摘要
隐球菌是一种全球分布的侵袭性真菌,已经引起了严重的公共卫生问题。隐球菌致病菌种主要以新型隐球菌为代表,其在感染人体后可引起死亡率极高的肺隐球菌病及隐球菌脑膜炎等。目前传统抗真菌药物只有多烯类、氟胞嘧啶类、棘白菌素类和唑类四类,在临床中单独用药时存在治疗效果不显著以及导致耐药等情况出现。因此,研究人员把视角转向联合用药,并发现一些中药及天然植物提取物和衍生物与传统抗真菌药物联合使用对治疗隐球菌病具有良好的协同效果,本文就中药联合抗真菌药物研究现状进行总结。
最新的研究报道,全球每年约3亿人罹患严重的真菌感染,且每年死于真菌疾病的总人数已上升至375万
1 隐球菌病现状
1.1 隐球菌病感染现状
新型隐球菌病多见于免疫功能低下的人群,如HIV患者、器官移植患者和肿瘤患者
1.2 隐球菌病治疗现状
通常,治疗人类侵袭性真菌感染的药物主要有四大类:多烯类、氟胞嘧啶类、棘白菌素类和唑类,其具体抑菌机制如
Drug class | Representative drug | Mechanism of inhibition | Mechanism of resistance |
---|---|---|---|
Polyene | Amphotericin B (AMB) | Binds to ergosterol and directly damages cell membranes to produce bactericidal activity |
Altering the amount of ergosterol in the cell membran |
Flucytosine | 5-fluorocytosine (5-FC) |
As a precursor that enters cells via the cytosine permease FCY2 and is converted to toxic 5-fluorouracil by the cytosine deaminase FCY, affecting nucleic acid metabolis |
Mutations in the FUR1 and FCY2 genes that result in deficiencies in enzymes required for cellular uptake or metabolism of fluorocytosine (cytosine permease and deaminase) and increase the synthesis of pyrimidines that compete with fluorinated anti-metabolites of fluorocytosin |
Echinocandins | Micafungin (MIF) |
Noncompetitive binding of the Fks1p subunit of β-(1,3)-d-glucan synthetase leads to structural abnormalities in fungal cell wall |
Mutations in the Fks1 subunit gen |
Azole | Fluconazole (FLC) |
Inhibition of ERG11, which inhibits the conversion of lanosterol to ergostero Influence on beta microtubule protein distributio |
Upregulation of the ERG11 gene due to mutations in ERG11 and UPC2, and overexpression of drug efflux pumps (Mdr1p and Cdr1p/Cdr2p) due to mutations in transcription factor genes (MRR1, TAC1, and PDR1 |

图1 常见抗隐球菌药物的抑菌机制图。唑类药物通过抑制Erg11酶进而抑制羊毛甾醇转化为麦角甾醇;多烯类药物(如两性霉素B)通过直接与麦角甾醇结合进而破坏细胞膜;棘白菌素类药物(米卡芬净)通过结合BGase的Fks1p亚基进而抑制β-(1,3)-d-葡聚糖合成;氟胞嘧啶类药物5-氟胞嘧啶(5-fluorocytosine, 5-FC)通过转化为5-氟尿嘧啶(5-fluorouracil, 5-FU)以抑制dTTP合成,进而破坏真菌DNA合成。
Figure 1 Diagram of Common anti-Cryptococcus drugs’ inhibition mechanisms. Azole drugs inhibit the Erg11 enzyme, thereby blocking the conversion of lanosterol to ergosterol; Polyene drugs (AMB) bind directly to ergosterol, disrupting the cell membrane; Echinocandin drugs (micafungin) inhibit β-(1,3)-d-glucan synthesis by binding to the Fks1p subunit of BGase; Flucytosine (5-FC) is converted to 5-FU, which inhibits dTTP synthesis and ultimately disrupts fungal DNA synthesis.
遗憾的是,由于隐球菌属的固有特性以及相关药物的局限性,目前关于隐球菌感染的治疗具有极大的挑战
2 中药协同抗真菌药物抗隐球菌的作用影响
在探讨中药与抗真菌药物联合抗新型隐球菌的策略时,理解其毒力因子与药物的相互作用至关重要。新型隐球菌通过毒力因子和细胞膜形成强大的致病与耐药屏障,这些毒力因子不仅帮助隐球菌抵御宿主免疫,还推动耐药性的发展。以下将通过分析荚膜、黑色素等毒力因子和细胞膜的作用及其与药物的交互,以深入理解抗新型隐球菌的治疗机制。
2.1 毒力因子
新型隐球菌公认的3个毒力因子分别是荚膜、黑色素和耐热性。此外,还有一些酶类也与其毒性有关。
2.1.1 荚膜
新型隐球菌的多糖荚膜由葡萄糖醛酸木糖甘露聚糖(glucuronoxylomannan, GXM)、半乳糖木糖甘露聚糖(galactoxylomannan, GalXM)和甘露糖蛋白(mannoproteins, MPS)组成,其中GXM含量高达88
2.1.2 黑色素
黑色素是一种抗氧化多酚色素,通过漆酶诱导合成,由2个基因LAC1和LAC2编码,LAC1是参与这种色素生产的主要蛋白质,黑色素可以结合并降低抗真菌药物的敏感
2.1.3 其他
Hassanpour
2.2 细胞膜
Nóbrega
3 中药联合抗真菌药物抗隐球菌的具体机制
3.1 作用于生物膜
Kumari
Drug treatment | Saturated fatty acid | Unsaturated fatty acid | |||
---|---|---|---|---|---|
Palmitic acid (%) | Stearic acid (%) | Heptadecanoic acid (%) | Oleic acid (%) | Linoleic acid (%) | |
Control | 26 | 6.3 | 2.9 | 36.65 | 27.75 |
THY | 43 | 14.1 | 4.2 | 2.40 | 35.59 |
CARV | 41 | 16.5 | 1.2 | 7.80 | 33.06 |
3.2 抑制酶的合成
Bang
3.3 影响核酸合成代谢活动
王甜
3.4 破坏信号通路
Li
综上所述,中药与抗真菌药物的协同作用能够通过多种分子介导的相关信号通路,有效地对抗隐球菌,关于联合用药的具体药物组合、药物作用浓度及其作用机制如
Drug combination | MIC of drugs used alone (μg/mL) | Combination therapy MIC (μg/mL) | FICI | ||
---|---|---|---|---|---|
Chinese medicine | Antifungal drugs | Chinese medicine | Antifungal drugs | ||
Oxidized resveratrol+itraconazole (ITC)/MI |
2.5×1 | 31-250/250-1 000 |
1.5×1 | 15-125/63-250 | ≤0.5 |
Li Shen Pills+AM | 128 | 0.25 | 32 | 0.125 | 0.625 |
Chaparraline+FLC/AM | 8-16 | 0.25-4.00 | 0.625/1.000 | ||
Acteoside+AM | >12.5 | 1.0 | <0.195 | 0.015 6 | 0.031 2 |
Magnolo+FL | 4-32 | 4-32 | 0.5-2 | 0.5-2 | ≤0.5 |
Ocimum basilicum+AM | 625-2 500 | 1.56 | 39-157.2 | 0.099-0.396 | 0.188 |
Eugenol+AMB/FLC/IT | 8 | 125 | 0.75 | 4 | 0.75 |
Pedalitin+AM | 3 900 | 125 | 100 | 30 | 0.49 |
Pinus sylvestris/Origanum vulgare/Thymus vulgaris+IT | 300/140/560 | 0.5 | 0.375/0.375/0.375 | ||
Allicin+AM | 2 | 0.25 | 0.25 | 0.062 5 | 0.375 |
Aloe emodin/barbaloin/hrysophanol+AM | 64-128/64-128/≥256 | 1.00 | 0.25/0.03/0.25 | ≤0.5 |
Drug combinations | Research strains | Synergistic inhibitory mechanism |
---|---|---|
Oxidized resveratrol+itraconazole (ITC)/MI | C. gatti and C. neoformans |
Binds to DNA causing it to cleave, stalling the G2/M phas |
Li Shen Pills+AM | C. neoformans | |
Chaparraline+FLC/AM | C. neoformans H99 and C. neoformans N99a |
Inhibition of podophyllotoxin and melanin production Up-regulation of the NRG1 gene inhibits sexual reproductio |
Cryptocephalus analgesic soup+AM | Patients with novel CM | Reduces cerebrospinal fluid pressure, white blood cell count, and cryptococcal count and reduces inflammatory response |
Acteoside+AM | C. neoformans ATCC 204092 | Inhibits biofilm synthesis; increases cell membrane permeability while decreasing cell viability |
Magnolol+FL | C. neoformans BNCC 225501 and clinical isolates |
Inhibition of podogenesis and urease synthesis Affects histidine metabolism, arginine biosynthesis, and sphingomyelin metabolism |
Ocimum basilicum+AM | C. neoformans T-444, C. neoformans H99A, and C. gattii WM779 | Reduces hyperpigmentation, pod size and ergosterol synthesis |
Eugenol+AMB/FLC/IT | C. neoformans PFCC 93-589 | Reduced Cxt1p gene expression results in decreased β-1,2-xylosyltransferase synthesis |
Thapsia villosa+FL | C. neoformans CECT 1078 | Hydrophobicity of limonene promotes the solubilization of lipids aggregated in microbial plasma membranes, leading to loss of membrane integrity |
Pedalitin+AM | C. neoformans ATCC 90112 | |
Allicin+AM | C. neoformans H99 | Penetrates cell and organelle membranes (mitochondria), leading to organelle destruction and cell death |
Curcumin+FL | C. neoformans ATCC 24065 and C. neoformans ATCC 32608 | |
Aloe emodin/barbaloin/chrysophanol+AM | C. neoformans ATCC 90113, human, and animal isolates |
Anthraquinones may interrupt the cross-linking of β-glucan, making it easier for AMB to enter cells |
4 抗隐球菌药物的研发方向
尽管抗真菌药物通过不同机制抑制隐球菌的生长与繁殖,但有时隐球菌仍然能够通过免疫逃逸成功躲避宿主防御。因此,抗隐球菌药物的研发应重点关注如何削弱其免疫逃逸能力,同时增强宿主免疫反应,以进一步提高治疗效果。
4.1 减少免疫逃逸
通常情况下,细胞表面成分的改变会影响人体对新型隐球菌的免疫力;隐球菌的荚膜和黑色素可以通过参与隐球菌免疫逃逸的过程,从而增强了隐球菌感染宿主的能力。反之,如果破坏这些结构,则可以抑制隐球菌的免疫逃
研究发现,隐球菌的黑色素可降低宿主的细胞因子反应性,减弱吞噬作用,中和炎症细胞释放的氧化物质(如ROS),并抑制抗真菌药物活性,从而起到保护隐球菌和逃避宿主免疫功能的作
4.2 增强宿主免疫反应
尽管隐球菌荚膜抑制了宿主的吞噬作用,但补体蛋白和循环抗体等调理素可以协助巨噬细胞吞噬隐球
值得一提的是,在巨噬细胞内,隐球菌可以通过抑制吞噬溶酶体的完全酸化、抵抗吞噬溶酶体产生的自由基等途径在巨噬细胞内存活并繁
4.3 中药抗隐球菌感染的应用前景
目前,已有多个研究指出,中药可以通过调节宿主免疫功能进而发挥其抗感染活性。如将莲花清瘟与常见抗病毒药物(奥司他韦)联合使用可抑制病毒诱导的核因子κB (nuclear factor-κ-gene binding, NF-κB)活化,并减轻病毒诱导的IL-6、IL-8、肿瘤坏死因子(tumor necrosis factor, TNF)-α、IP-10和单核细胞趋化蛋白1的基因表
总之,以上研究均表明中药能够调节宿主的免疫功能,这为抗隐球菌的药物研发提供了新思路,并为研发以中药为主的疫苗提供新方向。
5 结语
研发一种高效、价格低廉的抗隐球菌治疗方案迫在眉睫,中药文化源远流长,众多中药古典记录着中国古代医疗的发展,记载了大量的草药及其详细功效。一些中药本身就具有抗菌或抑菌活性,其与抗真菌药物联合使用后能更好地发挥抗隐球菌病的治疗效果。此外,一些中药还能为抗真菌药物提供进入细胞的 “钥匙”,从而使抗真菌药物更好地发挥功效。因此,中药与抗真菌药联合抗隐球菌治疗将是大势所趋,这不仅可以极大减少探索研发新药的成本,并对现存药物的二次开发利用具有重要意义。
作者贡献声明
杨轶涵:负责文章构思设计、撰写文章整体内容框架;毛娅芯:负责检索文献、绘制表格、参与文章撰写;徐新平:负责文章审核和修订。
利益冲突
公开声明
参考文献
DENNING DW. Global incidence and mortality of severe fungal disease[J]. The Lancet Infectious Diseases, 2024, 24(7): e428-e438. [百度学术]
BONGOMIN F, KIBONE W, ATULINDA L, MORGAN B, OCANSEY B, STORER ISR, van RHIJN N, MUZOORA C, DENNING DW, HAMER DH. Frequency of fungal pathogens in autopsy studies of people who died with HIV in Africa: a scoping review[J]. Clinical Microbiology and Infection, 2024, 30(5): 592-600. [百度学术]
BROWN GD, DENNING DW, GOW NAR, LEVITZ SM, NETEA MG, WHITE TC. Hidden killers: human fungal infections[J]. Science Translational Medicine, 2012, 4(165): 165rv13. [百度学术]
LIN XR, HEITMAN J. The biology of the Cryptococcus neoformans species complex[J]. Annual Review of Microbiology, 2006, 60: 69-105. [百度学术]
朱信霖, 扈东营, 陈显振, 姜伟伟, 陈天杨, 陈天成, 廖万清, 刘晓刚, 潘炜华. 新生隐球菌感染流行病学现状及耐药机制相关研究进展[J]. 菌物学报, 2022, 41(12): 1911-1920. [百度学术]
ZHU XL, HU DY, CHEN XZ, JIANG WW, CHEN TY, CHEN TC, LIAO WQ, LIU XG, PAN WH. A review of the epidemiology and drug resistance mechanism of Cryptococcus neoformans infection[J]. Mycosystema, 2022, 41(12): 1911-1920 (in Chinese). [百度学术]
IBE C, OKOYE CA, NWEZE E, OTU A. Cryptococcosis in Africa: what the data tell us[J]. Medical Mycology, 2023, 61(6): myad049. [百度学术]
ZHAO YB, YE LX, ZHAO FJ, ZHANG LY, LU ZG, CHU TX, WANG SY, LIU ZX, SUN YK, CHEN M, LIAO GJ, DING C, XU YC, LIAO WQ, WANG LQ. Cryptococcus neoformans, a global threat to human health[J]. Infectious Diseases of Poverty, 2023, 12(1): 20. [百度学术]
ZONO BB, KASUMBA DM, SITUAKIBANZA NANI-TUMA H, BEPOUKA IZIZAG B, YAMBAYAMBA KAPENGA M, NSUKA YANGA R, TSHIMANGA YONA T, KAMANGU NTAMBWE E, HAYETTE MP, MVUMBI LELO G. Cryptococcosis in the Democratic Republic of Congo from 1953 to 2021: a systematic review and meta-analysis[J]. Mycoses, 2022, 65(6): 580-589. [百度学术]
ASLANYAN L, SANCHEZ DA, VALDEBENITO S, EUGENIN EA, RAMOS RL, MARTINEZ LR. The crucial role of biofilms in Cryptococcus neoformans survival within macrophages and colonization of the central nervous system[J]. Journal of Fungi, 2017, 3(1): 10. [百度学术]
FOONG KS, LEE A, VASQUEZ G. Cryptococcal infection of the ventriculoperitoneal shunt in an immunocompetent patient[J]. The American Journal of Case Reports, 2016, 17: 31-34. [百度学术]
BENADUCCI T, SARDI JD, LOURENCETTI NMS, SCORZONI L, GULLO FP, ROSSI SA, DERISSI JB, de AZEVEDO PRATA MC, FUSCO-ALMEIDA AM, MENDES-GIANNINI MJS. Virulence of Cryptococcus sp. Biofilms in vitro and in vivo using Galleria mellonella as an alternative model[J]. Frontiers in Microbiology, 2016, 7: 290. [百度学术]
IYER KR, REVIE NM, FU C, ROBBINS N, COWEN LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook[J]. Nature Reviews Microbiology, 2021, 19(7): 454-466. [百度学术]
LOYSE A, BURRY J, COHN J, FORD N, CHILLER T, RIBEIRO I, KOULLA-SHIRO S, MGHAMBA J, RAMADHANI A, NYIRENDA R, ALIYU SH, WILSON D, LE T, OLADELE R, LESIKARI S, MUZOORA C, KALATA N, TEMFACK E, MAPOURE Y, SINI V, et al. Leave no one behind: response to new evidence and guidelines for the management of cryptococcal meningitis in low-income and middle-income countries[J]. The Lancet Infectious Diseases, 2019, 19(4): e143-e147. [百度学术]
LAHIRI S, CHANDRASHEKAR N. Advanced approach for antifungal susceptibility and characterization of resistance properties in clinical and environmental isolates of Cryptococcus species complex[J]. Infectious Medicine, 2022, 1(3): 147-153. [百度学术]
WANG QQ, CAI X, LI Y, ZHAO JH, LIU ZY, JIANG Y, MENG L, LI YM, PAN SY, AI XM, ZHANG F, LI RY, ZHENG B, WAN Z, LIU W. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study[J]. Frontiers in Microbiology, 2022, 13: 1006375. [百度学术]
BILLMYRE RB, APPLEN CLANCEY S, LI LX, DOERING TL, HEITMAN J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus[J]. Nature Communications, 2020, 11(1): 127. [百度学术]
LOYSE A, DROMER F, DAY J, LORTHOLARY O, HARRISON TS. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal[J]. The Journal of Antimicrobial Chemotherapy, 2013, 68(11): 2435-2444. [百度学术]
SZYMAŃSKI M, CHMIELEWSKA S, CZYŻEWSKA U, MALINOWSKA M, TYLICKI A. Echinocandins: structure, mechanism of action and use in antifungal therapy[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37(1): 876-894. [百度学术]
NIVOIX Y, LEDOUX MP, HERBRECHT R. Antifungal therapy: new and evolving therapies[J]. Seminars in Respiratory and Critical Care Medicine, 2020, 41(1): 158-174. [百度学术]
de OLIVEIRA HC, JOFFE LS, SIMON KS, CASTELLI RF, REIS FCG, BRYAN AM, BORGES BS, MEDEIROS LCS, BOCCA AL, del POETA M, RODRIGUES ML. Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(6): e00286-20. [百度学术]
DENNING DW. Echinocandin antifungal drugs[J]. The Lancet, 2003, 362(9390): 1142-1151. [百度学术]
DELATTIN N, CAMMUE BPA, THEVISSEN K. Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms[J]. Future Medicinal Chemistry, 2014, 6(1): 77-90. [百度学术]
LEE YJ, PUUMALA E, ROBBINS N, COWEN LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond[J]. Chemical Reviews, 2021, 121(6): 3390-3411. [百度学术]
FREITAS GJC, RIBEIRO NQ, GOUVEIA-EUFRASIO L, EMIDIO ECP, GUIMARÃES GM, CÉSAR IC, PAIXÃO TA, OLIVEIRA JBS, CAZA M, KRONSTAD JW, SANTOS DA. Antimalarials and amphotericin B interact synergistically and are new options to treat cryptococcosis[J]. International Journal of Antimicrobial Agents, 2023, 62(1): 106807. [百度学术]
LI ZB, ZHENG Y, LIU K, LIANG YD, LU J, LI QX, ZHAO BL, LIU X, LI XF. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: recent perspectives[J]. Phytotherapy Research, 2023, 37(12): 5599-5621. [百度学术]
YANG C, WU YJ, QIAN J, LI JJ. A systematic, updated review of Xuezhikang, a domestically developed lipid-lowering drug, in the application of cardiovascular diseases[J]. Acta Pharmaceutica Sinica B, 2024, 14(10): 4228-4242. [百度学术]
LI JM, FENG SS, LIU X, JIA X, QIAO FL, GUO JL, DENG SS. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria[J]. Frontiers in Pharmacology, 2022, 13: 837907. [百度学术]
FUJITA M, SHIOTA S, KURODA T, HATANO T, YOSHIDA T, MIZUSHIMA T, TSUCHIYA T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus[J]. Microbiology and Immunology, 2005, 49(4): 391-396. [百度学术]
QIAN MY, TANG SS, WU CM, WANG Y, HE T, CHEN TT, XIAO XL. Synergy between baicalein and penicillins against penicillinase-producing Staphylococcus aureus[J]. International Journal of Medical Microbiology, 2015, 305(6): 501-504. [百度学术]
VIPIN C, SAPTAMI K, FIDA F, MUJEEBURAHIMAN M, RAO SS, Athmika, ARUN AB, REKHA PD. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa[J]. PLoS One, 2020, 15(11): e0241304. [百度学术]
DHARA L, TRIPATHI A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae[J]. Journal of Applied Microbiology, 2020, 129(6): 1566-1576. [百度学术]
DELATTIN N, de BRUCKER K, VANDAMME K, MEERT E, MARCHAND A, CHALTIN P, CAMMUE BPA, THEVISSEN K. Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms[J]. The Journal of Antimicrobial Chemotherapy, 2014, 69(4): 1035-1044. [百度学术]
CASSETTA MI, MARZO T, FALLANI S, NOVELLI A, MESSORI L. Drug repositioning: auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections[J]. Biometals, 2014, 27(4): 787-791. [百度学术]
CASADEVALL A, COELHO C, CORDERO RJB, DRAGOTAKES Q, JUNG E, VIJ R, WEAR MP. The capsule of Cryptococcus neoformans[J]. Virulence, 2019, 10(1): 822-831. [百度学术]
OKAGAKI LH, STRAIN AK, NIELSEN JN, CHARLIER C, BALTES NJ, CHRÉTIEN F, HEITMAN J, DROMER F, NIELSEN K. Cryptococcal cell morphology affects host cell interactions and pathogenicity[J]. PLoS Pathogens, 2010, 6(6): e1000953. [百度学术]
ZARAGOZA O, GARCÍA-RODAS R, NOSANCHUK JD, CUENCA-ESTRELLA M, RODRÍGUEZ-TUDELA JL, CASADEVALL A. Fungal cell gigantism during mammalian infection[J]. PLoS Pathogens, 2010, 6(6): e1000945. [百度学术]
LEE HH, CARMICHAEL DJ, RÍBEIRO V, PARISI DN, MUNZEN ME, CHARLES-NIÑO CL, HAMED MF, KAUR E, MISHRA A, PATEL J, ROOKLIN RB, SHER A, CARRILLO-SEPULVEDA MA, EUGENIN EA, DORES MR, MARTINEZ LR. Glucuronoxylomannan intranasal challenge prior to Cryptococcus neoformans pulmonary infection enhances cerebral cryptococcosis in rodents[J]. PLoS Pathogens, 2023, 19(4): e1010941. [百度学术]
王甜甜. 厚朴酚抗新型隐球菌作用机制研究[D]. 大连: 大连医科大学硕士学位论文, 2023. [百度学术]
WANG TT. Study on the mechanism of magnolol against Cryptococcus neoformans[D]. Dalian: Master’s Thesis of Dalian Medical University, 2023 (in Chinese). [百度学术]
徐佳龙, 宋浩雷, 陈晓琴, 叶政苑, 范静, 廖国建. 小檗碱抗新生隐球菌活性和作用机制[J]. 微生物学报, 2023, 63(4): 1541-1550. [百度学术]
XU JL, SONG HL, CHEN XQ, YE ZY, FAN J, LIAO GJ. Antifungal activity and mechanism of berberine against Cryptococcus neoformans[J]. Acta Microbiologica Sinica, 2023, 63(4): 1541-1550 (in Chinese). [百度学术]
UPADHYAY S, XU XP, LIN XR. Interactions between melanin enzymes and their atypical recruitment to the secretory pathway by palmitoylation[J]. mBio, 2016, 7(6): e01925-16. [百度学术]
WANG Y, CASADEVALL A. Growth of Cryptococcus neoformans in presence of l-dopa decreases its susceptibility to amphotericin B[J]. Antimicrobial Agents and Chemotherapy, 1994, 38(11): 2648-2650. [百度学术]
van DUIN D, CASADEVALL A, NOSANCHUK JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin[J]. Antimicrobial Agents and Chemotherapy, 2002, 46(11): 3394-3400. [百度学术]
LEE D, JANG EH, LEE M, KIM SW, LEE Y, LEE KT, BAHN YS. Unraveling melanin biosynthesis and signaling networks in Cryptococcus neoformans[J]. mBio, 2019, 10(5): e02267-19. [百度学术]
HASSANPOUR P, SHAMS-GHAHFAROKHI M, RAZZAGHI-ABYANEH M. Antifungal activity of eugenol on Cryptococcus neoformans biological activity and Cxt1p gene expression[J]. Current Medical Mycology, 2020, 6(1): 9-14. [百度学术]
吕婧. 脲酶结构与功能的动力学研究及其抑制剂的设计筛选[D]. 杭州: 浙江大学博士学位论文, 2011. [百度学术]
LV J. Kinetic study on the structure and function of urease and the design and screening of its inhibitors[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2011 (in Chinese). [百度学术]
NÓBREGA RO, TEIXEIRA AP, OLIVEIRA WA, LIMA EO, LIMA IO. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans[J]. Pharmaceutical Biology, 2016, 54(11): 2591-2596. [百度学术]
BAKKALI F, AVERBECK S, AVERBECK D, IDAOMAR M. Biological effects of essential oils: a review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475. [百度学术]
CARDOSO NNR, ALVIANO CS, BLANK AF, ARRIGONI-BLANK MF, ROMANOS MTV, CUNHA MML, Da SILVA AJR, ALVIANO DS. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil[J]. Pharmaceutical Biology, 2017, 55(1): 1380-1388. [百度学术]
KUMARI P, ARORA N, CHATRATH A, GANGWAR R, PRUTHI V, POLURI KM, PRASAD R. Delineating the biofilm inhibition mechanisms of phenolic and aldehydic terpenes against Cryptococcus neoformans[J]. ACS Omega, 2019, 4(18): 17634-17648. [百度学术]
BANG S, KWON H, HWANG HS, PARK KD, KIM SU, BAHN YS. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression[J]. PLoS One, 2014, 9(10): e109863. [百度学术]
LI Z, LI ZT, YANG J, LU C, LI YM, LUO YZ, CONG F, SHI RM, WANG Z, CHEN HY, LI XX, YANG JL, YE F. Allicin shows antifungal efficacy against Cryptococcus neoformans by blocking the fungal cell membrane[J]. Frontiers in Microbiology, 2022, 13: 1012516. [百度学术]
DAVIDSON RC, NICHOLS CB, COX GM, PERFECT JR, HEITMAN J. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans[J]. Molecular Microbiology, 2003, 49(2): 469-485. [百度学术]
NICHOLS CB, FRASER JA, HEITMAN J. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans[J]. Molecular Biology of the Cell, 2004, 15(10): 4476-4489. [百度学术]
NISHIDA-TAMEHIRO K, KIMURA A, TSUBATA T, TAKAHASHI S, SUZUKI H. Antioxidative enzyme NAD(P)H quinone oxidoreductase 1 (NQO1) modulates the differentiation of Th17 cells by regulating ROS levels[J]. PLoS One, 2022, 17(7): e0272090. [百度学术]
WANG K, LV Q, MIAO YM, QIAO SM, DAI Y, WEI ZF. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway[J]. Biochemical Pharmacology, 2018, 155: 494-509. [百度学术]
RASHID MH, BABU D, SIRAKI AG. Interactions of the antioxidant enzymes NAD(P)H: quinone oxidoreductase 1 (NQO1) and NRH: quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants[J]. Chemico-Biological Interactions, 2021, 345: 109574. [百度学术]
曹婷, 谈楚琛, 周洁, 翟晓翔. 氧化白藜芦醇抗隐球菌体外药敏实验分析[J]. 中国中西医结合皮肤性病学杂志, 2023, 22(4): 323-326. [百度学术]
CAO T, TAN CC, ZHOU J, ZHAI XX. In vitro susceptibility testing of oxyresveratrol for Cryptococcus[J]. Chinese Journal of Dermatovenereology of Integrated Traditional and Western Medicine, 2023, 22(4): 323-326 (in Chinese). [百度学术]
李准, 李征途, 叶枫. 六神丸在体内外的抗隐球菌活性研究[J]. 抗感染药学, 2023, 20(2): 114-118, 128. [百度学术]
LI Z, LI ZT, YE F. Research on anti-cryptococcal activity of Liushen pills in vivo and in vitro[J]. Anti-Infection Pharmacy, 2023, 20(2): 114-118, 128 (in Chinese). [百度学术]
ALI I, SHARMA P, SURI KA, SATTI NK, DUTT P, AFRIN F, KHAN IA. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia[J]. Journal of Medical Microbiology, 2011, 60(Pt 9): 1326-1336. [百度学术]
SANGALLI-LEITE F, SCORZONI L, ALVES de PAULA E SILVA AC, de FÁTIMA da SILVA J, de OLIVEIRA HC, de LACORTE SINGULANI J, GULLO FP, MORAES Da SILVA R, REGASINI LO, SIQUEIRA da SILVA DH, da SILVA BOLZANI V, FUSCO-ALMEIDA AM, SOARES MENDES-GIANNINI MJ. Synergistic effect of pedalitin and amphotericin B against Cryptococcus neoformans by in vitro and in vivo evaluation[J]. International Journal of Antimicrobial Agents, 2016, 48(5): 504-511. [百度学术]
SCALAS D, MANDRAS N, ROANA J, TARDUGNO R, CUFFINI AM, GHISETTI V, BENVENUTI S, TULLIO V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains[J]. BMC Complementary and Alternative Medicine, 2018, 18(1): 143. [百度学术]
BRILHANTE RSN, ARAÚJO GDS, FONSECA XMQC, GUEDES GMM, AGUIAR L, CASTELO-BRANCO DSCM, CORDEIRO RA, SIDRIM JJC, PEREIRA NETO WA, ROCHA MFG. Antifungal effect of anthraquinones against Cryptococcus neoformans: detection of synergism with amphotericin B[J]. Medical Mycology, 2020: myaa081. [百度学术]
KIM S, LEE DG. Oxyresveratrol-induced DNA cleavage triggers apoptotic response in Candida albicans[J]. Microbiology, 2018, 164(9): 1112-1121. [百度学术]
LI LP, LIU W, LIU H, ZHU F, ZHANG DZ, SHEN H, XU Z, QI YP, ZHANG SQ, CHEN SM, HE LJ, CAO XJ, HUANG X, ZHANG JD, YAN L, AN MM, JIANG YY. Synergistic antifungal activity of berberine derivative B-7b and fluconazole[J]. PLoS One, 2015, 10(5): e0126393. [百度学术]
孔祥芳, 肖娟, 张丽敏. 隐脑镇痛汤辅助两性霉素B鞘内注射治疗新型隐球菌性脑膜炎的临床研究[J]. 现代中西医结合杂志, 2018, 27(34): 3851-3854. [百度学术]
KONG XF, XIAO J, ZHANG LM. Clinical study of Yinnaozhentong decoction assisted with intrathecal injection of amphotericin B in the treatment of cryptococcal meningitis[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2018, 27(34): 3851-3854 (in Chinese). [百度学术]
PINTO E, GONÇALVES MJ, CAVALEIRO C, SALGUEIRO L. Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and dermatophyte species[J]. Molecules, 2017, 22(10): 1595. [百度学术]
da SILVA DL, MAGALHÃES TFF, dos SANTOS JRA, de PAULA TP, MODOLO LV, de FÁTIMA A, BUZANELLO MARTINS CV, SANTOS DA, De RESENDE-STOIANOFF MA. Curcumin enhances the activity of fluconazole against Cryptococcus gattii-induced cryptococcosis infection in mice[J]. Journal of Applied Microbiology, 2016, 120(1): 41-48. [百度学术]
GUESS TE, ROSEN J, CASTRO-LOPEZ N, JrWORMLEY FL, McCLELLAND EE. An inherent T cell deficit in healthy males to C. neoformans infection may begin to explain the sex susceptibility in incidence of cryptococcosis[J]. Biology of Sex Differences, 2019, 10(1): 44. [百度学术]
YANG C, HUANG YM, ZHOU YY, ZANG XL, DENG HY, LIU YT, SHEN DX, XUE XY. Cryptococcus escapes host immunity: what do we know?[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1041036. [百度学术]
DONG ZM, MURPHY JW. Cryptococcal polysaccharides induce l-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils[J]. The Journal of Clinical Investigation, 1996, 97(3): 689-698. [百度学术]
DONG ZM, MURPHY JW. Mobility of human neutrophils in response to Cryptococcus neoformans cells, culture filtrate antigen, and individual components of the antigen[J]. Infection and Immunity, 1993, 61(12): 5067-5077. [百度学术]
COLOMBO AC, RELLA A, NORMILE T, JOFFE LS, TAVARES PM, de S ARAÚJO GR, FRASES S, ORNER EP, FARNOUD AM, FRIES BC, SHERIDAN B, NIMRICHTER L, RODRIGUES ML, del POETA M. Cryptococcus neoformans glucuronoxylomannan and sterylglucoside are required for host protection in an animal vaccination model[J]. mBio, 2019, 10(2): e02909-18. [百度学术]
KLUTTS JS, DOERING TL. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides[J]. Journal of Biological Chemistry, 2008, 283(21): 14327-14334. [百度学术]
UPADHYAY S, XU XP, LOWRY D, JACKSON JC, ROBERSON RW, LIN XR. Subcellular compartmentalization and trafficking of the biosynthetic machinery for fungal melanin[J]. Cell Reports, 2016, 14(11): 2511-2518. [百度学术]
EISENMAN HC, GREER EM, McGRAIL CW. The role of melanins in melanotic fungi for pathogenesis and environmental survival[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4247-4257. [百度学术]
ZARAGOZA O. Basic principles of the virulence of Cryptococcus[J]. Virulence, 2019, 10(1): 490-501. [百度学术]
ROHATGI S, PIROFSKI LA. Host immunity to Cryptococcus neoformans[J]. Future Microbiology, 2015, 10(4): 565-581. [百度学术]
PIROFSKI LA. Of mice and men, revisited: new insights into an ancient molecule from studies of complement activation by Cryptococcus neoformans[J]. Infection and Immunity, 2006, 74(6): 3079-3084. [百度学术]
GATES MA, KOZEL TR. Differential localization of complement component 3 within the capsular matrix of Cryptococcus neoformans[J]. Infection and Immunity, 2006, 74(6): 3096-3106. [百度学术]
SMITH LM, DIXON EF, MAY RC. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation[J]. Cellular Microbiology, 2015, 17(5): 702-713. [百度学术]
ZARAGOZA O, CHRISMAN CJ, CASTELLI MV, FRASES S, CUENCA-ESTRELLA M, RODRÍGUEZ-TUDELA JL, CASADEVALL A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival[J]. Cellular Microbiology, 2008, 10(10): 2043-2057. [百度学术]
FU MS, COELHO C, de LEON-RODRIGUEZ CM, ROSSI DCP, CAMACHO E, JUNG EH, KULKARNI M, CASADEVALL A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH[J]. PLoS Pathogens, 2018, 14(6): e1007144. [百度学术]
DING YW, ZENG LJ, LI RF, CHEN QY, ZHOU BX, CHEN QL, CHENG PL, WANG YT, ZHENG JP, YANG ZF, ZHANG FX. The Chinese prescription Lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function[J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 130. [百度学术]
REN Y, YIN ZH, DAI JX, YANG Z, YE BB, MA YS, ZHANG TE, SHI YY. Evidence-based complementary and alternative medicine exploring active components and mechanism of Jinhua Qinggan granules in treatment of COVID-19 based on virus-host interaction[J]. Natural Product Communications, 2020, 15(9): 1252. [百度学术]
LAI Q. Pharmacological mechanism and network pharmacology research of Huashibaidu formula in treating COVID-19[J]. Natural Product Research and Development, 2020, 32: 909-919. [百度学术]
CHEN J, WANG YK, GAO Y, HU LS, YANG JW, WANG JR, SUN WJ, LIANG ZQ, CAO YM, CAO YB. Protection against COVID-19 injury by Qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming[J]. Biomedicine & Pharmacotherapy, 2020, 129: 110281. [百度学术]
CHEN X, FENG YX, SHEN XY, PAN GX, FAN GW, GAO XM, HAN JH, ZHU Y. Anti-sepsis protection of Xuebijing injection is mediated by differential regulation of pro- and anti-inflammatory Th17 and T regulatory cells in a murine model of polymicrobial sepsis[J]. Journal of Ethnopharmacology, 2018, 211: 358-365. [百度学术]