摘要
目的
为甘肃省和青海省特殊生境作物根腐类病害提供绿色安全有效的防治措施。
方法
通过平板对峙法及孟金娜平板法对305株供试细菌进行初筛,对初筛得到的菌株利用发酵液法复筛,然后采用凯氏定氮法、紫外分光光度计法、火焰分光光度计法分别测定复筛后优良菌株的固氮、溶磷、解钾、分泌吲哚-3-乙酸(indole-3-acetic acid, IAA)、分泌铁载体、耐酸、耐碱及耐盐特性。最后针对甘肃省和青海省不同作物根腐类病害病原,将不同功能优良菌株进行复配构建防病促生复合菌系,测定其促生特性及抑菌能力,筛选得到最优复合菌系,分析其所涉及菌株的16S rRNA基因及gyrB基因序列,确定各菌株的分类地位,并通过盆栽法测定其防病促生作用。
结果
共筛选得到拮抗菌86株、溶磷菌134株。复筛得到拮抗菌20株,其中K87、LB17等菌株抑菌效果良好且抑菌谱广。K87对燕麦镰孢、木贼镰孢、尖镰孢、茄镰孢、微座孢的抑菌率分别为87.53%、74.90%、75.15%、79.69%、88.43%;LB17对尖镰孢、茄镰孢、麦根腐平脐蠕孢的抑菌率分别为61.89%、87.52%、87.23%。对8株优良菌促生能力的测定发现:LB17分泌铁载体能力最强,铁载体活性单位(su)值为0.32;K113固氮性能较好,固氮量为0.08 g/L;K87分泌IAA量最高,达9.87 mg/L;MP6溶无机磷量最大,为1 470.69 μg/mL;K85溶有机磷效果最好,溶磷量为1 321.23 μg/mL;MP41解钾性能最好,解钾量为140.33 mg/L。最终构建形成优良复合菌系14组,其中复合菌系T2综合性能最优,固氮量为0.212 g/L,解钾量为86.28 mg/L,分泌IAA量为16.91 mg/L,对6种病原真菌的抑菌率均大于60.00%,对木贼镰孢的抑菌率为87.69%。所涉及菌株LB17、K87、MP6均被鉴定为贝莱斯芽孢杆菌(Bacillus velezensis),对青稞根腐类病害的防效均在70.00%以上,且促生效果明显。
结论
本研究构建形成了一种甘青特殊生境作物根腐类病害高效防病促生复合菌系。
甘青(甘肃省、青海省)地区海拔高,光照充足,年均温度低,温差大,适合青稞、百合以及各种高原夏菜的种植及生
根腐类病害在青稞上发生普遍。研究发现,镰孢根腐
利用微生物菌剂防治根腐类病害是当前主要的生物防治手段,根据复合方式不同可分为微生物菌剂和复合微生物菌
1 材料与方法
1.1 材料
1.1.1 病原真菌
燕麦镰孢(Fusarium avenaceum)、木贼镰孢(Fusarium equiseti)、尖镰孢(Fusarium oxysporum)、茄镰孢(Fusarium solani)、麦根腐平脐蠕孢(Bipolaris sorokiniana)、微座孢(Microdochium bolleyi),均来源于甘肃省农业科学院植物保护研究所经济作物病害研究室。
1.1.2 供试菌株
305株供试菌株,均为甘肃省农业科学院植物保护研究所经济作物病害研究室自主分离保藏,分离自青稞、百合、番茄、辣椒根际及根际土壤。
1.1.3 培养基
LB培养基、PDA培养基(potato dextrose agar)、PKO无机磷培养基(Pikovaskaia’s)、蒙金娜有机磷培养基、NFM无氮培养基(nitrogen free medium)和钾长石培养基参考文献[
1.2 防病促生菌初筛
分别将供试病原真菌及防病促生菌活化后,采用平板对峙
1.3 菌株复筛
参考李雪萍
生长抑制率=(对照平板病原菌菌落直径-带毒平板病原菌菌落直径)/(对照平板菌落直径-接入菌饼直径)×100% | (1) |
1.4 优良菌株促生特性测定
选取1.3中抑菌率最为优良的菌株,活化后接入LB培养液中,30 ℃、180 r/min摇床培养48 h后,按照许世洋
铁载体活性单位(su)=[(Ar-As)/Ar] | (2) |
式中:Ar为不接菌培养液吸光值,As为接菌培养后处理组吸光值。
1.5 优良菌株耐酸、耐碱及耐盐特性
参考王艳霞
1.6 防病促生复合菌系的构建与筛选
采用两两十字划线
1.7 最优复合菌系菌种鉴定
采用DNA提取试剂盒(Bacterial DNA Kit,Omega Bio-tek公司),按照其说明书提取筛选得到的最优复合菌系所涉及菌株的DNA,16S rRNA基因通用引物(27F:5′-AGAGTTTGATC CTGGCTCAG-3′;1492R:5′-TACGGCTACCT TGTTACGACTT-3′)、gyrB引物(F:5′-GAAGT CATCATGACCGTTCTGCAYGCNGGNGGNAARTTYGA-3′;R:5′-AGCAGGGTACGGATGTG CGAGCCRTCNACRTCNGCRTCNGTCAT-3′)进行PCR扩
1.8 最优复合菌系的防病促生作用
以青稞镰孢根腐病、微座孢根腐病及普通根腐病为靶标,采用盆栽法对最优复合菌系T2的防病促生作用进行测定,参考李雪萍
病情指数=∑(病级株数×代表数值)/株数总和×发病最重级的代表数值×100 | (3) |
防效=(对照组发病率-处理组发病率)/对照组发病率×100% | (4) |
1.9 数据统计与分析
采用Excel软件进行数据整理及作图,使用DPS15.2软件进行方差分析(Duncan’s检验)和综合分析(Topsis法
2 结果与分析
2.1 菌株初筛
2.1.1 拮抗菌初筛
如
Target pathogen | Strain No. | IZD (mm) | Target pathogen | Strain No. | IZD (mm) | Target pathogen | Strain No. | IZD (mm) |
---|---|---|---|---|---|---|---|---|
Fusarium avenaceum | K87 | 15.28±0.16a | K103 | 15.58±0.09tuv | LB7 | 23.35±1.18jkl | ||
K11 | 15.11±0.40a | K120 | 14.93±0.13uv | LB6 | 23.12±0.51kl | |||
K91 | 14.53±0.44ab | K110 | 14.45±0.41vw | LB33 | 22.24±0.88lm | |||
K38 | 14.43±0.16ab | K118 | 13.39±0.26wx | LB35 | 22.05±0.57lm | |||
K37 | 13.73±0.30bc | LB3 | 13.01±0.25wxy | LB26 | 21.34±0.60mn | |||
K79 | 13.71±0.24bc | LB4 | 12.67±0.38xy | K96 | 21.33±0.57mn | |||
K12 | 12.94±0.27cd | LB13 | 12.34±0.53xy | K105 | 21.17±0.36mno | |||
K34 | 14.42±0.31ab | LB5 | 11.61±0.42yz | LB8 | 21.00±0.99mno | |||
LB35 | 12.00±0.44de | K86 | 11.43±0.23yz | LB5 | 20.86±0.94mno | |||
K102 | 11.94±0.03de | K121 | 10.68±0.33z | LB44 | 19.97±0.24nop | |||
LB33 | 11.25±0.50ef | LB36 | 31.61±0.43j | LB13 | 19.46±0.22op | |||
LB11 | 10.94±0.48ef | LB40 | 18.39±0.36r | LB4 | 18.70±0.88pq | |||
K71 | 10.53±0.38f | Fusarium oxysporum | K33 | 33.16±0.55a | K100 | 17.59±0.33qr | ||
LB10 | 8.78±0.15g | K102 | 31.69±0.24ab | K98 | 17.44±0.28qr | |||
LB16 | 12.01±0.49de | K91 | 30.47±1.14abc | LB16 | 16.67±0.11rs | |||
Fusarium equiseti | K91 | 42.23±0.16a | K29 | 30.01±0.93abcd | K89 | 16.61±0.41rs | ||
LB44 | 41.59±1.24a | N22 | 27.45±0.56bcde | K119 | 15.41±0.16s | |||
K115 | 38.72±0.08b | K87 | 27.35±0.76bcdef | K56 | 10.80±0.36t | |||
K105 | 38.69±0.33b | K117 | 27.22±5.95bcdef | Bipolaris sorokiniana | LB17 | 21.71±0.03a | ||
K113 | 38.32±0.53bc | K12 | 26.54±0.91cdefg | K91 | 20.55±0.02b | |||
LB35 | 37.47±1.21bc | LB33 | 26.42±0.71cdefg | K33 | 11.37±0.01e | |||
LB17 | 36.83±0.51cd | LB64 | 26.02±0.23cdefgh | LB33 | 9.28±0.03f | |||
K87 | 35.86±0.46de | N20 | 25.32±0.80defgh | K102 | 13.74±0.06c | |||
LB33 | 35.53±0.36def | K16 | 25.18±0.49efgh | K34 | 12.70±0.10d | |||
K56 | 35.21±0.07efg | K71 | 24.66±0.90efgh | Microdochium bolleyi | K102 | 30.99±0.52a | ||
LB2 | 34.71±0.36efgh | LB67 | 24.56±0.57efgh | K87 | 30.69±0.51a | |||
LB11 | 34.63±0.28efgh | K34 | 24.32±2.45efghi | LB10 | 28.26±0.41b | |||
LB27 | 16.17±0.75tu | K93 | 23.60±0.49efghi | K119 | 27.50±0.63bc | |||
K96 | 26.09±0.32lmn | LB7 | 23.57±0.68efghi | LB33 | 27.47±0.76bc | |||
K102 | 34.20±0.54fgh | LB6 | 23.29±1.80efghi | LB11 | 27.46±0.27bc | |||
LB26 | 33.98±0.51fgh | LB75 | 22.13±0.56ghij | MP2 | 27.09±0.27bcd | |||
LB16 | 33.73±0.55gh | LB73 | 21.34±0.54hij | LB30 | 26.10±0.87cde | |||
LB15 | 33.42±0.37hi | K37 | 21.33±0.73hij | LB35 | 25.91±0.65cde | |||
K85 | 32.07±0.33ij | LB34 | 19.77±0.56ijk | LB31 | 25.62±0.64de | |||
K117 | 31.69±0.32j | K79 | 18.46±0.95jk | LB27 | 25.49±0.22de | |||
LB32 | 31.48±0.14j | LB26 | 17.89±0.46jk | LB7 | 24.62±0.90ef | |||
LB28 | 30.50±0.44jk | LB28 | 16.12±0.21k | K118 | 24.61±0.08ef | |||
LB1 | 29.93±0.90k | K26 | 25.57±0.51defgh | K117 | 24.50±0.30ef | |||
LB10 | 29.63±1.39k | K11 | 22.48±0.73fghij | MP8 | 24.46±0.39ef | |||
LB20 | 27.51±0.16l | Fusarium solani | K87 | 38.52±0.46a | LB32 | 23.72±0.64fg | ||
LB7 | 27.50±0.68l | LB17 | 37.10±0.80ab | K100 | 22.98±0.08fgh | |||
LB14 | 26.47±0.89lm | K116 | 36.34±0.44b | LB16 | 22.94±0.38fgh | |||
K119 | 25.88±0.15mn | K114 | 34.26±0.62c | K86 | 22.27±0.55ghi | |||
LB34 | 25.64±0.38mn | K113 | 34.22±0.39c | LB40 | 21.97±0.89hij | |||
LB8 | 25.11±0.68mn | LB20 | 31.14±0.40d | LB34 | 21.95±0.58hij | |||
K51 | 24.71±0.15n | LB15 | 30.62±0.24d | LB37 | 21.65±0.36hijk | |||
LB25 | 22.75±0.35o | K85 | 30.20±0.59de | K91 | 21.39±0.69hijk | |||
LB21 | 22.10±0.77op | LB14 | 29.82±0.71def | LB24 | 21.14±0.89ijk | |||
N66 | 21.40±0.30opq | K91 | 28.89±0.62efg | MP14 | 20.39±0.02jkl | |||
LB24 | 21.31±0.53opq | K102 | 28.48±0.19fgh | LB9 | 19.97±0.52kl | |||
LB37 | 21.03±0.21pq | K115 | 28.03±0.24ghi | LB18 | 19.90±0.22kl | |||
N48 | 19.99±0.33q | LB2 | 27.18±0.12hi | MP13 | 19.34±0.78l | |||
LB38 | 18.35±0.39r | LB11 | 26.55±0.03i | MP16 | 19.24±0.43l | |||
LB19 | 17.76±0.28rs | LB28 | 24.97±0.24j | K89 | 19.16±0.20l | |||
K98 | 16.67±0.37st | LB21 | 24.12±0.88jk | MP12 | 17.49±0.60m | |||
LB6 | 15.97±0.14tuv | LB10 | 24.05±0.18jk | MP17 | 16.94±0.56m |
IZD indicates inhibition zone diameter of the antagonistic bacteria. The data are expressed by mean±SD, and different lowercase letters after the same column indicate significant differences (P<0.05). The same as below.

图1 部分拮抗菌的抑菌效果
Figure 1 Antifungal effects of partial antagonistic bacteria.
2.1.2 溶磷菌初筛
如
No. | PSZD (mm) | No. | PSZD (mm) | No. | PSZD (mm) | No. | PSZD (mm) | No. | PSZD (mm) |
---|---|---|---|---|---|---|---|---|---|
CK | 0.00±0.00 | K38 | 11.21±0.01 | K115 | 8.88±0.01 | K17 | 10.78±0.20 | MP8 | 8.83±0.03 |
K86 | 7.33±0.02 | K37 | 10.97±0.04 | K116 | 9.68±0.02 | K6 | 9.76±0.02 | MP12 | 13.64±0.04 |
K87 | 32.89±0.01 | K79 | 12.59±0.01 | K92 | 11.81±0.01 | K5 | 7.76±0.02 | MP13 | 13.68±0.01 |
K89 | 8.65±0.05 | K12 | 7.01±0.01 | K93 | 8.77±0.03 | MP1 | 10.84±0.03 | MP14 | 9.60±0.01 |
K91 | 10.27±0.03 | K71 | 8.58±0.02 | K94 | 11.54±0.02 | MP7 | 11.19±0.05 | MP16 | 6.75±0.07 |
K100 | 8.25±0.03 | MP41 | 35.67±0.02 | K95 | 7.41±0.02 | MP10 | 11.23±0.07 | MP17 | 7.82±0.04 |
K102 | 17.67±0.20 | MP6 | 37.79±0.02 | K72 | 11.21±0.01 | MP11 | 10.19±0.05 | K110 | 8.50±0.03 |
K117 | 9.93±3.34 | MP9 | 16.49±0.02 | K73 | 9.98±0.01 | MP29 | 10.23±0.07 | K112 | 6.90±0.01 |
K118 | 8.37±0.04 | MP5 | 9.69±0.01 | K74 | 12.98±0.01 | MP28 | 9.23±0.07 | K113 | 8.70±0.67 |
K119 | 14.29±0.01 | MP3 | 8.71±0.01 | K75 | 9.45±0.01 | MP26 | 7.81±0.07 | K114 | 11.28±0.01 |
LB7 | 9.59±0.03 | K53 | 7.76±0.05 | MP31 | 7.45±0.01 | MP25 | 8.73±0.07 | K34 | 10.90±0.01 |
LB9 | 15.56±0.06 | K52 | 10.48±0.03 | MP32 | 12.66±0.01 | LB21 | 13.23±0.07 | LB17 | 16.69±0.01 |
LB10 | 9.48±0.13 | K61 | 8.38±0.01 | MP33 | 9.24±0.01 | LB22 | 8.99±0.06 | K16 | 11.22±0.40 |
LB11 | 7.90±0.04 | K62 | 13.26±0.02 | K63 | 8.40±0.01 | LB23 | 10.29±0.05 | K45 | 13.74±0.01 |
LB16 | 11.68±0.01 | K67 | 8.47±0.02 | K35 | 7.30±0.02 | LB25 | 8.29±0.05 | K57 | 13.21±0.01 |
LB18 | 8.85±0.04 | K85 | 27.49±0.01 | K21 | 8.50±0.01 | LB28 | 9.17±0.03 | K11 | 7.85±0.03 |
LB24 | 12.77±0.03 | K90 | 9.53±0.10 | K22 | 9.70±0.01 | LB38 | 9.84±0.02 | K42 | 11.05±0.01 |
LB27 | 6.24±0.04 | K108 | 8.58±0.29 | K23 | 10.26±0.03 | LB3 | 10.25±0.02 | K58 | 8.10±0.01 |
LB30 | 12.39±0.01 | K107 | 7.89±0.01 | K24 | 8.64±0.01 | LB2 | 7.25±0.02 | K65 | 10.77±0.01 |
LB31 | 16.68±0.21 | LB36 | 11.68±0.01 | K25 | 7.90±0.01 | LB29 | 13.28±0.02 | K43 | 10.98±0.01 |
LB32 | 8.32±0.04 | LB8 | 13.36±0.02 | K26 | 7.75±0.21 | K40 | 7.43±0.02 | K44 | 11.43±0.01 |
LB33 | 11.62±0.04 | LB6 | 7.38±0.09 | K27 | 7.48±0.42 | K41 | 8.56±0.02 | K33 | 16.31±0.02 |
LB34 | 5.16±0.92 | LB5 | 8.93±0.01 | K28 | 10.79±0.42 | MP36 | 7.31±0.01 | MP2 | 16.34±0.04 |
LB35 | 7.60±0.01 | LB1 | 8.72±0.03 | K31 | 10.94±0.42 | MP39 | 9.23±0.01 | K104 | 9.85±0.03 |
LB37 | 7.41±0.02 | K103 | 11.08±0.03 | K13 | 13.26±0.42 | MP40 | 7.23±0.01 | K15 | 11.62±0.39 |
LB40 | 10.29±0.01 | K105 | 10.86±0.02 | K14 | 8.69±0.39 | K111 | 10.91±0.01 | MP34 | 12.24±0.02 |
PSZD indicates solubilization zone diameter of the phosphate-solubilizing bacteria.

图2 部分溶磷菌的溶磷效果
Figure 2 Solubilization effects of partial phosphate-solubilizing bacteria.
2.2 菌株复筛
复筛共得到20株抑菌效果良好的菌株(
Target pathogen | Strain No. | Antifungal rate (%) | Target pathogen | Strain No. | Antifungal rate (%) |
---|---|---|---|---|---|
Fusarium avenaceum | K56 | 87.54±0.01a | Fusarium oxysporum | K71 | 72.02±0.02j |
K87 | 87.53±0.02a | K11 | 65.70±0.02k | ||
K37 | 66.52±0.06b | LB16 | 61.31±0.01lmn | ||
LB16 | 66.05±0.03bc | K34 | 61.21±0.01lmn | ||
LB35 | 56.87±0.02de | K21 | 65.70±0.02k | ||
K11 | 55.46±0.01def | Fusarium solani | LB17 | 87.52±0.01a | |
K91 | 54.86±0.03efg | K11 | 83.09±0.01b | ||
K34 | 53.89±0.04efgh | K87 | 79.69±0.01c | ||
K38 | 52.14±0.02fghi | K38 | 69.04±0.04d | ||
LB33 | 49.80±0.05hij | K21 | 79.74±0.01c | ||
K79 | 44.79±0.02k | K102 | 79.74±0.02c | ||
Fusarium equiseti | K102 | 92.88±0.02a | Bipolaris sorokiniana | LB17 | 87.23±0.03a |
LB64 | 82.01±0.03b | K91 | 82.47±0.02b | ||
K91 | 81.23±0.01bc | K34 | 57.61±0.01de | ||
K34 | 79.92±0.04cd | K33 | 53.36±0.03f | ||
K21 | 79.43±0.02cd | K102 | 66.81±0.02c | ||
K56 | 78.06±0.05de | LB33 | 58.09±0.01d | ||
K87 | 74.90±0.01fgh | Microdochium bolleyi | LB33 | 92.55±0.01a | |
K117 | 74.92±0.02fgh | K33 | 89.69±0.02c | ||
LB33 | 73.75±0.02h | K37 | 89.17±0.02c | ||
LB17 | 61.89±0.01i | K34 | 89.04±0.01c | ||
Fusarium oxysporum | LB33 | 80.18±0.03ab | K20 | 88.58±0.03cd | |
K33 | 78.99±0.04bc | K87 | 88.43±0.04cd | ||
K37 | 78.14±0.02bcd | K56 | 65.63±0.01e | ||
K38 | 75.40±0.01ef | LB17 | 57.37±0.01f | ||
K87 | 75.15±0.01efg | K91 | 54.54±0.01g | ||
K102 | 75.05±0.02efgh | K71 | 45.16±0.03h | ||
LB34 | 74.39±0.01fghi | LB64 | 91.50±0.04ab |

图3 部分拮抗菌发酵液抑菌效果
Figure 3 Antifungal efficacy of the fermentation broth from selected antagonistic bacteria.
2.3 优良菌株的促生特性
由
Strain No. | Nitrogen-fixing quantity (g/L) | Dissolved inorganic phosphorus (μg/mL) | Dissolved organic phosphorus (μg/mL) | Potassium-releasing quantity (mg/L) | Producing IAA (mg/L) | Producing siderophore (su) |
---|---|---|---|---|---|---|
CK | 0.000 0±0.000 1 | 0.00±0.01 | 0.00±0.01 | 0.00±0.01 | 0.000±0.001 | 0.000 0±0.000 1 |
LB17 | 0.051 2±0.000 2d | 1 102.95±0.02b | 586.45±0.03e | 43.17±0.02b | 5.687±0.001g | 0.320 0±0.043 0a |
K113 | 0.080 3±0.000 4a | 909.84±0.04d | 744.68±0.07d | 33.70±0.02g | 6.781±0.005c | 0.310 2±0.000 3a |
K87 | 0.059 6±0.001 6c | 367.63±0.13h | 432.79±0.10g | 25.75±0.02h | 9.873±0.003a | 0.263 7±0.000 3b |
K85 | 0.060 2±0.002 0b | 949.69±0.09c | 1 321.23±0.09a | 35.52±0.03ef | 5.790±0.006f | 0.258 0±0.001 2b |
MP6 | 0.060 6±0.002 0b | 1 470.69±0.20a | 1 141.86±0.04c | 40.90±0.02c | 6.672±0.023d | 0.170 6±0.000 3c |
K33 | 0.042 8±0.000 3e | 569.64±0.01f | 436.47±0.03f | 36.23±0.03d | 5.950±0.001e | 0.170 2±0.000 3c |
K56 | 0.043 6±0.000 3f | 458.87±0.02g | 336.92±0.04h | 35.86±0.03de | 6.649±0.012d | 0.133 4±0.000 7d |
MP41 | 0.053 7±0.000 4cd | 742.27±0.02e | 1 272.80±0.04b | 140.33±0.03a | 6.852±0.008b | 0.132 9±0.000 6d |
2.4 优良菌株耐酸、耐碱、耐盐能力
2.4.1 耐酸能力
如

图4 优良菌株的耐酸能力
Figure 4 Acid tolerance of the superior strains.
2.4.2 耐碱能力
如

图5 优良菌株的耐碱能力
Figure 5 Alkali tolerance of the superior strains.
2.4.3 耐盐能力
如

图6 优良菌株的耐盐能力
Figure 6 Salt tolerance of the superior strains.
2.5 优良防病促生复合菌系构建与筛选
2.5.1 优良菌株间的互作效应
如

图7 优良菌株间的互作效应
Figure 7 Compatibility of the superior strains.
Bacterial consortium | Nitrogen-fixing quantity (g/L) | Potassium-releasing quantity (mg/L) | Dissolved organic phosphorus (μg/mL) | Dissolved inorganic phosphorus (μg/mL) | Producing IAA (mg/L) | Producing siderophore (su) | Comprehensive analysis |
---|---|---|---|---|---|---|---|
T1 (K87+LB17) | 0.107 1±0.000 2e | 84.00±0.10b | 300.56±2.03g | 351.86±2.30d | 9.94±0.02m | 0.276 0±0.001 2f | 0.302 |
T2 (K87+LB17+MP6) | 0.212 0±0.000 0a | 86.28±0.10a | 346.50±0.77e | 413.11±2.03c | 16.91±0.05h | 0.328 4±0.000 3e | 0.611 |
T3 (K87+LB17+MP6+K85) | 0.018 9±0.000 1k | 71.78±0.10f | 437.60±2.03b | 419.23±1.53b | 18.56±0.03e | 0.181 6±0.001 3j | 0.376 |
T4 (K56+LB17) | 0.012 1±0.000 1l | 43.01±0.01h | 255.40±0.01i | 299.80±0.77f | 51.63±0.09a | 0.210 9±0.000 3i | 0.464 |
T5 (K56+LB17+K113) | 0.104 7±0.000 2f | 39.72±0.03l | 322.77±2.03f | 328.13±3.05e | 19.39±0.03d | 0.368 6±0.000 3c | 0.434 |
T6 (K56+LB17+MP6+K113) | 0.011 1±0.000 0l | 43.97±0.01g | 263.25±3.63i | 273.00±0.77g | 20.28±0.01c | 0.176 6±0.001 5k | 0.249 |
T7 (K33+LB17) | 0.045 3±0.000 1i | 41.30±0.01k | 386.31±1.33d | 409.43±0.15c | 15.59±0.00j | 0.260 0±0.000 9g | 0.320 |
T8 (K33+LB17+MP6) | 0.018 0±0.000 0k | 42.12±0.03j | 403.91±0.77c | 413.25±2.66c | 15.00±0.04kl | 0.339 2±0.000 9d | 0.335 |
T9 (K33+LB17+MP6+K113) | 0.149 2±0.000 0b | 80.40±0.01e | 259.22±1.53i | 275.50±2.63g | 18.28±0.02f | 0.112 7±0.000 0m | 0.471 |
T10 (MP6+K85+MP41+K113) | 0.037 2±0.000 3j | 42.19±0.03j | 281.43±1.53h | 298.27±2.03f | 23.54±0.02b | 0.226 9±0.000 6h | 0.306 |
T12 (K113+MP41) | 0.073 0±0.002 5h | 30.37±0.03m | 212.98±8.68k | 233.19±1.53i | 14.98±0.02l | 0.164 1±0.000 9l | 0.234 |
T13 (LB17+K113+MP41) | 0.141 0±0.000 0c | 81.26±0.01c | 482.00±0.77a | 425.35±0.01a | 15.10±0.05k | 0.470 2±0.000 9a | 0.579 |
T14 (K87+LB17+MP6+K113) | 0.077 6±0.000 0g | 80.78±0.10d | 257.69±0.01i | 348.02±0.01d | 15.88±0.03i | 0.413 6±0.001 2b | 0.464 |
T15 (K87+LB17+MP6+MP41) | 0.135 2±0.000 1d | 42.82±0.01i | 233.19±2.03j | 247.74±1.53h | 18.11±0.04g | 0.112 2±0.000 3m | 0.376 |
2.5.2 复合菌系的促生特性
如
2.5.3 优良复合菌系的抑菌特性
如

图8 优良复合菌系对病原真菌的抑菌率
Figure 8 Antifungal rate of the superior bacterial consortia against pathogenic fungi.
2.6 最优复合菌系菌种鉴定
如

图9 基于16S rRNA基因(A)和gyrB基因(B)的系统发育树
Figure 9 Phylogenetic tree constructed by the neighbor-joining method based on the sequences from 16S rRNA gene (A) and gyrB (B) locus of the strains. The accession numbers of the sequences in GenBank are shown following the species name, and the superscript “T” indicates the type strain. The branch numbers indicate the bootstrap support rate; The scale bar indicates a nucleotide substitution rate of 0.10.
2.7 最优复合菌系的防病促生作用
如
Treatment | Disease index | Control effect (%) | Plant height (cm) | Stem diameter (mm) |
---|---|---|---|---|
CK1 | 85.00±3.90a | - | 19.75±2.89b | 0.058±0.010b |
M1 | 23.50±4.74b | 72.35 | 30.11±1.24a | 0.114±0.012a |
CK2 | 86.50±3.16a | - | 19.89±3.37b | 0.042±0.013b |
M2 | 25.25±5.19b | 70.81 | 30.22±1.27a | 0.123±0.010a |
CK3 | 86.25±2.12a | - | 26.63±1.65b | 0.051±0.015b |
M3 | 21.50±5.67b | 75.07 | 30.71±1.19a | 0.114±0.011a |
“-” indicates the treatment was absent from control effect.
3 讨论与结论
微生物菌剂因其良好的防效、较长的持效期,以及环境友好和可再生性强等优势,已成为控制作物病害的主要途径之一。其中,芽孢杆菌属在国内外研究中最为常
贝莱斯芽孢杆菌(B. velezensis)是近年来芽孢杆菌属中一种新型且热门的生防细菌,其生防效果良好,具有很大的开发潜力,尤其在根腐类病害防控方面表现出色。陈静
目前针对多种作物根腐病病原均有效的复合菌系研究较少。本研究成功研发出一种抑菌谱更广的T2复合菌系,其对百合、番茄、辣椒等不同作物上分离的根腐病病原(如茄镰孢、尖镰孢)以及青稞根腐病病原(如微座孢、木贼镰孢、麦根腐平脐蠕孢、燕麦镰孢)的抑菌率分别为77.84%、65.71%、76.71%、87.69%、64.46%、60.26%,且抑菌率均超过60.00%,显示出良好的本土根腐类病害防治潜力。在促生功能方面,复合菌剂T2的固氮能力显著提高,固氮量为0.212 g/L,分泌IAA能力相较单一菌株平均提升了2.6倍,解钾及分泌铁载体能力均提升了2倍,解钾量达86.28 mg/L,分泌IAA量达16.91 mg/L。Du
作者贡献声明
李雪萍:实验设计、数据核查、论文撰写;马佳璇:菌株筛选、特性测定、菌种鉴定;许世洋:数据汇总、图表绘制、英文写作;孟欢:辅助菌种鉴定、盆栽试验;李建军:辅助菌株筛选、特性测定;漆永红:负责数据核查、论文核查、保障实验条件。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
赵佳丽, 兰措卓玛, 王伟, 王寒冬, 王稳, 沈纪萍. 基于MaxEnt模型的青藏高原青稞适生区对气候变化响应的分析[J]. 中国生态农业学报, 2024, 32(10): 1626-1638. [百度学术]
ZHAO JL, LAN CUO ZM, WANG W, WANG HD, WANG W, SHEN JP. Response of suitable area of highland barley in the Qinghai-Xizang Plateau to climate change based on Maximum Entropy Model analysis[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1626-1638 (in Chinese). [百度学术]
范雨婷, 王可心, 张海霞, 马萍, 李婧, 吴晶, 谈有金, 王健斌, 贺晓艳, 杜双奎. 发芽青稞营养成分及功能特性研究进展[J]. 食品工业科技, 2025, 46(2): 403-411. [百度学术]
FAN YT, WANG KX, ZHANG HX, MA P, LI J, WU J, TAN YJ, WANG JB, HE XY, DU SK. Research progress on nutritional components and functional characteristics of sprouted highland barley[J]. Science and Technology of Food Industry, 2025, 46(2): 403-411 (in Chinese). [百度学术]
陈鲁鹏, 姚晓华, 姚有华, 李新, 吴昆仑. 青藏高原青稞品质评价体系构建及生态区划分析[J]. 西北植物学报, 2023, 43(4): 667-678. [百度学术]
CHEN LP, YAO XH, YAO YH, LI X, WU KL. Construction of quality evaluation system and analysis of ecological regionalization of Qinghai-Xizang Plateau hulless barley[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(4): 667-678 (in Chinese). [百度学术]
刘雅洁, 李茂, 李超, 李文博, 田敏, 潘佳佳, 赵辉, 余国武, 冯宗云. 75份青稞种质的品质性状综合评价[J/OL]. 麦类作物学报, 2024. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=MLZW20240517003&dbname=CJFD&dbcode=CJFQ. [百度学术]
LIU YJ, LI M, LI C, LI WB, TIAN M, PAN JJ, ZHAO H, YU GW, FENG ZY. Comprehensive evaluation of quality traits of 75 highland barley germplasm[J/OL]. China Industrial Economics, 2024. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MLZW20240517003&dbname= CJFD&dbcode=CJFQ(in Chinese). [百度学术]
GAO DD, CHEN H, LIU HH, YANG XH, GUO PH, CAO X, CAI Y, XU HW, YANG JT. Structure characterization and antioxidant activity analysis of polysaccharides from Lanzhou lily[J]. Frontiers in Nutrition, 2022, 9: 976607. [百度学术]
ZHANG KW, LYU T, LYU YM. Transcriptional insights into lily stem bulblet formation: hormonal regulation, sugar metabolism, and transcriptional networks in LA lily ‘Aladdin’[J]. Horticulturae, 2024, 10(2): 171. [百度学术]
JIN L, ZHANG YL, YAN LM, GUO YL, NIU LX. Phenolic compounds and antioxidant activity of bulb extracts of six Lilium species native to China[J]. Molecules, 2012, 17(8): 9361-9378. [百度学术]
YANG W, WANG P, ZHANG W. Review on preservation techniques of edible lily bulbs in China[J]. Journal of Food, 2022, 20(1): 172-182. [百度学术]
雷波, 陈炜, 马英杰. 甘肃省蔬菜产业现状及高质量发展对策研究[J/OL]. 北方园艺, 2024. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=BFYY20240627001&dbname=CJFD&dbcode=CJFQ. [百度学术]
LEI B, CHEN W, MA YJ. Study on the present situation of vegetable industry in Gansu Province and its high-quality development countermeasures[J/OL]. China Industrial Economics, 2024. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=BFYY20240627001&dbname=CJFD&dbcode=CJFQ(in Chinese). [百度学术]
孙源谦, 颉建明. 甘肃高原夏菜农业保险发展中的问题与建议[J]. 中国蔬菜, 2023(9): 7-13. [百度学术]
SUN YQ, XIE JM. Problems existing in developing agricultural insurance for Gansu highland summer vegetable and several suggestions[J]. China Vegetables, 2023(9): 7-13 (in Chinese). [百度学术]
张德纯. 甘肃兰州百合[J]. 中国蔬菜, 2020(10): 41. [百度学术]
ZHANG DC. Lily in Lanzhou, Gansu[J]. China Vegetables, 2020(10): 41 (in Chinese). [百度学术]
王楚凡, 牛俊. 西北地区主要粮食作物种植的水、碳足迹及布局优化[J]. 中国农业科学, 2024, 57(6): 1137-1152. [百度学术]
WANG CF, NIU J. Water and carbon footprint and layout optimization of major grain crops in the northwest China[J]. Scientia Agricultura Sinica, 2024, 57(6): 1137-1152 (in Chinese). [百度学术]
李雪萍, 李敏权, 许世洋, 刘梅金, 漆永红, 李建军, 李晓蓉. 青稞镰孢根腐病病原鉴定及致病性分析[J]. 麦类作物学报, 2022, 42(9): 1149-1161. [百度学术]
LI XP, LI MQ, XU SY, LIU MJ, QI YH, LI JJ, LI XR. Pathogens identification and pathogenicity analysis of Fusarium root rot on naked barley[J]. Journal of Triticeae Crops, 2022, 42(9): 1149-1161 (in Chinese). [百度学术]
ZHOLDOSHBEKOVA S, BOZOĞLU T, ERPER I, DERVIŞ S, ÖZER G. A new host for Fusarium algeriense causing crown and root rot on barley in Kyrgyzstan[J]. New Disease Reports, 2022, 46(2): e12139. [百度学术]
李雪萍, 刘梅金, 许世洋, 郭建炜, 漆永红, 李敏权. 青稞普通根腐病的调查与病原鉴定[J]. 草业学报, 2021, 30(7): 190-198. [百度学术]
LI XP, LIU MJ, XU SY, GUO JW, QI YH, LI MQ. Investigation and pathogen identification of common root rot of Qingke barley (Hordeum vulgare var. nudum)[J]. Acta Prataculturae Sinica, 2021, 30(7): 190-198 (in Chinese). [百度学术]
李雪萍, 李建宏, 漆永红, 郭成, 李潇, 李敏权. 青稞微座孢根腐病病原鉴定[J]. 植物病理学报, 2019, 49(5): 705-710. [百度学术]
LI XP, LI JH, QI YH, GUO C, LI X, LI MQ. Identification of the pathogens causing Microdochium root rot on naked barley[J]. Acta Phytopathologica Sinica, 2019, 49(5): 705-710 (in Chinese). [百度学术]
李雪萍, 许世洋, 李建军, 张怡忻, 漆永红, 汪学苗, 蒋晶晶, 范雨轩, 李敏权. 一种由粉红粘帚霉引起的青稞根腐病[J]. 微生物学通报, 2022, 49(2): 598-605. [百度学术]
LI XP, XU SY, LI JJ, ZHANG YX, QI YH, ANG XM, JIANG JJ, FAN YX, LI MQ. Clonostachys rosea, a pathogen of root rot in naked barley (Hordeum vulgare L. var. nudum Hook. f.) on the Qinghai-Xizang plateau, China[J]. Microbiology China, 2022, 49(2): 598-605 (in Chinese). [百度学术]
翟雅鑫, 姚晨阳, 薛丽芳, 曹挥, 李新凤, 杜方, 郝晓娟. 一株百合枯萎病菌的鉴定及其生物学特性研究[J]. 山西农业大学学报(自然科学版), 2018, 38(5): 1-6. [百度学术]
ZHAI YX, YAO CY, XUE LF, CAO H, LI XF, DU F, HAO XJ. Identification and biological characteristics of a fungal isolate causing lily Fusarium wilt[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(5): 1-6 (in Chinese). [百度学术]
牟晓玲, 李潇潇, 师桂英, 王文珠, 李谋强, 张爱菊. 兰州百合枯萎病病原菌鉴定及罹病组织超微结构观察[J]. 植物保护学报, 2022, 49(4): 1111-1118. [百度学术]
MU XL, LI XX, SHI GY, WANG WZ, LI MQ, ZHANG AJ. Identification of pathogens causing Fusarium wilt of Lanzhou lily, and the observation of cell ultrastructures in the infected bulb scales[J]. Journal of Plant Protection, 2022, 49(4): 1111-1118 (in Chinese). [百度学术]
安智慧, 石延霞, 刘永春, 李宝聚. 李宝聚博士诊病手记(二十一)百合根腐病病原鉴定及防治方法[J]. 中国蔬菜, 2010(3): 23-24. [百度学术]
AN ZH, SHI YX, LIU YC, LI BJ. Dr. Li baoju’s notes on diagnosis (XXI) pathogen identification and control methods of lily root rot[J]. China Vegetables, 2010(3): 23-24 (in Chinese). [百度学术]
刘翔, 姜兴印, 王雪婷, 朱文亚, 姚向峰, 王金花, 张风文. 辣椒根腐病菌对咯菌腈的敏感性及其抗性突变体的生物学性状[J]. 植物保护, 2023, 49(3): 113-120, 134. [百度学术]
LIU X, JIANG XY, WANG XT, ZHU WY, YAO XF, WANG JH, ZHANG FW. Sensitivity of Fusarium solani to fludioxonil and the biological characteristics of its resistant mutants[J]. Plant Protection, 2023, 49(3): 113-120, 134 (in Chinese). [百度学术]
ZHANG L. Effects of microbial manure on growth and physiological characteristics to kidney bean[J]. African Journal of Microbiology Research, 2012, 6(10): 2489-2492. [百度学术]
杜建峰, 吴伟, 张晓英, 李洋, 丁新华. 番茄颈腐根腐病的发生及其防治研究进展[J]. 生物技术通报, 2020, 36(10): 200-206. [百度学术]
DU JF, WU W, ZHANG XY, LI Y, DING XH. Research progress on the occurrence and control of Fusarium crown and root rot of tomato[J]. Biotechnology Bulletin, 2020, 36(10): 200-206 (in Chinese). [百度学术]
刘希港, 李楠, 季托, 周波, 魏珉, 李静, 杨凤娟. 微生物菌剂和玉米蛋白酵素对番茄叶片生理特性和产量的影响[J]. 应用生态学报, 2023, 34(11): 3039-3044. [百度学术]
LIU XG, LI N, JI T, ZHOU B, WEI M, LI J, YANG FJ. Effects of microbial agents and corn protein ferment on physiological characteristics in leaves and yield of tomato[J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3039-3044 (in Chinese). [百度学术]
吕亮雨, 段国珍, 苏彩风, 郭寰, 樊光辉. 木霉菌微生物菌剂对枸杞生长及土壤性状的影响[J]. 沈阳农业大学学报, 2022, 53(4): 476-482. [百度学术]
LÜ LY, DUAN GZ, SU CF, GUO H, FAN GH. Effects of microbial agents on growth and soil properties of Lycium barbarum L.[J]. Journal of Shenyang Agricultural University, 2022, 53(4): 476-482 (in Chinese). [百度学术]
TU J, ZHAO X, YANG YR, YI YJ, WANG HY, WEI BY, ZENG LB. Two Bacillus spp. strains improve the structure and diversity of the rhizosphere soil microbial community of Lilium brownii var. viridulum[J]. Microorganisms, 2023, 11(5): 1229. [百度学术]
LI BN, SHEN LX. Effects of soluble organic fertilizer combined with inorganic fertilizer on greenhouse tomatoes with different irrigation techniques[J]. Agriculture, 2024, 14(2): 313. [百度学术]
HASSINE M, AYDI-BEN-ABDALLAH R, JABNOUN-KHIREDDINE H, DAAMI-REMADI M. Soil-borne and compost-borne Penicillium sp. and Gliocladium spp. as potential microbial biocontrol agents for the suppression of anthracnose-induced decay on tomato fruits[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 20. [百度学术]
刘聪, 万翠翠, 宋旭, 夏光富, 傲耐, 桑加拉, 王奎明, 王军. 复合菌剂对新疆辣椒的促生效果和根际真核生物群落结构的影响[J/OL]. 应用生态学报, 2024. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=YYSB20240507001&dbname=CJFD& dbcode=CJFQ. [百度学术]
LIU C, WAN CC, SONG X, XIA GF, AO N, SANG JL, WANG KM, WANG J. Effects of compound fungi on growth promotion and rhizosphere eukaryotic community structure of pepper in Xinjiang[J/OL]. China Industrial Economics, 2024. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YYSB20240507001&dbname=CJFD&db code=CJFQ(in Chinese). [百度学术]
曹麟, 王宇龙, 卜俊文, 宋天骄, 刘玉涛, 韦小敏, 林雁冰. 微生物菌剂对绞股蓝药效成分及根际细菌群落的影响[J]. 微生物学报, 2024, 64(7): 2323-2336. [百度学术]
CAO L, WANG YL, BU JW, SONG TJ, LIU YT, WEI XM, LIN YB. Effects of microbial agents on the active constituents and rhizosphere bacterial community of Gynostemma pentaphyllum[J]. Acta Microbiologica Sinica, 2024, 64(7): 2323-2336 (in Chinese). [百度学术]
丁钱华. 微生物菌剂对小麦抗病能力的影响[J]. 浙江农业科学, 2022, 63(8): 1794-1797. [百度学术]
DING QH. Effect of microbial agent on wheat disease resistance[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(8): 1794-1797 (in Chinese). [百度学术]
卯婷婷, 陶刚, 赵兴丽, 王琦, 李世东. 4种微生物菌剂对辣椒主要病害的生物防治作用[J]. 中国生物防治学报, 2020, 36(2): 258-264. [百度学术]
MAO TT, TAO G, ZHAO XL, WANG Q, LI SD. Biological control of four kinds of microbial preparations against main diseases of pepper[J]. Chinese Journal of Biological Control, 2020, 36(2): 258-264 (in Chinese). [百度学术]
王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. [百度学术]
WANG ZF, LI Y, ZHANG QY, WANG DD, SHI JH, GENG XB, TIAN DL, ZHONG ZM, ZHAO XM, QI LF. Effect of microbicides on main diseases and soil microbial communities of tomatoes in facilities[J]. China Agricultural Science and Technology Herald, 2024, 26(6): 102-112 (in Chinese). [百度学术]
许世洋, 范雨轩, 汪学苗, 张怡忻, 柴继宽, 李建军, 李敏权, 漆永红, 李雪萍. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报, 2022, 62(7): 2735-2750. [百度学术]
XU SY, FAN YX, WANG XM, ZHANG YX, CHAI JK, LI JJ, LI MQ, QI YH, LI XP. The Fusarium root rot-controlling effect and growth-promoting effect of the bacteria in the rhizosphere of Capsicum annuum[J]. Acta Microbiologica Sinica, 2022, 62(7): 2735-2750 (in Chinese). [百度学术]
程鑫宇, 王继莲, 麦日艳古·亚生, 李明源. 盐爪爪根际土壤产IAA菌株分离及促生特性分析[J]. 草业学报, 2024, 33(4): 110-121. [百度学术]
CHENG XY, WANG JL, Mairiyangu·Yasheng, LI MY. Isolation and growth-promoting characteristics of rhizobacteria producing indole-3-acetic acid from the rhizosphere soil of Kalidium foliatum[J]. Acta Prataculturae Sinica, 2024, 33(4): 110-121 (in Chinese). [百度学术]
李雪萍, 张怡忻, 李建军, 许世洋, 漆永红, 荆卓琼, 郭致杰, 李敏权. 兰州百合防病促生细菌筛选及其效果评价[J]. 中国生物防治学报, 2022, 38(5): 1296-1307. [百度学术]
LI XP, ZHANG YX, LI JJ, XU SY, QI YH, JING ZQ, GUO ZJ, LI MQ. Screening of disease-control and growth-promoting bacteria and their effecs on Lanzhou lily[J]. Chinese Journal of Biological Control, 2022, 38(5): 1296-1307 (in Chinese). [百度学术]
韦鑫, 韦兴迪, 曾庆飞, 李亚娇, 丁磊磊, 王小利. 1株白三叶根际产铁载体菌的功能特性及培养条件[J]. 草业科学, 2024, 41(4): 919-930. [百度学术]
WEI X, WEI XD, ZENG QF, LI YJ, DING LL, WANG XL. Functional characteristics and optimum fermentation condition of a siderophore-producing bacteria from the rhizosphere of Trifolium repens[J]. Pratacultural Science, 2024, 41(4): 919-930 (in Chinese). [百度学术]
王艳霞, 解志红, 张蕾, 常大勇. 田菁根际促生菌的筛选及其促生耐盐效果[J]. 微生物学报, 2020, 60(5): 1023-1035. [百度学术]
WANG YX, XIE ZH, ZHANG L, CHANG DY. Screening of plant growth promoting and salt tolerant rhizobacteria in Sesbania cannabina[J]. Acta Microbiologica Sinica, 2020, 60(5): 1023-1035 (in Chinese). [百度学术]
申云鑫, 施竹凤, 李铭刚, 赵江源, 王楠, 冯路遥, 莫艳芳, 陈齐斌, 杨佩文. 贝莱斯芽孢杆菌SH-1471发酵条件优化及其番茄枯萎病的防治效果[J]. 微生物学报, 2024, 64(1): 220-237. [百度学术]
SHEN YX, SHI ZF, LI MG, ZHAO JY, WANG N, FENG LY, MO YF, CHEN QB, YANG PW. Bacillus velezensis SH-1471: optimization of fermentation conditions and evaluation of the biocontrol effect on tomato Fusarium wilt[J]. Acta Microbiologica Sinica, 2024, 64(1): 220-237 (in Chinese). [百度学术]
TIWARI P, BOSE SK, PARK KI, DUFOSSÉ L, FOUILLAUD M. Plant-microbe interactions under the extreme habitats and their potential applications[J]. Microorganisms, 2024, 12(3): 448. [百度学术]
SHALINI C, SILAMBARASAN M, KUMAR KU, THANKAPPAN S, KUMAR PD. Effect of co-inoculants rhizophos on the growth and yield of black gram [Vigna mungo (L.) Hepper][J]. Journal of Experimental Agriculture International, 2024, 46(6): 1-6. [百度学术]
KRISHNAMOORTHY K, SANKARALINGAM A, NAKKEERAN S. Growth of Sclerotinia sclerotiorum causing head rot disease of cabbage on various carbon and nitrogen sources[J]. World Journal of Agricultural Sciences, 2016, 12(4): 261-263. [百度学术]
ANDRIĆ S, MEYER T, ONGENA M. Bacillus responses to plant-associated fungal and bacterial communities[J]. Frontiers in Microbiology, 2020, 11: 1350. [百度学术]
LI XY, LIU Q, GAO YG, ZANG P, ZHENG T. Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity[J]. BMC Plant Biology, 2024, 24(1): 647. [百度学术]
吴琼, 张甜甜, 李茂营, 吴慧玲, 郭绍贵, 张洁, 任毅, 张海英, 宫国义. 解淀粉芽孢杆菌5号防控西瓜CGMMV机制初探[J]. 园艺学报, 2024, 51(10): 2427-2438. [百度学术]
WU Q, ZHANG TT, LI MY, WU HL, GUO SG, ZHANG J, REN Y, ZHANG HY, GONG GY. Preliminary study on the prevention and control effect of Bacillus amyloliquefaciens strain 5 on cucumber green mottled mosaic virus disease on watermelon[J]. Acta Horticulturae Sinica, 2024, 51(10): 2427-2438 (in Chinese). [百度学术]
冯永新, 关辉, 靳彦峰, 徐伟, 张卫东, 谭宏祥, 王静, 王杰. 短小芽孢杆菌与化学杀细菌剂协同防治烟草青枯病研究[J]. 中国烟草科学, 2021, 42(4): 44-49. [百度学术]
FENG YX, GUAN H, JIN YF, XU W, ZHANG WD, TAN HX, WANG J, WANG J. Synergistic control effect of Bacillus pumilus AR03 and fungicides against tobacco bacterial wilt[J]. Chinese Tobacco Science, 2021, 42(4): 44-49 (in Chinese). [百度学术]
施春兰, 曾舒泉, 王志江, 谢永辉, 詹莜国, 黄永迪, 吴国星, 高熹, 秦得强. 2株烟草病害拮抗细菌的分离鉴定和发酵条件优化研究[J]. 江西农业学报, 2023, 35(7): 81-90. [百度学术]
SHI CL, ZENG SQ, WANG ZJ, XIE YH, ZHAN YG, HUANG YD, WU GX, GAO X, QIN DQ. Isolation and identification of two antagonistic bacterial strains against tobacco diseases and optimization of fermentation conditions[J]. Acta Agriculturae Jiangxi, 2023, 35(7): 81-90 (in Chinese). [百度学术]
LAN Q, LIU Y, MU R, WANG X. Biological control effect of antagonistic bacteria on potato scurvy[J]. Experimental Botany, 2024, 75(9): 2604-2630. [百度学术]
陈静, 江雅琴, 陈滢冲, 周梦诗, 李威汛, 陈杰, 袁静. 贝莱斯芽孢杆菌TCS001与化学杀菌剂对草莓灰霉病的协同防效评价[J]. 农药, 2024, 63(8): 604-608. [百度学术]
CHEN J, JIANG YQ, CHEN YC, ZHOU MS, LI WX, CHEN J, YUAN J. Evaluation of synergistic control efficacy of Bacillus valesiae TCS001 and chemical fungicides against gray mold of strawberry[J]. Agrochemicals, 2024, 63(8): 604-608 (in Chinese). [百度学术]
何明川, 施春兰, 魏聪聪, 曾舒泉, 兰明先, 唐萍, 王志江, 伍显录, 陆光钰, 谢永辉. 烟草黑胫病拮抗细菌的分离、鉴定及发酵条件优化[J]. 南方农业学报, 2022, 53(6): 1604-1615. [百度学术]
HE MC, SHI CL, WEI CC, ZENG SQ, LAN MX, TANG P, WANG ZJ, WU XL, LU GY, XIE YH. Isolation, identification and optimization of fermentation conditions of antagonistic bacteria against tobacco black shank[J]. Journal of Southern Agriculture, 2022, 53(6): 1604-1615 (in Chinese). [百度学术]
WANG N, DING J, CHEN YT, ZHU YL, ZHANG LN, WEI YQ, LI J, XU T, DING GC. Bacillus velezensis BER1 enriched Flavobacterium daejeonense-like bacterium in the rhizosphere of tomato against bacterial wilt[J]. FEMS Microbiology Ecology, 2023, 99(6): fiad054. [百度学术]
李界秋, 宋文欣, 蒙姣荣, 王忠文. 6株贝莱斯芽胞杆菌对土传病原菌的抑制活性及其作用机理[J]. 福建农业学报, 2022, 37(3): 371-380. [百度学术]
LI JQ, SONG WX, MENG JR, WANG ZW. Inhibitory activity and mechanism of Bacillus velezensi strains against soil-borne pathogens[J]. Fujian Journal of Agricultural Sciences, 2022, 37(3): 371-380 (in Chinese). [百度学术]
DU CJ, YANG D, YE YF, PAN LF, ZHANG J, JIANG SB, FU G. Construction of a compound microbial agent for biocontrol against Fusarium wilt of banana[J]. Frontiers in Microbiology, 2022, 13: 1066807. [百度学术]
黄文茂, 易伦, 彭思云, 黄承森, 程代松, 韩丽珍. PGPR复合菌剂对辣椒生长及根际土壤微生物结构的影响[J]. 中国土壤与肥料, 2020(1): 195-201. [百度学术]
HUANG WM, YI L, PENG SY, HUANG CS, CHENG DS, HAN LZ. Effect of PGPR compound bacterial agents on growth of chilli and changes of soil microbial structure[J]. Soil and Fertilizer Sciences in China, 2020(1): 195-201 (in Chinese). [百度学术]