTP, IDP, ITP Prefers: GDP>GTP>GM (pp)pGpp allosterically regulate | ||
Streptococcus mutans | RelP |
Substrates: GMP, GDP, GTP Prefers: GTP>GDP>GM Weakly synthesize pGp Stronger (pp)pGpp-synthesis activity than Rel |
[ |
RelQ |
Substrates: GMP, GDP, GTP Prefers: GTP>GDP>GM Weakly synthesize pGp (pp)pGpp allosterically regulate | ||
Bacillus subtilis | RelP (tetramer) |
Substrates: GMP, GDP, GTP, ADP, ATP Synthesize of (pp)pGpp, ppApp and Apppp |
[ |
RelQ (tetramer) |
Substrates: GMP, GDP, GTP Prefers: GDP>GT pppGpp allosterically regulate | ||
Enterococcus faecalis | RelQ (tetramer) |
Substrates: GMP, GDP, GTP, IDP, ITP Synthesize pGp Prefers: GDP>GMP≥GT (pp)pGpp allosterically regulate Negative allosteric regulation by ssRN |
[ |
Streptococcus pneumoniae | RelQ |
Substrates: GDP, GT |
[ |
Mycolicibacterium (Mycobacterium) smegmatis | ActRel (RelZ) |
Substrates: GMP, GDP, GTP Synthesize pGp Prefers: GMP>GDP>GT 64.5 kDa protein with RNase HII domain Bifunctional protein with (p)ppGpp synthetase and RNase HII activit ssRNA inhibits pGpp synthesi |
[ |
Corynebacterium glutamicum | RelP |
No activit | |
ActRel (RelS) |
Substrates: GMP, GDP, GTP Prefers: GDP>GTP>GM 39.8 kDa longer than representative SAS Most active at neutral pH conditions and at low temperature | ||
Clostridioides (Clostridium) difficile | RelQ |
Substrates: GMP, GDP, GTP Utilize GMP, GDP and GTP form pGp |
[ |
Vibrio cholerae |
Substrates: GDP, GTP 259 aa (minimal activity length is 189 aa) |
[ |
1.2 长RSH合成酶[long RSH synthetases (Rel/RelA/SpoT)]
长RSH合成酶是多功能域蛋白,主要包括N端(p)ppGpp合成水解催化结构域(N-terminal domain, NTD)和C端调控结构域(carboxy-terminal domain, CTD)。其中NTD的典型结构包含水解酶结构域(HD)和合成酶结构域(Syn),而CTD则由多个具有特定调控或配体结合功能的结构域组成,如TGS结构域(threonyl-tRNA synthetase-GTPase-SpoT)、α-螺旋结构域(α-helical domain)、锌指结构域(putative zinc finger domain)和ACT结构域(acetolactate synthetase-chorismate mutase-tyrR) (
在不同环境条件下,细菌会启动不同的(p)ppGpp合成机制。在氨基酸饥饿条件下,脱酰化的tRNA作为关键的激活信号,会激发RelA和Rel合成酶的活性。具体而言,当这些脱酰化的tRNA占据核糖体上空的A位点时,会激活RelA/Rel,进而触发(p)ppGpp的合成(

图5 长RSH蛋白调节的(p)ppGpp水平受未充载的tRNA和ACP调控
Figure 5 (p)ppGpp levels from long RSH proteins are regulated by uncharged tRNA and ACP. A: Under conditions of amino acid starvation, ribosome-bound RelA detects uncharged tRNA leading to (p)ppGpp accumulation; B: Under conditions of fatty acid starvation, TGS domain within SpoT interacts with ACP, enhancing the activity of (p)ppGpp synthesis and inhibiting (p)ppGpp hydrolysis.
然而在脂肪酸饥饿条件下,大肠杆菌中(p)ppGpp的合成由SpoT负责,这与氨基酸缺乏时RelA单独发挥作用的模式不同。细胞内的酰基载体蛋白(acyl carrier protein, ACP)是脂肪酸代谢通路中的关键成分,其具备激活SpoT的合成酶活性的能
1.3 小警报素合成酶(SAS)
1.3.1 RelP和RelQ
RelP (也称YwaC和SAS2)和RelQ (也称YjbM和SAS1)是目前研究最深入的SAS蛋白,主要存在于厚壁菌门的细菌中,例如变异链球菌(Streptococcus mutans

图6 G-Loop对RelP和RelQ活性的影响
Figure 6 The role of G-Loop in RelP and RelQ activity. A-B: Crystal structures of Staphylococcus aureus RelP in the apo- and AMPCPP-bound states (PDB: 6FGJ and 6FGX) show an ordered G-Loop (purple color
RelQ蛋白的活性受(p)ppGpp和单链RNA (ssRNA)双重调控。一方面,(p)ppGpp能够正向调控RelQ合成(p)ppGpp的活
RelP包含Z
1.3.2 ActRel:RelS和RelZ (MS_RHII-RSD)
ActRel亚
1.3.3 RelV
RelV亚类以霍乱弧菌编码的蛋白为代
1.3.4 ToxSAS
ToxSAS是近期发现的编码于毒素-抗毒素(toxin-antitoxin, TA)操纵子中的SAS蛋白(ToxSAS)。这些TA操纵子在多种细菌物种中普遍存
1.3.5 pGpp的合成
研究发现,除ppGpp和pppGpp外,鸟苷单磷酸(guanosine monophosphate, GMP)也可作为SAS蛋白的底物,用于合成第3种警报素——pGpp。这一发现扩展了细菌警报素的种类,从原先的2种[(p)ppGpp,即pppGpp和ppGpp]增加到了3种[(pp)pGpp,包括pppGpp、ppGpp以及新发现的pGpp]。研究表明,pGpp在功能上与pppGpp和ppGpp类似,但也可能具备独特的生物学功
总之,pGpp的合成增加了细菌警报素系统的复杂性,但目前关于pGpp具体生物学功能的探索仍处于初步阶段。未来的研究将致力于阐明不同警报素之间的功能差异,深入剖析pGpp的具体作用机制,探讨其在不同细菌中的分布规律及其所承载的重要生物学意义。
2 (p)ppGpp水解
2.1 (p)ppGpp水解酶结构域概述
(p)ppGpp的降解关键在于从核糖部分的3′位置移除焦磷酸基团,过程需要锰离子(M
2.2 长RSH水解酶[long RSH hydrolases (Rel/SpoT)]
长RSH水解酶(Rel/SpoT,不包括RelA)能够将pppGpp、ppGpp、pGpp水解为GTP、GDP、GMP。目前,已经对来自多种生物体的Rel/SpoT蛋白的水解酶结构域进行了结构特性表征研究,包括嗜热栖热菌(Thermus thermophilus)、枯草芽孢杆菌、结核分枝杆菌、大肠杆菌和停乳链球菌马样亚种(Streptococcus dysgalactiae subsp. equisimilis)
在大肠杆菌中,Rsd蛋白被鉴定为SpoT的直接调节因子,它与TGS结构域相互作用,激活SpoT水解酶活
2.3 小警报素水解酶(SAH)
SAH同源物通常由约200个氨基酸组成,相较于长RSH水解酶,SAH拥有高度保守的水解酶活性中心,但缺乏调控结构域。尽管SAH酶在多种生物中广泛存在,但其确切的催化机制和调控方式至今仍未完全明了。截至目前,已有3种细菌来源的SAH酶的晶体结构被解析,分别是铜绿假单胞菌SA
SAH酶在体外条件下以M
以谷氨酸棒杆菌SAH为例,该蛋白的HD1和HD6基序负责协调位于活性位点中心的底物(p)ppGpp的鸟嘌呤碱基,而HD2、HD3和HD5基序中的特定氨基酸残基则参与M

图7 谷氨酸棒杆菌SAH的晶体结构和水解酶结构域HD基序
Figure 7 Crystal structures and HD motifs in Corynebacterium glutamicum SAH. A: Crystal structure of the Corynebacterium glutamicum SAH dimer, with a single monomer colored in pink and yellow, respectively (PDB: 7QOD
3 (p)ppGpp代谢
(p)ppGpp的内部代谢过程,主要涉及pppGpp、ppGpp和pGpp之间通过在5′-或3′-位置添加或移除磷酸基团实现相互转换。这也表明这3种不同形式的(p)ppGpp在细胞内的生理调控活性存在差异。已有研究表明,相较于pppGpp,ppGpp在细胞生长速度、RNA/DNA比例、核糖体RNA合成以及转录起始等方面的调控效果更为显
目前已知参与(p)ppGpp内部代谢的蛋白,除了RSH家族蛋白之外,还包括GPPA、Nudix和ApaH家族的成员(
4 (p)ppApp的新陈代谢
4.1 (p)ppApp的合成
磷酸化的嘌呤分子并非仅限于鸟苷衍生物。已有研究表明,在放线菌中发现了能够产生(p)ppApp的蛋
Bacteria/Phage host | SAS type | Biochemical function | References |
---|---|---|---|
Methylorubrum (Methylobacterium) extorquens | Rel | Synthesize pppApp and (p)ppGpp |
[ |
Pseudomonas aeruginosa PA14 | Tas1 | Synthesize pppApp, ppApp, and pApp |
[ |
Bacillus subtilis | RelP | Synthesize ppApp, AppppA, and (pp)pGpp |
[ |
Treponema denticola | SAS | Synthesize pppApp, ppApp, and pApp |
[ |
Bacillus subtilis la1a | PhRel2 |
Toxin SAS Synthesize (p)ppGpp and ppApp |
[ |
Coprobacillus sp. D7 | FaRel2 | ||
Mycobacterium phage Phrann | PhRel | ||
Cellulomonas marina | FaRel | ||
Mycobacterium tuberculosis AB308 | CapRel |
在负责合成(p)ppApp的RSH蛋白中,部分属于毒素-抗毒素(TA)系统中的ToxSAS亚
近期,在铜绿假单胞菌PA14株中发现了一种新型VI型分泌系统的效应蛋白,命名为Tas1 (PA14_01140),其结构与RSH酶家族中的(p)ppGpp合成酶类
4.2 (p)ppApp的降解
现已证实SAH对(p)ppApp具有显著的水解活性。铜绿假单胞菌和齿垢密螺旋体中的SAH研究揭示了这些酶以M
最近,一种专门针对(p)ppApp的高效水解酶被发现并命名为Aph1 (adenosine 3′-pyrophosphohydrolase 1)。该蛋白首先在粪拟杆菌(Bacteroides caccae)中被发现,并在不同物种中呈现出保守性,表明Aph1在自然界中广泛分
Aph1位于一个包含MuF (protein F of temperate phage Mu)毒素Apk2的基因簇中,后者通过生成(p)ppApp来抑制大肠杆菌的生长。因此,Aph1是一种能够中和Apk2毒素效应的免疫蛋白。此外,Aph1与粪拟杆菌中另一种非酶性质的免疫蛋白Tis1协同作用,共同抵御毒素的影响。进一步的研究显示,aph基因的变异情况与Apk2同源物的多样性相匹配,这揭示了非酶类免疫蛋白在对抗毒素的过程中可能存在功能差异。综上所述,这些发现不仅增加了对(p)ppApp代谢调控网络的理解,也为开发全新的抗菌策略提供了思路。
5 总结与展望
(p)ppGpp作为微生物中的一种重要信号分子,参与多种生命过程的调控,包括细胞生长速率、RNA/DNA比率、核糖体RNA合成、转录起始,并能够助力宿主响应环境不良因素、适应不同生存环境。RSH (RelA/SpoT homologues)家族蛋白在细菌中广泛存在,是(p)ppGpp合成与降解的主要执行者,对于维持细胞内(p)ppGpp的动态平衡至关重要。由以上文献回顾发现,RSH家族包含多种亚类蛋白,且各亚类具有独特的结构组成和生化特性,这些特性可能在细菌适应特定环境、进行生存竞争中发挥着核心作用,并为其特异性生物学功能提供了理论基础。
(p)ppGpp的具体分子机制,特别是它如何精准调控细胞内的各种代谢活动,依然是一个需要深入探索的课题。当前的研究多集中于少数几种典型细菌(如大肠杆菌、枯草芽孢杆菌),对于(p)ppGpp在不同微生物种类间所展现的作用差异及其背后的调控机制的认识仍有不足,特别是在病原菌中,它与毒力因子的表达、抗生素抗性等现象紧密相连,这些功能的具体机制仍有待进一步阐明。未来的研究应当更加关注非模式生物和致病菌株,以揭示更多的调控模式。
(p)ppGpp不仅作为独立的调控分子,还与其他重要的信号分子(如cAMP、c-di-GMP等)之间存在复杂的交互作用。这些交互作用在细菌的代谢调节、群体感应、生物膜形成等方面发挥着重要作用。未来的研究应深入探讨(p)ppGpp与其他信号分子之间的相互作用,揭示其在复杂生物网络中的调控机制。例如,(p)ppGpp可能通过调控转录因子DksA,影响RNA聚合酶的活性,进而调控基因表达;同时,它也可能与其他第二信使分子协同作用,共同调节细菌的生理状态。
深入理解(p)ppGpp在宿主-病原体互作中的具体功能,对于开发新型抗菌疗法具有重要意义。研究表明,(p)ppGpp不仅影响病原菌的毒力,还可能调控宿主的免疫反应。例如,(p)ppGpp的积累可能导致细菌进入持久态(persister cells),这些持久态细菌对传统抗生素具有极高的耐药性,会导致慢性感染。此外,(p)ppGpp还可能通过调控细菌的代谢途径,影响宿主的免疫识别和炎症反应。因此,未来的研究应重点探讨(p)ppGpp在宿主-病原体互作中的具体功能,揭示其如何影响病原菌的毒力和宿主的免疫反应,为开发新型抗菌疗法提供理论依据。
鉴于(p)ppGpp在细菌生理和病理过程中的重要作用,深入研究RSH家族蛋白的结构及生化特性,并开发针对这些蛋白的(p)ppGpp合成或降解结构域的小分子抑制剂,可能为对抗细菌感染提供新的策
总之,(p)ppGpp作为细菌严紧反应的关键调控分子,其研究不仅有助于揭示微生物的基本生物学过程,还为开发新型抗菌药物提供了新的思路和方向。未来的研究将继续推动这一领域的进展,带来更多创新性的发现和应用。
作者贡献声明
王淼:论文撰写、绘图和修改;项雨霏:论文撰写和修改;贺龙龙:文献收集和论文指导;周秦:论文指导和审阅;许丹:论文构思、指导和审阅。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
BROWN A, FERNÁNDEZ IS, GORDIYENKO Y, RAMAKRISHNAN V. Ribosome-dependent activation of stringent control[J]. Nature, 2016, 534(7606): 277-280. [百度学术]
IRVING SE, CHOUDHURY NR, CORRIGAN RM. The stringent response and physiological roles of (pp)pGpp in bacteria[J]. Nature Reviews Microbiology, 2021, 19(4): 256-271. [百度学术]
DALEBROUX ZD, SWANSON MS. ppGpp: magic beyond RNA polymerase[J]. Nature Reviews Microbiology, 2012, 10(3): 203-212. [百度学术]
SCHOFIELD WB, ZIMMERMANN-KOGADEEVA M, ZIMMERMANN M, BARRY NA, GOODMAN AL. The stringent response determines the ability of a commensal bacterium to survive starvation and to persist in the gut[J]. Cell Host & Microbe, 2018, 24(1): 120-132.e6. [百度学术]
POTRYKUS K, CASHEL M. (p)ppGpp: still magical?[J]. Annual Review of Microbiology, 2008, 62: 35-51. [百度学术]
胡晓, 沈盆闪, 许健萍, 余佳琪, 音建华. ppGpp介导的抗生素胁迫应答机制研究进展[J]. 微生物学报, 2024, 64(3): 687-700. [百度学术]
HU X, SHEN PS, XU JP, YU JQ, YIN JH. Research progress in ppGpp-mediated antibiotic stress response[J]. Acta Microbiologica Sinica, 2024, 64(3): 687-700 (in Chinese). [百度学术]
宋阳, 王译婕, 王瑞, 申屠旭萍, 俞晓平. (p)ppGpp: “魔斑” 核苷酸在细菌中的研究进展[J]. 微生物学报, 2024, 64(2): 378-390. [百度学术]
SONG Y, WANG YJ, WANG R, SHENTU XP, YU XP. (p)ppGpp: “magic point” nucleotide in bacteria[J]. Acta Microbiologica Sinica, 2024, 64(2): 378-390 (in Chinese). [百度学术]
GACA AO, KAJFASZ JK, MILLER JH, LIU KQ, WANG JD, ABRANCHES J, LEMOS JA. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response[J]. mBio, 2013, 4(5): e00646-13. [百度学术]
JIMMY S, SAHA CK, KURATA T, STAVROPOULOS C, OLIVEIRA SRA, KOH A, CEPAUSKAS A, TAKADA H, REJMAN D, TENSON T, STRAHL H, GARCIA-PINO A, HAURYLIUK V, ATKINSON GC. A widespread toxin-antitoxin system exploiting growth control via alarmone signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(19): 10500-10510. [百度学术]
DASGUPTA S, BASU P, PAL RR, BAG S, BHADRA RK. Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae[J]. Microbiology, 2014, 160(Pt 9): 1855-1866. [百度学术]
RONNEAU S, HALLEZ R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria[J]. FEMS Microbiology Reviews, 2019, 43(4): 389-400. [百度学术]
YANG J, ANDERSON BW, TURDIEV A, TURDIEV H, STEVENSON DM, AMADOR-NOGUEZ D, LEE VT, WANG JD. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p)ppGpp[J]. Nature Communications, 2020, 11(1): 5388. [百度学术]
AHMAD S, WANG BY, WALKER MD, TRAN HR, STOGIOS PJ, SAVCHENKO A, GRANT RA, McARTHUR AG, LAUB MT, WHITNEY JC. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp[J]. Nature, 2019, 575(7784): 674-678. [百度学术]
AHMAD S, GORDON IJ, TSANG KK, ALEXEI AG, SYCHANTHA D, COLAUTTI J, TRILESKY SL, KIM Y, WANG BY, WHITNEY JC. Identification of a broadly conserved family of enzymes that hydrolyze (p)ppApp[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(14): e2213771120. [百度学术]
ATKINSON GC, TENSON T, HAURYLIUK V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life[J]. PLoS One, 2011, 6(8): e23479. [百度学术]
HOGG T, MECHOLD U, MALKE H, CASHEL M, HILGENFELD R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response[J]. Cell, 2004, 117(1): 57-68. [百度学术]
STEINCHEN W, SCHUHMACHER JS, ALTEGOER F, FAGE CD, SRINIVASAN V, LINNE U, MARAHIEL MA, BANGE G. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13348-13353. [百度学术]
MECHOLD U, MURPHY H, BROWN L, CASHEL M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis[J]. Journal of Bacteriology, 2002, 184(11): 2878-2888. [百度学术]
BAG S, DAS B, DASGUPTA S, BHADRA RK. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis[J]. Archives of Microbiology, 2014, 196(8): 575-588. [百度学术]
YANG N, XIE SJ, TANG NY, CHOI MY, WANG Y, WATT RM. The Ps and Qs of alarmone synthesis in Staphylococcus aureus[J]. PLoS One, 2019, 14(10): e0213630. [百度学术]
MANAV MC, BELJANTSEVA J, BOJER MS, TENSON T, INGMER H, HAURYLIUK V, BRODERSEN DE. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP[J]. Journal of Biological Chemistry, 2018, 293(9): 3254-3264. [百度学术]
GEIGER T, KÄSTLE B, GRATANI FL, GOERKE C, WOLZ C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions[J]. Journal of Bacteriology, 2014, 196(4): 894-902. [百度学术]
GRATANI FL, HORVATEK P, GEIGER T, BORISOVA M, MAYER C, GRIN I, WAGNER S, STEINCHEN W, BANGE G, VELIC A, MAČEK B, WOLZ C. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus[J]. PLoS Genetics, 2018, 14(7): e1007514. [百度学术]
BHAWINI A, PANDEY P, DUBEY AP, ZEHRA A, NATH G, MISHRA MN. RelQ mediates the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus[J]. Frontiers in Microbiology, 2019, 10: 339. [百度学术]
LI L, BAYER AS, CHEUNG A, LU L, ABDELHADY W, DONEGAN NP, HONG JI, YEAMAN MR, XIONG YQ. The stringent response contributes to persistent methicillin-resistant Staphylococcus aureus endovascular infection through the purine biosynthetic pathway[J]. The Journal of Infectious Diseases, 2020, 222(7): 1188-1198. [百度学术]
GACA AO, KUDRIN P, COLOMER-WINTER C, BELJANTSEVA J, LIU KQ, ANDERSON B, WANG JD, REJMAN D, POTRYKUS K, CASHEL M, HAURYLIUK V, LEMOS JA. From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp synthesized by the small alarmone synthetase of Enterococcus faecalis[J]. Journal of Bacteriology, 2015, 197(18): 2908-2919. [百度学术]
LEMOS JA, LIN VK, NASCIMENTO MM, ABRANCHES J, BURNE RA. Three gene products govern (p)ppGpp production by Streptococcus mutans[J]. Molecular Microbiology, 2007, 65(6): 1568-1581. [百度学术]
LEMOS JA, NASCIMENTO MM, LIN VK, ABRANCHES J, BURNE RA. Global regulation by (p)ppGpp and CodY in Streptococcus mutans[J]. Journal of Bacteriology, 2008, 190(15): 5291-5299. [百度学术]
SEATON K, AHN SJ, SAGSTETTER AM, BURNE RA. A transcriptional regulator and ABC transporters link stress tolerance, (p)ppGpp, and genetic competence in Streptococcus mutans[J]. Journal of Bacteriology, 2011, 193(4): 862-874. [百度学术]
KIM JN, AHN SJ, SEATON K, GARRETT S, BURNE RA. Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans[J]. Journal of Bacteriology, 2012, 194(8): 1968-1978. [百度学术]
SHIELDS RC, KIM JN, AHN SJ, BURNE RA. Peptides encoded in the Streptococcus mutans RcrRPQ operon are essential for thermotolerance[J]. Microbiology, 2020, 166(3): 306-317. [百度学术]
LEMOS JAC, JrBROWN TA, BURNE RA. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans[J]. Infection and Immunity, 2004, 72(3): 1431-1440. [百度学术]
FUNG DK, YANG J, STEVENSON DM, AMADOR-NOGUEZ D, WANG JD. Small alarmone synthetase SasA expression leads to concomitant accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis[J]. Frontiers in Microbiology, 2020, 11: 2083. [百度学术]
NANAMIYA H, KASAI K, NOZAWA A, YUN CS, NARISAWA T, MURAKAMI K, NATORI Y, KAWAMURA F, TOZAWA Y. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis[J]. Molecular Microbiology, 2008, 67(2): 291-304. [百度学术]
BELJANTSEVA J, KUDRIN P, ANDRESEN L, SHINGLER V, ATKINSON GC, TENSON T, HAURYLIUK V. Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3726-3731. [百度学术]
ABRANCHES J, MARTINEZ AR, KAJFASZ JK, CHÁVEZ V, GARSIN DA, LEMOS JA. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis[J]. Journal of Bacteriology, 2009, 191(7): 2248-2256. [百度学术]
BATTESTI A, BOUVERET E. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction[J]. Journal of Bacteriology, 2009, 191(2): 616-624. [百度学术]
KAZMIERCZAK KM, WAYNE KJ, RECHTSTEINER A, WINKLER ME. Roles of rel(Spn) in stringent response, global regulation and virulence of serotype 2 Streptococcus pneumoniae D39[J]. Molecular Microbiology, 2009, 72(3): 590-611. [百度学术]
PETCHIAPPAN A, NAIK SY, CHATTERJI D. RelZ-mediated stress response in Mycobacterium smegmatis: pGpp synthesis and its regulation[J]. Journal of Bacteriology, 2020, 202(2): e00444-19. [百度学术]
MURDESHWAR MS, CHATTERJI D. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis[J]. Journal of Bacteriology, 2012, 194(15): 4003-4014. [百度学术]
KRISHNAN S, PETCHIAPPAN A, SINGH A, BHATT A, CHATTERJI D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence[J]. Molecular Microbiology, 2016, 102(1): 168-182. [百度学术]
RUWE M, KALINOWSKI J, PERSICKE M. Identification and functional characterization of small alarmone synthetases in Corynebacterium glutamicum[J]. Frontiers in Microbiology, 2017, 8: 1601. [百度学术]
POUDEL A, POKHREL A, OLUDIRAN A, CORONADO EJ, ALLEYNE K, GILFUS MM, GURUNG RK, ADHIKARI SB, PURCELL EB. Unique features of alarmone metabolism in Clostridioides difficile[J]. Journal of Bacteriology, 2022, 204(4): e0057521. [百度学术]
POKHREL A, POUDEL A, CASTRO KB, CELESTINE MJ, OLUDIRAN A, RINEHOLD AJ, RESEK AM, MHANNA MA, PURCELL EB. The (p)ppGpp synthetase RSH mediates stationary-phase onset and antibiotic stress survival in Clostridioides difficile[J]. Journal of Bacteriology, 2020, 202(19): e00377-20. [百度学术]
DAS B, BHADRA RK. Molecular characterization of Vibrio cholerae DeltarelA DeltaspoT double mutants[J]. Archives of Microbiology, 2008, 189(3): 227-238. [百度学术]
DAS B, PAL RR, BAG S, BHADRA RK. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene[J]. Molecular Microbiology, 2009, 72(2): 380-398. [百度学术]
ARENZ S, ABDELSHAHID M, SOHMEN D, PAYOE R, STAROSTA AL, BERNINGHAUSEN O, HAURYLIUK V, BECKMANN R, WILSON DN. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis[J]. Nucleic Acids Research, 2016, 44(13): 6471-6481. [百度学术]
SEYFZADEH M, KEENER J, NOMURA M. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(23): 11004-11008. [百度学术]
BATTESTI A, BOUVERET E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism[J]. Molecular Microbiology, 2006, 62(4): 1048-1063. [百度学术]
WOLZ C, GEIGER T, GOERKE C. The synthesis and function of the alarmone (p)ppGpp in firmicutes[J]. International Journal of Medical Microbiology, 2010, 300(2/3): 142-147. [百度学术]
STEINCHEN W, VOGT MS, ALTEGOER F, GIAMMARINARO PI, HORVATEK P, WOLZ C, BANGE G. Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ[J]. Scientific Reports, 2018, 8: 2195. [百度学术]
OH YT, LEE KM, BARI W, RASKIN DM, YOON SS. (p)ppGpp, a small nucleotide regulator, directs the metabolic fate of glucose in Vibrio cholerae[J]. Journal of Biological Chemistry, 2015, 290(21): 13178-13190. [百度学术]
HARMS A, BRODERSEN DE, MITARAI N, GERDES K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology[J]. Molecular Cell, 2018, 70(5): 768-784. [百度学术]
DEDRICK RM, JACOBS-SERA D, GUERRERO BUSTAMANTE CA, GARLENA RA, MAVRICH TN, POPE WH, CERVANTES REYES JC, RUSSELL DA, ADAIR T, ALVEY R, ALFRED BONILLA J, BRICKER JS, BROWN BR, BYRNES D, CRESAWN SG, DAVIS WB, DICKSON LA, EDGINGTON NP, FINDLEY AM, GOLEBIEWSKA U, et al. Prophage-mediated defence against viral attack and viral counter-defence[J]. Nature Microbiology, 2017, 2: 16251. [百度学术]
MALIK A, HEPT MA, PURCELL EB. Sound the (smaller) alarm: the triphosphate magic spot nucleotide pGpp[J]. Infection and Immunity, 2023, 91(4): e0043222. [百度学术]
BURLEY SK, BERMAN HM, BHIKADIYA C, BI CX, CHEN L, di COSTANZO L, CHRISTIE C, DALENBERG K, DUARTE JM, DUTTA S, FENG ZK, GHOSH S, GOODSELL DS, GREEN RK, GURANOVIC V, GUZENKO D, HUDSON BP, KALRO T, LIANG YH, LOWE R, et al. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy[J]. Nucleic Acids Research, 2019, 47(D1): D464-D474. [百度学术]
TAGAMI K, NANAMIYA H, KAZO Y, MAEHASHI M, SUZUKI S, NAMBA E, HOSHIYA M, HANAI R, TOZAWA Y, MORIMOTO T, OGASAWARA N, KAGEYAMA Y, ARA K, OZAKI K, YOSHIDA M, KUROIWA H, KUROIWA T, OHASHI Y, KAWAMURA F. Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome[J]. MicrobiologyOpen, 2012, 1(2): 115-134. [百度学术]
SUN DW, LEE G, LEE JH, KIM HY, RHEE HW, PARK SY, KIM KJ, KIM Y, KIM BY, HONG JI, PARK C, CHOY HE, KIM JH, JEON YH, CHUNG J. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses[J]. Nature Structural & Molecular Biology, 2010, 17(10): 1188-1194. [百度学术]
TAMMAN H, van NEROM K, TAKADA H, VANDENBERK N, SCHOLL D, POLIKANOV Y, HOFKENS J, TALAVERA A, HAURYLIUK V, HENDRIX J, GARCIA-PINO A. A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes[J]. Nature Chemical Biology, 2020, 16(8): 834-840. [百度学术]
PAUSCH P, ABDELSHAHID M, STEINCHEN W, SCHÄFER H, GRATANI FL, FREIBERT SA, WOLZ C, TURGAY K, WILSON DN, BANGE G. Structural basis for regulation of the opposing (p)ppGpp synthetase and hydrolase within the stringent response orchestrator rel[J]. Cell Reports, 2020, 32(11): 108157. [百度学术]
SINGAL B, BALAKRISHNA AM, NARTEY W, MANIMEKALAI MSS, JEYAKANTHAN J, GRÜBER G. Crystallographic and solution structure of the N-terminal domain of the Rel protein from Mycobacterium tuberculosis[J]. FEBS Letters, 2017, 591(15): 2323-2337. [百度学术]
LEE JW, PARK YH, SEOK YJ. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): E6845-E6854. [百度学术]
RASKIN DM, JUDSON N, MEKALANOS JJ. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4636-4641. [百度学术]
FANG MX, BAUER CE. Regulation of stringent factor by branched-chain amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6446-6451. [百度学术]
STEINCHEN W, AHMAD S, VALENTINI M, EILERS K, MAJKINI M, ALTEGOER F, LECHNER M, FILLOUX A, WHITNEY JC, BANGE G. Dual role of a (p)ppGpp- and (p)ppApp-degrading enzyme in biofilm formation and interbacterial antagonism[J]. Molecular Microbiology, 2021, 115(6): 1339-1356. [百度学术]
BISIAK F, CHRENKOVÁ A, ZHANG SD, PEDERSEN JN, OTZEN DE, ZHANG YE, BRODERSEN DE. Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response[J]. Journal of Biological Chemistry, 2022, 298(7): 102142. [百度学术]
RUWE M, RÜCKERT C, KALINOWSKI J, PERSICKE M. Functional characterization of a small alarmone hydrolase in Corynebacterium glutamicum[J]. Frontiers in Microbiology, 2018, 9: 916. [百度学术]
MURPHY H, CASHEL M. Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency[J]. Methods in Enzymology, 2003, 371: 596-601. [百度学术]
MECHOLD U, POTRYKUS K, MURPHY H, MURAKAMI KS, CASHEL M. Differential regulation by ppGpp versus pppGpp in Escherichia coli[J]. Nucleic Acids Research, 2013, 41(12): 6175-6189. [百度学术]
OKI T, YOSHIMOTO A, OGASAWARA T, SATO S, TAKAMATSU A. Occurrence of pppApp-synthesizing activity in actinomycetes and isolation of purine nucleotide pyrophosphotransferase[J]. Archives of Microbiology, 1976, 107(2): 183-187. [百度学术]
RHAESE HJ, GRADE R, DICHTELMÜLLER H. Studies on the control of development. correlation of initiucleotides in Bacillus subtilis[J]. European Journal of Biochemistry, 1976, 64(1): 205-213. [百度学术]
BRUHN-OLSZEWSKA B, MOLODTSOV V, SOBALA M, DYLEWSKI M, MURAKAMI KS, CASHEL M, POTRYKUS K. Structure-function comparisons of (p)ppApp vs. (p)ppGpp for Escherichia coli RNA polymerase binding sites and for rrnB P1 promoter regulatory responses in vitro[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2018, 1861(8): 731-742. [百度学术]
SOBALA M, BRUHN-OLSZEWSKA B, CASHEL M, POTRYKUS K. Methylobacterium extorquens RSH enzyme synthesizes (p)ppGpp and pppApp in vitro and in vivo, and leads to discovery of pppApp synthesis in Escherichia coli[J]. Frontiers in Microbiology, 2019, 10: 859. [百度学术]
WANG M, TANG NY, XIE SJ, WATT RM. Functional characterization of small alarmone synthetase and small alarmone hydrolase proteins from Treponema denticola[J]. Microbiology Spectrum, 2023, 11(4): e0510022. [百度学术]
POTRYKUS K, THOMAS NE, BRUHN-OLSZEWSKA B, SOBALA M, DYLEWSKI M, JAMES T, CASHEL M. Estimates of RelSeq, Mesh1, and SAHMex hydrolysis of (p)ppGpp and (p)ppApp by thin layer chromatography and nadp/nadh coupled assays[J]. Frontiers in Microbiology, 2020, 11: 581271. [百度学术]
FUNG DK, BAI KH, YANG J, XU XL, STEVENSON DM, AMADOR-NOGUEZ D, LUO LX, WANG JD. Metabolic promiscuity of an orphan small alarmone hydrolase facilitates bacterial environmental adaptation[J]. mBio, 2022, 13(6): e0242222. [百度学术]
PACIOS O, BLASCO L, BLERIOT I, FERNANDEZ-GARCIA L, AMBROA A, LÓPEZ M, BOU G, CANTÓN R, GARCIA-CONTRERAS R, WOOD TK, TOMÁS M. (p)ppGpp and its role in bacterial persistence: new challenges[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(10): e01283-20. [百度学术]