摘要
水体沉积物中的微生物群落对环境变化极为敏感,是评估生态系统健康的关键指标。作为新型生态修复材料,过氧化钙(calcium peroxide, CaO2)在水体沉积物处理中的应用日益广泛,其对微生物群落的影响已成为生态学研究的前沿领域。本文从微生物生态学视角,系统综述了CaO2对水体沉积物微生物群落的影响机制。CaO2通过显著改变沉积物的氧化还原环境,对微生物群落结构和功能产生多维度影响:在群落多样性层面,显著提高了微生物群落α多样性,增加了物种丰富度;在群落组成层面,CaO2促进了亚硝化单胞菌属(Nitrosomonas)、硫杆菌属(Thiobacillus)等具有氨氧化或硫氧化功能菌属的增殖,同时抑制了梭菌属(Clostridium)、脱硫弧菌属(Desulfovibrio)等厌氧发酵或硫酸盐还原菌属的生长,对微生物群落的调控呈现出明显的功能导向特征,即通过选择性富集具有促进氮、硫等物质循环功能的菌群,抑制厌氧生成有害产物菌群的生长,从而优化了沉积物微生物群落的功能结构。本文进一步阐释了CaO2对微生物群落的生态效应,揭示了其作为生态修复材料在调控水体沉积物微生物生态系统中的作用机制,为水体沉积物生态修复提供了重要的理论参考和科学依据。
城市水体在城市生态和社会经济中发挥着重要作用,具有净化空气、防洪排涝、供水灌溉、美化环境等多种生态功
过氧化钙(calcium peroxide, CP)是一种新型生态修复材料,因其安全、绿色、经济被广泛应用于黑臭沉积物的原位修
近几十年来,CaO2在沉积物修复领域已从实验研究阶段发展到实际应用阶
1 过氧化钙修复沉积物的原理
1.1 过氧化钙简介
CaO2是一种白色或淡黄色结晶状粉末,无臭无味,属于碱土金属过氧化物,具有高能过氧化物共价键和良好的热稳定性,与含水介质接触时能够缓慢释放氧气,生成氢氧化钙和过氧化氢(H2O2),如方程
(1) |
(2) |
(3) |
(4) |
(5) |
基于以上特性,CaO2被广泛应用于农渔林业中的供氧、调节pH和除臭等领

图1 过氧化钙修复沉积物的原理。A:CaO2的特性;B:锁磷机制;C:硫氧化作用;D:其他效应。
Figure 1 Schematic diagram of calcium peroxide remediation of sediment. A: Characteristics of CaO2; B: Phosphorus locking mechanism; C: Sulfur oxidation; D: Other effects.
1.2 锁磷机制
厌氧环境会促使沉积物中的内源磷持续释放到上覆水
1.3 硫氧化作用
硫元素是致使黑臭沉积物产生的关键因素之
1.4 其他效应
CaO2的添加还可以显著降低上覆水中氨氮等污染物的浓度,提高水质质
CaO2与水反应产生的HO·具有很高的氧化电位,可以有效地氧化沉积物中的有机物,加速其降
CaO2还可通过氧化、吸附和共沉淀等多重机制对沉积物中的重金属产生作用。CaO2提供的氧化环境促进了铁(II)、锰(II)向铁、锰羟基氧化物的转
2 过氧化钙驱动的微生物群落演替
微生物群落是河湖沉积物生态系统中的重要组成部分,其群落演替对沉积物的环境和生态系统的稳定性具有决定性影响。通过研究微生物群落可以深入了解其在沉积物修复过程中的作用机制,从而制定更有效的修复策略。
2.1 过氧化钙对微生物群落丰度和多样性的影响
在微生物群落分析中,通常用ACE、Chao1、Shannon、Simpson等多样性指数来对其进行评价。ACE和Chao1指数可用于评价微生物群落的丰
研究表明,CaO2对沉积物微生物群落丰度和多样性具有显著的调控作用。Chen
进一步研究发现,CaO2的投加剂量和方式对微生物群落具有不同的调控效果。Shao
因此,适量的CaO2修复沉积物可以提高沉积物中微生物群落的丰度和多样性。更高的微生物群落多样性意味着微生物的代谢能力更强,物质能量循环更完整,有利于沉积物生态系统的稳定
2.2 过氧化钙对微生物群落结构和组成的影响
微生物群落作为沉积物生态系统的核心功能载体,研究其结构变化能够更深入地揭示CaO2的环境行为及其生态效应。研究表明,CaO2处理会改变沉积物中的微生物群落结
从门分类的角度看,变形菌门(Pseudomonadota)、拟杆菌门(Bacteroidota)、硝化螺旋菌门(Nitrospirae)等微生物的丰度增加,这些门中大多是好氧菌,CaO2改善了沉积物的厌氧状况,因此为其提供了适宜的增殖环境。其中,变形菌门(Pseudomonadota)和拟杆菌门(Bacteroidota)能有效降解沉积物中的有机
然而,门水平分类难以反映微生物的功能响应规律,因此本文进一步在科与属水平上深入探究,以揭示不同分类单元的微生物功能响应差异(

图2 过氧化钙修复后沉积物中微生物群落的变化。A:文献中关于科水平微生物丰度增减提及的次数;B:属水平丰度增加的微生物;C:属水平丰度降低的微生物。
Figure 2 Microbial community changes in sediments following calcium peroxide remediation. A: The number of times mentioned in the literature about the increase and decrease of microbial abundance at the family level; B: Microorganisms with increased horizontal abundance at the genus level; C: Microorganisms with reduced horizontal abundance at the genus level.
从属分类水平看,添加CaO2后沉积物中涉及硝化/反硝化、硫氧化和有机物降解等功能的微生物丰度发生改变,主要促进了氮、硫、磷的去除和降解有机污染物等功能。
(1) 氮循环功能响应。好氧反硝化菌如褐指藻杆菌属(Phaeodactylibacter)的增加能够在有氧条件下对沉积物进行生物脱
(2) 磷循环功能响应。脱氯单胞菌属(Dechloromonas)、变形菌属(Proteus)和Saccharimonadales等微生物的丰度增加。脱氯单胞菌属(Dechloromonas)可以通过反硝化除磷耦合途径实现脱氮除磷的双效去
(3) 硫循环功能响应。脱硫微菌属(Desulfomicrobium)和硫杆菌属(Thiobacillus)等硫氧化功能菌数量增加,它们能够氧化硫化物,不仅改善了沉积物的黑臭现象,还能与前述硝化/反硝化体系进一步结合,实现硫-氮的耦合去
(4) 碳循环功能响应。共养单胞菌属(Syntrophomonas)、盖亚女神菌属(Gaiella)、海岸线菌属(Litorilinea)、食氢产水菌属(Hydrogenophaga)、浮霉状菌属(Planctomyces)和疣微菌属(Verrucomicrobium)等菌属增加。共养单胞菌属(Syntrophomonas)能将有机酸降解为CO2和H2
然而,也有少数研究发现微生物结构无显著变
2.3 环境因素与微生物群落的相互作用
微生物常被用作预测环境潜在变化的指
CaO2营造的高溶解氧水平给好氧菌提供了良好的生长条件,同时抑制了厌氧菌的增殖,而CaO2分解产生的H2O2通过提升沉积物氧化还原电位,选择性抑制了对此应激敏感的微生物如蓝细菌门(Cyanobacteria)和放线菌门(Actinomycetota)的生
3 微生物对过氧化钙的功能响应机制
过氧化钙显著影响了沉积物中微生物群落结构的变化,这一变化不仅体现在微生物丰度的增减上,还深刻地影响了微生物的代谢功能活性(

图3 微生物对过氧化钙的响应机理
Figure 3 Mechanism diagram of microbial response to calcium peroxide.
3.1 过氧化钙的强氧化性对微生物活性的抑制作用
CaO2修复沉积物过程中释放的H2O2和自由基等具有强氧化性的物质,超过一定水平会对部分微生物造成损
3.2 过氧化钙氧化势驱动下的微生物好氧氧化作用
CaO2因其释氧性可显著提高沉积物的氧化势能,进而驱动一系列微生物的好氧氧化作用。在沉积物的厌氧环境得到改善后,变形菌门(Pseudomonadota)、拟杆菌门(Bacteroidota)、硝化螺旋菌门(Nitrospirae)等好氧微生物的相对丰度增
CaO2驱动的氧化反应过程主要包括氨氧化、硫氧化和铁氧化等。亚硝化细菌如亚硝化单胞菌属(Nitrosomonas)能够在CaO2提供的有氧环境中将氨氧化为亚硝酸盐,进而被Nitrospira、Nitrobacter等硝化菌氧化为硝酸
3.3 过氧化钙氧化势驱动下的微生物厌氧氧化作用
CaO2的氧化效应不仅体现在直接促进好氧微生物的活性上,其产生的氧化产物(如硝酸盐、硫酸盐等)在沉积物中的扩散和迁移还为深层厌氧微生物的代谢提供了重要的电子受体,使得沉积物表层以好氧氧化为主导,而随着深度的增加逐步过渡到以反硝化、硫酸盐还原等厌氧过程为主的代谢模式。
CaO2通过促进微生物的反硝化过程增强了沉积物氮循环过程。CaO2的强氧化性可以将大分子有机物分解成小分子,但不会干扰沉积物中微生物群落的反硝化功
CaO2通过调控SRB和硫氧化菌的活性维持了硫循环的动态平衡。SRB是严格厌氧或兼性厌氧的微生物,以SRB为主导的异化硫酸盐还原是沉积物中有机质降解的主要厌氧矿化途
4 未来研究方向与优化策略
4.1 现有技术局限
尽管CaO2在水体沉积物修复中展现出显著效果,但在实际应用过程中仍面临着挑战。首先,CaO2与水快速反应产生的短期氧化冲击可能抑制部分微生物的活性,特别是对蓝细菌门(Cyanobacteria)和放线菌门(Actinomycetota)等敏感菌群造成损
4.2 工程优化方向
针对上述技术局限,目前的优化研究主要集中在材料改性、生物强化和监测评估3个方面,这些创新策略为提升CaO2修复效果提供了新的思路。(1) 材料改性优化:为解决CaO2快速释氧的问题,研究者开发了多种控释材料策略,例如采用葡聚糖包覆可显著延缓CaO2的水解速
4.3 微生物调控新维度
随着分子生物学技术的发展和生态学认知的深入,微生物调控研究正从群落水平向分子机制、种间互作及功能评价等多个维度拓展,这些新的研究方向将为CaO2修复技术的优化提供更深层次的理论支撑。(1) 分子机制解析:深入研究CaO2处理下微生物对有机碳分子结构的影响,例如利用傅里叶变换红外光谱分析技术结合有机碳与峰面积之间的函数关系对沉积物中的有机碳库进行评
5 总结与展望
本文阐述了利用CaO2修复水体沉积物的机理,并从微生物生态学的视角综合了在修复过程中微生物群落的动态变化及其功能响应的研究进展。具体内容包括CaO2对微生物的氧化促进作用、群落构成的演变与功能响应,CaO2的应用风险及优化策略等,得出以下主要结论:(1) CaO2通过提高化学氧化及钙沉淀等作用,促进沉积物中的硫氧化和磷固定等过程,实现沉积物的修复;(2) CaO2处理提高了沉积物中微生物的丰度和多样性,促进了好氧微生物的增殖,抑制了厌氧微生物的生长并衍生了新功能性微生物,改变了沉积物中的微生物群落结构;(3) CaO2的强氧化性在显著修复沉积物的同时也有可能损伤微生物的活性,但对反硝化等有自身机制的功能性微生物作用基本无影响;(4) CaO2的氧化势能驱动了氨氧化、硫氧化和铁氧化等好氧氧化过程,有效改善了沉积物环境质量。同时,CaO2的氧化性为深层沉积物中的微生物提供了电子受体,促进了厌氧氧化作用如反硝化过程,且影响了SRB与硫氧化菌的动态平衡,实现了氮、硫和有机物的同步去除,促进了沉积物生态功能的恢复。未来研究应聚焦CaO2修复技术的长效性与生态安全性,通过材料改性与生物强化协同策略突破释氧过快的瓶颈。结合多组学技术和生态网络分析,建立污染物去除-碳氮循环-群落特征的多维度评价体系,实现沉积物修复的精准调控与生态风险管控。
作者贡献声明
陈艳姣:文献检索、图表绘制、初稿撰写及修改;杨旭楠:框架设计、图表绘制、内容修订及补充;张多英:学术监督与指导;许玫英:主题选择、提供专业领域见解。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
陈文龙, 罗欢, 吴琼, 杨旭楠, 李宁. 基于“先泥后水”模式的重污染河道底泥碳氮硫同步去除技术研究[J]. 水资源保护, 2023, 39(3): 16-23, 42. [百度学术]
CHEN WL, LUO H, WU Q, YANG XN, LI N. A synchronous removal technology of carbon, nitrogen and sulfur pollutants from sediment in heavily polluted rivers based on “treating sediment before water” model[J]. Water Resources Protection, 2023, 39(3): 16-23, 42 (in Chinese). [百度学术]
WANG WH, WANG Y, FAN P, CHEN LF, CHAI BH, ZHAO JC, SUN LQ. Effect of calcium peroxide on the water quality and bacterium community of sediment in black-odor water[J]. Environmental Pollution, 2019, 248: 18-27. [百度学术]
DE JONGE M, TEUCHIES J, MEIRE P, BLUST R, BERVOETS L. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability[J]. Water Research, 2012, 46(7): 2205-2214. [百度学术]
XU Y, HAN FE, LI DP, ZHOU J, HUANG Y. Transformation of internal sedimentary phosphorus fractions by point injection of CaO2[J]. Chemical Engineering Journal, 2018, 343: 408-415. [百度学术]
LU SG, ZHANG X, XUE YF. Application of calcium peroxide in water and soil treatment: a review[J]. Journal of Hazardous Materials, 2017, 337: 163-177. [百度学术]
张亚雷, 章明, 李建华, 朱洪光, 柴世伟, 滕衍行, 赵建夫. CaO2不同投加方式对底泥磷释放的抑制效果分析[J]. 环境科学, 2006, 27(11): 2188-2193. [百度学术]
ZHANG YL, ZHANG M, LI JH, ZHU HG, CHAI SW, TENG YH, ZHAO JF. Effect on different adding means of calcium peroxide to control phosphorus release from sediment[J]. Environmental Science, 2006, 27(11): 2188-2193 (in Chinese). [百度学术]
SHAO YT, HE Q, FU YS, ZHANG GL, LIU YQ. Environmental impact and variation analysis of different CaO2 and Ca(NO3)2 dosing modes on microbial community in black-odorous sediment[J]. Process Safety and Environmental Protection, 2022, 167: 641-650. [百度学术]
杨进, 郦和生, 王岽, 王彬. 过氧化钙降解有机污染物研究进展[J]. 化工环保, 2021, 41(2): 140-145. [百度学术]
YANG J, LI HS, WANG D, WANG B. Research progresses in degradation of organic pollutants with calcium peroxide[J]. Environmental Protection of Chemical Industry, 2021, 41(2): 140-145 (in Chinese). [百度学术]
MA MS, DUAN WY, HUANG X, ZENG DJ, HU LS, GUI WJ, ZHU GM, JIANG JH. Application of calcium peroxide in promoting resource recovery from municipal sludge: a review[J]. Chemosphere, 2024, 354: 141704. [百度学术]
WANG J, LOU Y, MA DM, FENG K, CHEN C, ZHAO L, XING DF. Co-treatment with free nitrous acid and calcium peroxide regulates microbiome and metabolic functions of acidogenesis and methanogenesis in sludge anaerobic digestion[J]. Science of the Total Environment, 2023, 870: 161924. [百度学术]
TANG ZZ, XU HL, ZHU RL, XIE CY, XIAO HJ, LIANG ZX, LI HZ. Enhancement of sewer sediment control and disruption of adhesive gelatinous sediment structure using low-dose calcium peroxide[J]. Environmental Research, 2024, 243: 117852. [百度学术]
XU QX, HUANG QS, WEI W, SUN J, DAI XH, NI BJ. Improving the treatment of waste activated sludge using calcium peroxide[J]. Water Research, 2020, 187: 116440. [百度学术]
WANG HF, ZHAO YS, LI TY, CHEN Z, WANG YN, QIN CY. Properties of calcium peroxide for release of hydrogen peroxide and oxygen: a kinetics study[J]. Chemical Engineering Journal, 2016, 303: 450-457. [百度学术]
THANI QA, SCHAFFER B, LIU GD, VARGAS AI, CRANE JH. Chemical oxygen fertilization reduces stress and increases recovery and survival of flooded papaya (Carica papaya L.) plants[J]. Scientia Horticulturae, 2016, 202: 173-183. [百度学术]
GAGO I. Solid particles containing metal peroxides, their preparation and their use for the amendment of soils: U.S. Patent 4,470,839[P]. 1984-9-11. [百度学术]
MASSALIMOV IA, SHAYAKHMETOV AU, MUSTAFIN AG. Specific features of thermal decomposition of mechanically activated calcium peroxide[J]. Russian Journal of Applied Chemistry, 2010, 83(10): 1794-1798. [百度学术]
PING Q, ZHENG M, DAI XH, LI YM. Metagenomic characterization of the enhanced performance of anaerobic fermentation of waste activated sludge with CaO2 addition at ambient temperature: fatty acid biosynthesis metabolic pathway and CAZymes[J]. Water Research, 2020, 170: 115309. [百度学术]
GAO DM, ZHANG MS, HONG B. The quality control of eutrophic culture sediment by immobilized cells and conditions manipulation[J]. Applied Mechanics and Materials, 2014, 644: 5169-5173. [百度学术]
PARKER DB, CAI LS, KIM KH, HALES KE, SPIEHS MJ, WOODBURY BL, ATKIN AL, NICKERSON KW, PATEFIELD KD. Reducing odorous VOC emissions from swine manure using soybean peroxidase and peroxides[J]. Bioresource Technology, 2012, 124: 95-104. [百度学术]
ZHAI J, JIANG CH. Synthesis of calcium peroxide microparticles and its application in glyphosate wastewater pretreatment[J]. Advanced Materials Research, 2014, 881: 1139-1143. [百度学术]
CASSIDYDP, IRVINERL. Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil[J]. Journal of Hazardous Materials, 1999, 69(1): 25-39. [百度学术]
CHEN X, LIU L, WANG Y, YOU XH, YAN WM, LI MJ, LI Q, HE XY, ZHANG L, ZHOU L, XIAO J, ZHU DD, YAN JB, HANG XS. Combining lanthanum-modified bentonite and calcium peroxide to enhance phosphorus removal from lake sediments[J]. Journal of Environmental Management, 2024, 353: 120150. [百度学术]
WANG Y, WANG WH, LU XX, FENG LL, XUE FR, SUN LQ. Impact of calcium peroxide dosage on the control of nutrients release from sediment in the anoxic landscape water[J]. Environmental Science and Pollution Research, 2019, 26(36): 37070-37081. [百度学术]
HAQUE N, KWON SH. Nutrient dynamics study of overlying water affected by peroxide-treated sediment[J]. Journal of Ecology and Environment, 2017, 41(1): 32. [百度学术]
ZHOU J, LI DP, ZHAO ZH, HUANG Y. Phosphorus bioavailability and the diversity of microbial community in sediment in response to modified calcium peroxide ceramsite capping[J]. Environmental Research, 2021, 195: 110682. [百度学术]
WANG WH, WANG Y, ZHOU K, LI HM, YANG PL. Response mechanism of microorganisms to the inhibition of endogenous pollution release by calcium peroxide[J]. Science of the Total Environment, 2022, 848: 157708. [百度学术]
MOSMERI H, ALAIE E, SHAVANDI M, DASTGHEIB SMM, TASHARROFI S. Bioremediation of benzene from groundwater by calcium peroxide (CaO2) nanoparticles encapsulated in sodium alginate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 299-306. [百度学术]
KHODAVEISI J, BANEJAD H, AFKHAMI A, OLYAIE E, LASHGARI S, DASHTI R. Synthesis of calcium peroxide nanoparticles as an innovative reagent for in situ chemical oxidation[J]. Journal of Hazardous Materials, 2011, 192(3): 1437-1440. [百度学术]
AMERHAIDER NUAR NN, MD JAMIL SNA, LI F, MAT AZMI ID, CHIANG PC, CHOONG TSY. Synthesis of controlled-release calcium peroxide nanoparticles coated with dextran for removal of doxycycline from aqueous system[J]. Polymers, 2022, 14(18): 3866. [百度学术]
TANG L, SUN YL, LU WY, CHEN XW, MOSA A, MINKINA T, GAO YZ, LING WT. A novel remediation strategy of mixed calcium peroxide and degrading bacteria for polycyclic aromatic hydrocarbon contaminated water[J]. Journal of Hazardous Materials, 2024, 470: 134122. [百度学术]
WANG XY, ZHANG L, HAN CM, ZHANG YY, ZHUO JX. Simulation study of oxytetracycline contamination remediation in groundwater circulation wells enhanced by nano-calcium peroxide and ozone[J]. Scientific Reports, 2023, 13(1): 9136. [百度学术]
YAN J, WU LY, ZHANG FR, CAO YM, BENOIT G, ZHANG SH. Effects of switching redox conditions on sediment phosphorus immobilization by calcium/aluminum composite capping: performance, ecological safety and mechanisms[J]. Chemosphere, 2023, 343: 140294. [百度学术]
CAO JX, SUN Q, ZHAO DH, XU MY, SHEN QS, WANG D, WANG Y, DING SM. A critical review of the appearance of black-odorous waterbodies in China and treatment methods[J]. Journal of Hazardous Materials, 2020, 385: 121511. [百度学术]
李宁, 吴琼, 罗欢, 庞素艳, 杨旭楠, 张淦. 硝酸钙-微生物协同缓释颗粒原位修复污染底泥[J]. 环境科技, 2022, 35(6): 6-12. [百度学术]
LI N, WU Q, LUO H, PANG SY, YANG XN, ZHANG G. In-situ remediation of contaminated sediment with calcium nitrate coupled microbial sustained-release granular[J]. Environmental Science and Technology, 2022, 35(6): 6-12 (in Chinese). [百度学术]
ATKINSON CA, JOLLEY DF, SIMPSON SL. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments[J]. Chemosphere, 2007, 69(9): 1428-1437. [百度学术]
BEUTEL MW. Hypolimnetic anoxia and sediment oxygen demand in California drinking water reservoirs[J]. Lake and Reservoir Management, 2003, 19(3): 208-221. [百度学术]
WANG WH, WANG Y, LI JJ, ZHANG H, YAN FL, SUN LQ. Dose effects of calcium peroxide on harmful gases emissions in the anoxic/anaerobic landscape water system[J]. Environmental Pollution, 2019, 255: 112989. [百度学术]
李雨平, 姜莹莹, 刘宝明, 阮文权, 缪恒锋. 过氧化钙(CaO2)联合生物炭对河道底泥的修复[J]. 环境科学, 2020, 41(8): 3629-3636. [百度学术]
LI YP, JIANG YY, LIU BM, RUAN WQ, MIAO HF. Restoration of river sediment by calcium peroxide (CaO2) combined with biochar[J]. Environmental Science, 2020, 41(8): 3629-3636 (in Chinese). [百度学术]
WANG WH, WANG Y, ZHAO KX, ZHU Z, HAN XY. Active and synchronous control of nitrogen and organic matter release from sediments induced with calcium peroxide[J]. Science of the Total Environment, 2022, 802: 149855. [百度学术]
XUE YF, SUI Q, BRUSSEAU ML, ZHANG X, QIU ZF, LYU SG. Insight on the generation of reactive oxygen species in the CaO2/Fe(II) Fenton system and the hydroxyl radical advancing strategy[J]. Chemical Engineering Journal, 2018, 353: 657-665. [百度学术]
LIU TZ, ZHANG Z, MAO YQ, YAN DYS. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation[J]. Environmental Science and Pollution Research International, 2016, 23(7): 6353-6362. [百度学术]
CHEN X, LIU L, YAN WM, LI MJ, LI Q, HE XY, ZHAO ZY, LIU RY, ZHANG ST, HUANG YF, JIANG F. Impacts of calcium peroxide on phosphorus and tungsten releases from sediments[J]. Environmental Research, 2023, 231: 116060. [百度学术]
ZHOU J, LI DP, ZHAO ZH, SONG XJ, HUANG Y, YANG JJ. Phosphorus immobilization by the surface sediments under the capping with new calcium peroxide material[J]. Journal of Cleaner Production, 2020, 247: 119135. [百度学术]
CHEN MS, DING SM, WU YX, FAN XF, JIN ZF, TSANG DCW, WANG Y, ZHANG CS. Phosphorus mobilization in lake sediments: experimental evidence of strong control by iron and negligible influences of manganese redox reactions[J]. Environmental Pollution, 2019, 246: 472-481. [百度学术]
BOSTICK BC, SUN J, LANDIS JD, CLAUSEN JL. Tungsten speciation and solubility in munitions-impacted soils[J]. Environmental Science & Technology, 2018, 52(3): 1045-1053. [百度学术]
LI WP, ZHANG SK, ZHANG LY, LI XG, WANG F, LI GW, LI JX, LI W. In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-DO regulation[J]. Science of the Total Environment, 2019, 697: 134109. [百度学术]
CHEN YN, LUO XL, LI YP, LIU YH, CHEN L, JIANG HJ, CHEN YR, QIN XL, TANG P, YAN HQ. Effects of CaO2 based Fenton-like reaction on heavy metals and microbial community during co-composting of straw and sediment[J]. Chemosphere, 2022, 301: 134563. [百度学术]
TILMAN D, REICH PB, KNOPS JMH. Biodiversity and ecosystem stability in a decade-long grassland experiment[J]. Nature, 2006, 441(7093): 629-632. [百度学术]
BOMBACH P, RICHNOW HH, KÄSTNER M, FISCHER A. Current approaches for the assessment of in situ biodegradation[J]. Applied Microbiology and Biotechnology, 2010, 86(3): 839-852. [百度学术]
REIS VM, TEIXEIRA KR. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture[J]. Journal of Basic Microbiology, 2015, 55(8): 931-949. [百度学术]
BÉDARD C, KNOWLES R. Physiology, biochemistry, and specific inhibitors of CH4, NH
LIANG B, WANG LY, MBADINGA SM, LIU JF, YANG SZ, GU JD, MU BZ. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation[J]. AMB Express, 2015, 5(1): 117. [百度学术]
MORI K, YAMAGUCHI K, SAKIYAMA Y, URABE T, SUZUKI KI. Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 11): 2894-2898. [百度学术]
ROONEY-VARGA JN, SHARAK GENTHNER BR, DEVEREUX R, WILLIS SG, FRIEDMAN SD, HINES ME. Phylogenetic and physiological diversity of sulphate-reducing bacteria isolated from a salt marsh sediment[J]. Systematic and Applied Microbiology, 1998, 21(4): 557-568. [百度学术]
XUE M, NIE YT, CAO XW, ZHOU X. Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor[J]. Science of the Total Environment, 2022, 836: 155612. [百度学术]
WANG Y, WANG WH, YAN FL, DING Z, FENG LL, ZHAO JC. Effects and mechanisms of calcium peroxide on purification of severely eutrophic water[J]. Science of the Total Environment, 2019, 650: 2796-2806. [百度学术]
WANG Y, LIANG LN, LIU JY, GUO DP, ZHU ZP, DONG HM. Impact of anaerobic digestion on reactive nitrogen gas emissions from dairy slurry storage[J]. Journal of Environmental Management, 2022, 316: 115306. [百度学术]
PETRIGLIERI F, SINGLETON C, PECES M, PETERSEN JF, NIERYCHLO M, NIELSEN PH. “Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems[J]. The ISME Journal, 2021, 15(12): 3605-3614. [百度学术]
ZHAO WH, BI XJ, PENG YZ, BAI M. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: metabolic mechanisms, applications and influencing factors[J]. Chemosphere, 2022, 307: 135675. [百度学术]
HUNG CM, CHEN CW, HUANG CP, DONG CD. Degradation of 4-nonylphenol in marine sediments using calcium peroxide activated by water hyacinth (Eichhornia crassipes)-derived biochar[J]. Environmental Research, 2022, 211: 113076. [百度学术]
KALE V, BJÖRNSDÓTTIR SH, FRIÐJÓNSSON ÓH, PÉTURSDÓTTIR SK, ÓMARSDÓTTIR S, HREGGVIÐSSON GÓ. Litorilinea aerophila gen. nov., sp. nov., an aerobic member of the class Caldilineae, phylum Chloroflexi, isolated from an intertidal hot spring[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 3): 1149-1154. [百度学术]
RAIYANI NM, SINGH SP. Microbial community and predictive functionalities associated with the marine sediment of Coastal Gujarat[J]. Environmental Science and Pollution Research International, 2023, 30(15): 43245-43266. [百度学术]
RUAN MY, ZHANG YX, CHAI TY. Rhizosphere soil microbial properties on Tetraena mongolica in the arid and semi-arid regions, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(14): 5142. [百度学术]
WANG F, WANG HJ, ZHAO ZL, DONG WY, WU ZJ, ZHANG SL, LI WT, WU XY. Simultaneous elimination of black-odor and stabilization of heavy metals in contaminated sediment using calcium peroxide/hydroxyapatite: microbial responses and ecotoxicological effects[J]. Journal of Hazardous Materials, 2022, 429: 128298. [百度学术]
LI ZF, LIU Y, XIE J, WANG GJ, CHENG XJ, ZHANG JW, SANG CJ, LIU ZJ. Impact of microecological agents on water environment restoration and microbial community structures of trench system in a Baiyangdian wetland ecosystem[J]. Journal of Applied Microbiology, 2022, 132(3): 2450-2463. [百度学术]
CHEN Y, JIANG YM, HUANG HY, MOU LC, RU JL, ZHAO JH, XIAO S. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments[J]. Science of the Total Environment, 2018, 637: 1400-1412. [百度学术]
YANG XN, LI EZ, LIU FF, XU MY. Interactions of PAH-degradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community[J]. Journal of Hazardous Materials, 2020, 388: 122068. [百度学术]
MA ZH, GE ZH, LIU KX, WANG C, WU T, ZHANG JB. Application of calcium peroxide for efficient treatment of surface water turbidity: mechanisms and microbial community responses[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110905. [百度学术]
PING Q, ZHANG ZP, DAI XH, LI YM. Novel CaO2 beads used in the anaerobic fermentation of iron-rich sludge for simultaneous short-chain fatty acids and phosphorus recovery under ambient conditions[J]. Bioresource Technology, 2021, 322: 124553. [百度学术]
SPANG A, POEHLEIN A, OFFRE P, ZUMBRÄGEL S, HAIDER S, RYCHLIK N, NOWKA B, SCHMEISSER C, LEBEDEVA EV, RATTEI T, BÖHM C, SCHMID M, GALUSHKO A, HATZENPICHLER R, WEINMAIER T, DANIEL R, SCHLEPER C, SPIECK E, STREIT W, WAGNER M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations[J]. Environmental Microbiology, 2012, 14(12): 3122-3145. [百度学术]
WANG HY, LYU WL, HU XL, CHEN L, HE QL, ZHANG W, SONG JY, WU J. Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system[J]. Science of the Total Environment, 2019, 694: 133775. [百度学术]
FOX R, TUCHMAN M. The assessment and remediation of contaminated sediments (ARCS) program[J]. Journal of Great Lakes Research, 1996, 22(3): 493-494. [百度学术]
DRÁBKOVÁ M, ADMIRAAL W, MARSÁLEK B. Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms[J]. Environmental Science & Technology, 2007, 41(1): 309-314. [百度学术]
LUSTY MW, GOBLER CJ. Repeated hydrogen peroxide dosing briefly reduces cyanobacterial blooms and microcystin while increasing fecal bacteria indicators in a eutrophic pond[J]. Journal of Environmental Sciences, 2023, 124: 522-543. [百度学术]
KIM T, CHO J, CHA D, KIM MS, PARK EJ, LEE HJ, LEE CH. Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms[J]. Journal of Hazardous Materials, 2020, 400: 123305. [百度学术]
BABIN J, MURPHY T, LYNN J. In situ sediment treatment in Kai Tak Nullah to control odours and methane production[C]//Proceedings of the Seventh International Symposium on River Sedimentation. Hong Kong, China, 1998. [百度学术]
WATANABE T, KOJIMA H, TAKANO Y, FUKUI M. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene[J]. Systematic and Applied Microbiology, 2013, 36(6): 436-443. [百度学术]
TIAN HM, GAO PK, CHEN ZH, LI YS, LI Y, WANG YS, ZHOU JF, LI GQ, MA T. Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China[J]. Frontiers in Microbiology, 2017, 8: 143. [百度学术]
YANG XN, LI Y, PU J, HUANG YD, LUAN TG, XU MY. Effects of cable bacteria on vertical redox profile formation and phenanthrene biodegradation in intertidal sediment responded to tide[J]. Water Research, 2024, 265: 122283. [百度学术]
LEE CS, LE THANH T, KIM EJ, GONG JY, CHANG YY, CHANG YS. Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater[J]. Bioresource Technology, 2014, 171: 59-65. [百度学术]
ZHANG M, SONG RX, LIU YY, YI ZG, MENG XF, ZHANG JW, TANG ZM, YAO ZW, LIU Y, LIU XG, BU WB. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles[J]. Chem, 2019, 5(8): 2171-2182. [百度学术]
WANG YL, HE XL, ZHOU C, BAI YW, LI TQ, LIU JC, JU SG, WANG CY, XIANG GY, XIONG B. Nanoscale CaO2 materials for synergistic transarterial chemoembolization in a VX2 orthotopic rabbit liver cancer model[J]. Acta Biomaterialia, 2022, 154: 536-548. [百度学术]
ZHANG C, LI M, SUN JM, ZHANG SW, HUANG JJ. The mechanism of C‒N‒S interconnection degradation in organic-rich sediments by Ca(NO3)2-CaO2 synergistic remediation[J]. Environmental Research, 2022, 214: 113992. [百度学术]