摘要
黄萎病是影响棉花种植业最重要的病害之一,可导致棉花减产甚至绝收。该病由丝状真菌大丽轮枝菌引发,属土传病害。传统的化学防治方法不仅影响人类健康,还带来环境污染问题,且连年使用易导致大丽轮枝菌产生抗药性。因此,研发针对棉花黄萎病的绿色环保、可持续发展的防治策略迫在眉睫,其中生物防治成为了一个优选方案。本文通过分析国内外最新研究进展,探讨了棉花黄萎病生防微生物菌株的筛选、作用机制及田间应用方式等,总结了生防微生物通过竞争、抗生作用、诱导植物防御反应等多种机制抑制病原菌生长的研究成果。尽管生防微生物的应用前景广阔,但仍面临环境适应性、稳定性和使用成本等挑战。未来研究应更加聚焦于生防微生物菌株的遗传改良、复配菌剂的研制和应用技术的优化,以进一步提升生防微生物菌株在农业生产中的实用性和有效性。
棉花属于锦葵科棉属的一年生草本植物或亚灌木植物,是世界上重要的纤维和油料作物之一;我国自宋朝时期起便开始种植棉花,目前棉花种植主要集中在新疆、黄河流域、长江流域等
1 大丽轮枝菌及其致病机理
大丽轮枝菌(Verticillium dahliae)是隶属于子囊菌门淡色菌科轮枝菌属的一种土传植物病原真菌,其致病力强,寄主范围广,能够危害包括棉花、番茄、茄子、辣椒、果树等在内的 660多种植
目前,关于大丽轮枝菌的致病机理,人们普遍接受的有“组织障碍假说”和“毒素假说”(

图1 大丽轮枝菌致病机理示意图
Figure 1 Schematic diagram of pathogenesis of Verticillium dahliae.
2 棉花黄萎病的防治方法
目前,棉花黄萎病的防治手段主要包括抗病棉花品种的选育、农业栽培措施的改良、化学农药防治以及生物防治等。长期的生产实践证明,发掘和培育抗黄萎病的棉花新品种是世界范围内防治棉花黄萎病的根本举措;由于陆地棉中高抗黄萎病的种质资源匮乏,且大丽轮枝菌生理小种多样,使得抗病棉花品种的选育变得尤为困
生防微生物是指从土壤、植物根际或植物体内筛选分离出的能够有效抑制病原菌的微生物,具有发展成为微生物菌剂的潜力。这些生防微生物的种类包括生防细菌、生防真菌和生防放线菌等,它们通过与病原菌竞争生存空间和营养、产生抑制病原菌生长和代谢的小分子化合物、诱导植物自身产生抗病性以及促进植物生长等方式起到预防和抵抗病原菌侵染的作
3 生防微生物在棉花黄萎病防治中的应用
3.1 生防真菌
众多真菌对棉花黄萎病展现出良好的防治效果,例如木霉(Trichoderma spp.)、黄色篮状霉(Talaromyces flavus)、球毛壳菌(Chaetomium globosum)、尖孢镰孢菌(Fusarium oxysporum
孟娜
3.2 生防放线菌
放线菌能够产生结构各异、活性广泛的代谢产物,成为创新药物的重要来
3.3 生防细菌
在生防细菌中,研究最多的是芽孢杆菌(Bacillus spp.)和假单胞菌(Pseudomonas spp.)。芽孢杆菌适应能力强,其产生的内生芽孢具有极强的抗胁迫能力,不仅能在多种恶劣环境下存活而且方便运输。芽孢杆菌抑菌谱广泛,能够抑制多种植物病原真菌和细菌,增加了生物防治的灵活性。大多数芽孢杆菌对人类和动物是安全的,不会引起病害或污
Strain | Year | Biocontrol effect | Action mechanism | References |
---|---|---|---|---|
Bacillus subtilis BS-Z15 | 2019 | BS-Z15 can effectively reduce the incidence of Verticillium wilt of cotton | Strain BS-Z15 secreted antagonistic active substances |
[ |
Bacillus malacitensis Z-5 | 2019 | Z-5 strain had remarkable control effect on Verticillium wilt of cotton | Z-5 strain can secrete lipopeptide antibiotics such as surfactant B and ictilicin A |
[ |
Bacillus velezensis SZAD1 | 2020 | The control efficiency of SZAD1 strain against Verticillium wilt was 60.10% and 56.00% in seed soaking and root irrigation, respectively | SZAD1 can produce cellulase and chitinase, which can reduce the ability of VD080 to settle cotton stems |
[ |
Bacillus velezensis SZAD2 | 2020 | The control efficiency of seed treatment was 60.31%, and that of root irrigation was 79.19% | The strain could systematically colonize the roots and induced systemic resistance of cotton roots by accumulating hydrogen peroxide in the roots and leaves |
[ |
Bacillus circulans GN03 | 2021 | Strain GN03 had good resistance to Verticillium wilt of cotton, with the highest control efficiency reaching 78% | GN03 inoculation altered the microflora in and around the plant roots, resulting in a significant accumulation of growth-related hormones |
[ |
Bacillus amyloliquefaciens 489-2-2 | 2021 | The control efficiency of seed treatment was 54.99%, and that of root irrigation was 60.31% | 489-2-2 caused the mycelium of cotton verticillium wilt to lose pathogenicity, enhancing the systemic resistance of the plant by activating a large number of defense enzymes |
[ |
Bacillus velezensis ND | 2022 | Application of ND fermentation liquid can increase the disease prevention effect from 36.00% to 92.99% | ND also has the activities of protease, cellulase and iron carrying, and has the ability to synthesize indole acetic acid, nitrogen fixation and phosphorus reduction |
[ |
Bacillus velezensis EBV02 | 2022 | The highest control effect of EBV02 on cotton Verticillium wilt was 68.33% and 37.25% in greenhouse and field tests, respectively | EBV02 inhibited the mycelia growth of Verticillium dahliae, and induced active oxygen species outbreak and callus accumulation in cotton leaves |
[ |
Bacillus T6 | 2023 | The inhibition rate of T6 strain on Verticillium dahliae was 63.79% | T6 strain can produce volatile organic compound styrene, which can up-regulate the expression of some hydrolase genes in Charlottesia |
[ |
Bacillus amyloliquefaciens YZU-SG 146 | 2023 | The control effect of YZU-SG146 against Verticillium wilt of cotton was 84.21%, and it also promoted the growth of root length and seedling length of cotton seeds and seedlings | G146 can secrete ferric carrier, indoleacetic acid, cellulase, protease and amylase, and can trigger the outbreak of reactive oxygen species in cotton leaves |
[ |
Bacillus velezensis BvZ45-1 | 2024 | The indoor and field control efficiency of BvZ45-1 against Verticillium wilt of cotton was 46.53% and 47.27%, respectively | The bacterium can produce oxalate decarboxylase, inhibit the spore production of Verticillium dahliae, and lead to mycelium rupture, cell membrane rupture and cell death |
[ |
Bacillus altitudinis KRS010 | 2024 | The effect of KRS010 strain on cotton Verticillium wilt was 93.59% | KRS010 induces plant immunity by inducing systemic resistance activated by salicylic acid and jasmonic acid signaling pathways |
[ |
Sherzad
除芽孢杆菌外,假单胞菌作为生防菌也被广泛研究。戚家明
4 生防微生物在防治棉花黄萎病中的作用机制
4.1 空间与营养竞争
空间和营养是微生物生长不可或缺的2个基本条件。研究表明,一些生防微生物能够优先在植株的根系及体内定殖,因此能优先获取大量的氧气、水分及营养物质等,从而使得病原微生物无法获得足够的营养物质进行生长和繁殖,进而降低其感染几率(

图2 生防微生物的作用机制示意图
Figure 2 Schematic diagram of biocontrol mechanism of microorganisms.
4.2 拮抗作用
拮抗作用是指一种微生物通过产生活性代谢产物,有效抑制或杀死另一种微生物。这些活性代谢产物包括抗菌肽、脂肽、水解酶、大环内酯以及多烯类抗生素等物质。目前,脂肽类抗菌物质的研究较为广泛,主要包括芽孢杆菌产生的表面活性素(surfactin)、伊枯草菌素(iturin)、丰原素(fengycin),以及链霉菌产生的达托霉素(daptomycin)
4.3 诱导植物系统抗性
诱导系统抗性(induced systemic resistance, ISR),又称植物免疫或系统获得抗性,是指植物在遭遇外界刺激后迅速增强自身的免疫防御机制。这种机制通过提高植株一系列免疫防御酶的活性,如过氧化氢酶、过氧化物酶、超氧化物歧化酶、苯丙氨酸解氨酶和多酚氧化酶等,以及产生抗菌性植保素、酚类化合物和丙二醛等物质,构建起一种天然的保护屏障,以帮助植物抵御病原菌的侵袭。Shan
4.4 促进植物生长
Ahmed
5 生防微生物的应用方式
生防微生物的应用方式多种多样,其中报道较多的包括对植物种子进行处理和制备复合生防菌剂等。针对不同种类的生防微生物,采用各自适宜的处理方式可以使其发挥出最大的防治效果。
5.1 对棉花种子的处理
对棉花种子的处理主要包括浸种、拌种和种子包衣等方式。浸种和拌种是将棉花种子与生防微生物悬浮液或生防菌剂通过浸泡或搅拌的方式,使种子表面附着生防微生物。种子包衣则是一种先进的种子处理技术,它可以将种子均匀地包裹在含有特定生防微生物的保护膜中,在种植过程中,这层保护膜中的生防微生物可以有效促进棉花种子的萌发,并减少病虫害的发
5.2 复合生防菌剂
在生物防治领域,利用单一微生物防治植物病害的报道较多。然而,单一微生物菌剂往往受限于其活性成分,导致其功能相对有限,并且对应用环境的要求较高。同时,单一生防微生物的防治机制较为单一,可能需要大量的菌体才能达到理想的防治效果。因此,将具备不同功能的微生物进行组合,开发出相较于单一微生物菌剂具有更稳定防治效果和更强促生作用的复合微生物菌剂,已经成为近年来生防微生物研究的重要发展方向;“中棉菌乐土”是由中国农业科学院棉花研究所开发的以棉花内生真菌为主的复合微生物菌剂,在温室和病圃试验中,该菌剂对棉花和茄子等作物的枯萎病和黄萎病展现出了显著的防治效果;施用“中棉菌乐土”后30 d和80 d,其对重度、中度和轻度黄萎病田的相对防治效率分别达到 34.7%-74.6%;同时,对于同样程度的病田,该菌剂还能使籽棉产量提高10.8%-13.6
6 展望
生防微生物在棉花黄萎病的防治中展现出巨大的应用潜力。然而,它们如何通过产生抗菌物质、诱导植物产生防御反应以及竞争营养等方式发挥作用,仍需系统深入的研究。利用生防微生物防治棉花黄萎病也面临一些限制因素:许多生防微生物在与植物竞争营养时,可能会使植物将能量从繁殖过程转移,导致植物产量并不高于对照植株;生防微生物可能产生次级代谢产物,这些物质积累到一定程度时会对植物细胞产生毒害作用;此外,使用生防微生物有时也可能增加病害流行的风险。目前,理想的生防微生物相对稀缺,生防机制的许多方面仍需进一步研究和阐明。一些生防微生物制剂的研发进程缓慢,效果也有待提升。未来的研究将更加注重从自然界中筛选对棉花黄萎病具有高效防治作用的生防菌株,并通过基因工程技术对这些菌株进行定向遗传改造,以增强其适应性和拮抗活性。随着生防微生物菌株的不断筛选和创制,相信将有更多高效的生防菌剂被开发出来,这些菌剂将具有更好的稳定性和更广的应用范围。生防微生物的应用将不仅限于单一的生物防治策略,而是与研究抗病新品种、化学防治、物理防治、农业管理措施等相结合,形成综合防治策略,以实现对棉花黄萎病的长期有效管理。考虑到不同地区环境条件的差异,未来的研究将更加关注生防微生物在不同环境条件下的适应性和稳定性,以确保其在实际应用中的有效性。随着生物防治产品的发展,相关的法规和市场准入标准也将不断完善,为生防微生物菌剂的商业化和市场推广提供支持。在全球范围内,加强国际合作与交流,共享生防微生物研究的最新成果,将促进生防微生物技术的创新和应
总之,生防微生物在棉花黄萎病防治中的应用前景广阔。未来的研究和应用将更加注重技术创新、机制研究、产品开发和综合防治策略的构建,以实现棉花生产的可持续发展。
作者贡献声明
刘延财:论文构思和设计、资料检索、论文撰写和修订;唐叶:论文资料检索和修订;吴家和:论文审阅和修订;宋宪亮:论文构思和设计、审阅和修订;刘钢:论文构思和设计、审阅和修订。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
ZHANG Y, WANG XF, DING ZG, MA Q, ZHANG GR, ZHANG SL, LI ZK, WU LQ, ZHANG GY, MA ZY. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement[J]. BMC Genomics, 2013, 14(1): 637. [百度学术]
GONG Q, YANG ZE, WANG XQ, BUTT HI, CHEN EY, HE SP, ZHANG CJ, ZHANG XY, LI FG. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae[J]. BMC Plant Biology, 2017, 17(1): 59. [百度学术]
WANG YQ, LIANG CZ, WU SJ, ZHANG XY, TANG JY, JIAN GL, JIAO GL, LI FG, CHU CC. Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins[J]. Molecular Plant, 2016, 9(10): 1436-1439. [百度学术]
BONATERRA A, BADOSA E, DARANAS N, FRANCÉS J, ROSELLÓ G, MONTESINOS E. Bacteria as biological control agents of plant diseases[J]. Microorganisms, 2022, 10(9): 1759. [百度学术]
ZHU Y, ZHAO M, LI T, WANG L, LIAO C, LIU D, ZHANG H, ZHAO Y, LIU L, GE X, LI B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt[J]. Frontiers in Plant Science, 2023, 14: 1174281. [百度学术]
SUN Y, YANG N, LI SR, CHEN F, XIE YJ, TANG CM. Mechanism of oxalate decarboxylase Oxd_S12 from Bacillus velezensis BvZ45-1 in defence against cotton Verticillium wilt[J]. Journal of Experimental Botany, 2024, 75(11): 3500-3520. [百度学术]
ZHANG DD, DAI XF, KLOSTERMAN SJ, SUBBARAO KV, CHEN JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms[J]. Biological Reviews of the Cambridge Philosophical Society, 2022, 97(5): 1810-1822. [百度学术]
SONG RR, LI JP, XIE CJ, JIAN W, YANG XY. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae[J]. International Journal of Molecular Sciences, 2020, 21(3): 1120. [百度学术]
SHABAN M, MIAO YH, ULLAH A, KHAN AQ, MENGHWAR H, KHAN AH, AHMED MM, TABASSUM MA, ZHU LF. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae[J]. Plant Physiology and Biochemistry, 2018, 125: 193-204. [百度学术]
CHEN JY, XIAO HL, GUI YJ, ZHANG DD, LI L, BAO YM, DAI XF. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium[J]. Frontiers in Microbiology, 2016, 7: 1709. [百度学术]
ZHAO J, CHEN QH, ZHOU S, SUN YH, LI XY, LI YZ. H2Bub1 regulates RbohD-dependent hydrogen peroxide signal pathway in the defense responses to Verticillium dahliae toxins[J]. Plant Physiology, 2020, 182(1): 640-657. [百度学术]
ZHANG JF, FANG H, ZHOU HP, SANOGO S, MA ZY. Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton[J]. Crop Science, 2014, 54(4): 1289-1303. [百度学术]
LIN RR, ZHANG Q, YIN L, ZHANG YW, YANG QL, LIU K, WANG YD, HAN SC, ZHAO HX, ZHAO HP. Isolation and characterization of a mycosubtilin homologue antagonizing Verticillium dahliae produced by Bacillus subtilis strain Z15[J]. PLoS One, 2022, 17(6): e0269861. [百度学术]
HUANG T, ZHANG Y, YU ZH, ZHUANG WY, ZENG ZQ. Bacillus velezensis BV01 has broad-spectrum biocontrol potential and the ability to promote plant growth[J]. Microorganisms, 2023, 11(11): 2627. [百度学术]
蔡文涌, 方香玲. 植物病原真菌尖孢镰刀菌致病因子研究进展[J]. 分子植物育种, 2024, 22(24): 8270-8278. [百度学术]
CAI WY, FANG XL. Research progress on pathogenic factors of different Fusarium oxysporum[J]. Molecular Breeding, 2024, 22(24): 8270-8278 (in Chinese). [百度学术]
孙宗苹, 余梅霞, 刘晓玉, 唐俊. 粘帚霉菌在农业上的应用研究进展[J]. 中国细胞生物学学报, 2021, 43(11): 2235-2244. [百度学术]
SUN ZP, YU MX, LIU XY, TANG J. Research progress on Gliocladium spp. application in agriculture[J]. Chinese Journal of Cell Biology, 2021, 43(11): 2235-2244(in Chinese). [百度学术]
FENG ZL, WEI F, FENG HJ, ZHANG YL, ZHAO LH, ZHOU JL, XIE JT, JIANG DH, ZHU HQ. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae Induced by hypovirulent fungus Gibellulopsis nigrescens CEF08111[J]. International Journal of Molecular Sciences, 2023, 24(2): 1480. [百度学术]
孟娜, 汤斌, 黄晓东, 叶生梅, 阚清华. 4种木霉菌对棉花黄萎病菌抑制作用的测定[J]. 生物学杂志, 2007, 24(4): 58-61. [百度学术]
MENG N, TANG B, HUANG XD, YE SM, KAN QH. The inhibition of four Trichoderma species against Verticillium dahliae[J]. Journal of Biology, 2007, 24(4): 58-61 (in Chinese). [百度学术]
孙艳, 张学坤, 王振辉, 赵静, 冯丽凯, 石新建, 刘政. 滴灌条件下木霉菌厚垣孢子制剂防治棉花黄萎病试验[J]. 江苏农业科学, 2018, 46(10): 89-92. [百度学术]
SUN Y, ZHANG XK, WANG ZH, ZHAO J, FENG LK, SHI XJ, LIU Z. Control efficacy of Trichoderma chlamydospore preparations against cotton Verticillium wilt based on dropping irrigation system[J]. Jiangsu Agricultural Sciences, 2018, 46(10): 89-92 (in Chinese). [百度学术]
FRAVEL DR, KIM KK, PAPAVIZAS GC. Viability of microsclerotia of Verticillium dahliae reduced by a metabolite produced by Talaromyces-Flavus[J]. Phytopathology, 1987, 77(4): 616-619. [百度学术]
KIM KK. Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae[J]. Phytopathology, 1988, 78(4): 488-488. [百度学术]
KIM KK, FRAVEL DR, PAPAVIZAS GC. Production, purification, and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus[J]. Canadian Journal of Microbiology, 1990, 36(3): 199-205. [百度学术]
张芸, 冯自力, 冯鸿杰, 李志芳, 师勇强, 赵丽红, 朱荷琴, 杨家荣. 内生球毛壳属真菌CEF-082对棉花黄萎病的控制作用[J]. 植物病理学报, 2016, 46(5): 697-706. [百度学术]
ZHANG Y, FENG ZL, FENG HJ, LI ZF, SHI YQ, ZHAO LH, ZHU HQ, YANG JR. Control effect of endophytic fungus Chaetomium globosum CEF-082 against Verticillium wilt in Gossypium hirsutum[J]. Acta Phytopathologica Sinica, 2016, 46(5): 697-706 (in Chinese). [百度学术]
LIU G, CHATER KF, CHANDRA G, NIU GQ, TAN HR. Molecular regulation of antibiotic biosynthesis in Streptomyces[J]. Microbiology and Molecular Biology Review, 2013, 77(1): 112-143. [百度学术]
BOLWERK A, LAGOPODI AL, WIJFJES AHM, LAMERS GEM, CHIN-A-WOENG TFC, LUGTENBERG BJJ, BLOEMBERG GV. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici[J]. Molecular Plant-Microbe Interactions, 2003, 16(11): 983-993. [百度学术]
PANTELIDES IS, TJAMOS SE, STRIGLIS IA, CHATZIPAVLIDIS I, PAPLOMATAS EJ. Mode of action of a non-pathogenic Fusarium oxysporum strain against Verticillium dahliae using real time qPCR analysis and biomarker transformation[J]. Biological Control, 2009, 50(1): 30-36. [百度学术]
FRANKOWSKI AC, CLARK LJ. Sexuality and intimacy in assisted living: residents’ perspectives and experiences[J]. Sexuality Research & Social Policy, 2009, 6(4): 25-37. [百度学术]
钱瑶, 潘园园, 李二伟, 贾慧慧, 魏艳敏, 刘钢. 链霉菌IMS002的分类鉴定及其抗真菌活性物质解析[J]. 微生物学报, 2020, 60(1): 60-68. [百度学术]
QIAN Y, PAN YY, LI EW, JIA HH, WEI YM, LIU G. Classification of Streptomyces sp. IMS002 and identification of its antifungal metabolite[J]. Acta Microbiologica Sinica, 2020, 60(1): 60-68 (in Chinese). [百度学术]
CAO P, LIU CX, SUN PY, FU XP, WANG XJ. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum)[J]. Antonie Van Leeuwenhoek, 2016, 109(12): 1573-1582. [百度学术]
薛磊, 王建涛, 刘相春, 薛泉宏, 申光辉, 赵娟. 拮抗性链霉菌对大丽轮枝菌微菌核形成与萌发的影响[J]. 植物保护学报, 2012, 39(4): 289-296. [百度学术]
XUE L, WANG JT, LIU XC, XUE QH, SHEN GH, ZHAO J. Inhibition of antagonistic Streptomyces spp. on microsclerotia formation and germination of Verticillium dahliae[J]. Journal of Plant Protection, 2012, 39(4): 289-296 (in Chinese). [百度学术]
宋东博, 苏飞鸿, 郭旺珍, 何丹, 顾爱星. 棉花黄萎病拮抗菌KF-43-1的鉴定与3种处理田间防治效果对比[J]. 微生物学通报, 2024, 51(7): 2463-2474. [百度学术]
SONG DB, SU FH, GUO WZ, HE D, GU AX. Identification of strain KF-43-1 against cotton Verticillium wilt and comparison of biocontrol effects among three application methods in the field[J]. Microbiology China, 2024, 51(7): 2463-2474 (in Chinese). [百度学术]
SHAN YJ, WANG D, ZHAO FH, SONG J, ZHU H, LI Y, ZHANG XJ, DAI XF, HAN DF, CHEN JY. Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae[J]. BMC Biology, 2024, 22(1): 116. [百度学术]
吴梦君, 杨启林, 李艳红, 葛风伟, 赵歉歉, 袁琳琳, 宁焕宸, 陈忠宜, 李金玉, 赵惠新. BS-Z15代谢产物防治棉花黄萎病的作用及对棉花生长的影响[J]. 分子植物育种, 2019, 17(24): 8237-8244. [百度学术]
WU MJ, YANG QL, LI YH, GE FW, ZHAO QQ, YUAN LL, NING HC, CHEN ZY, LI JY, ZHAO HX. Effect of BS-Z15 metabolites on cotton Verticillium wilt prevention and cotton growth[J]. Molecular Plant Breeding, 2019, 17(24): 8237-8244 (in Chinese). [百度学术]
高宇, 陈尧尧, 刘忆杰, 陈晓萌, 高同国, 张冬冬. Bacillus malacitensis Z-5菌株合成抑菌物质培养基优化及成分鉴定[J]. 棉花学报, 2019, 31(3): 210-219. [百度学术]
GAO Y, CHEN YY, LIU YJ, CHEN XM, GAO TG, ZHANG DD. Optimization of the fermentation medium and analysis of the compositions of antifungal compounds from Bacillus malacitensis Z-5[J]. Cotton Science, 2019, 31(3): 210-219 (in Chinese). [百度学术]
张琼, Zabihullah Sherzad, 唐灿明. 贝莱斯芽孢杆菌SZAD1对大丽轮枝菌的生物防治效果[J]. 棉花学报, 2020, 32(4): 329-338. [百度学术]
ZHANG Q, SHERZAD Z, TANG CM. Biocontrol effect of Bacillus velezensis strain SZAD1 on Verticillium dahliae[J]. Cotton Science, 2020, 32(4): 329-338 (in Chinese). [百度学术]
SHERZAD Z, TANG CM. A new strain of Bacillus velezensis as a bioagent against Verticillium dahliae in cotton: isolation and molecular identification[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 118. [百度学术]
QIN LJ, TIAN PD, CUI QY, HU SP, JIAN W, XIE CG, YANG XY, SHEN H. Bacillus circulans GN03 alters the microbiota, promotes cotton seedling growth and disease resistance, and increases the expression of phytohormone synthesis and disease resistance-related genes[J]. Frontiers in Plant Science, 2021, 12: 644597. [百度学术]
Zabihullah Sherzad, 杨娜, 张静, 张芸, 周恒, 唐灿明. 棉花内生解淀粉芽孢杆菌489-2-2对棉花黄萎病的防效研究[J]. 核农学报, 2021, 35(1): 41-48. [百度学术]
SHERZAD Z, YANG N, ZHANG J, ZHANG Y, ZHOU H, TANG CM. Study on the control effect of endophytic Bacillus amyloliquefaciens 489-2-2 on Verticillium wilt of cotton[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 41-48 (in Chinese). [百度学术]
TANG ZM, CAO XJ, ZHANG HL. Production of iturin A by Bacillus velezensis ND and its biological control characteristics[J]. Journal of Basic Microbiology, 2023, 63(2): 179-189. [百度学术]
白红燕, 赵丽红, 蒲丹丹, 冯自力, 魏锋, 冯鸿杰, 顾爱星, 朱荷琴, 彭军, 张亚林. 贝莱斯芽孢杆菌EBV02对棉花黄萎病的防治作用及机理[J]. 棉花学报, 2022, 34(5): 443-457. [百度学术]
BAI HY, ZHAO LH, PU DD, FENG ZL, WEI F, FENG HJ, GU AX, ZHU HQ, PENG J, ZHANG YL. The control effect and mechanism of Bacillus velezensis EBV02 on cotton Verticillium wilt[J]. Cotton Science, 2022, 34(5): 443-457 (in Chinese). [百度学术]
ZHANG L, WANG Y, LEI SW, ZHANG HX, LIU ZY, YANG JW, NIU QH. Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus sp. T6 against Verticillium wilt[J]. BMC Microbiology, 2023, 23(1): 8. [百度学术]
LIU L, GALILEYA MEDISON R, ZHENG TW, MENG XJ, SUN ZX, ZHOU Y. Biocontrol potential of Bacillus amyloliquefaciens YZU-SG146 from Fraxinus hupehensis against Verticillium wilt of cotton[J]. Biological Control, 2023, 183: 105246. [百度学术]
白红燕, 冯自力, 冯鸿杰, 魏锋, 赵丽红, 朱荷琴, 顾爱星, 张亚林, 彭军. 48株枯草芽孢杆菌对棉花黄萎病防治效果评测[J]. 中国棉花, 2021, 48(12): 13-19. [百度学术]
BAI HY, FENG ZL, FENG HJ, WEI F, ZHAO LH, ZHU HQ, GU AX, ZHANG YL, PENG J. Evaluation of the control effect of 48 strains of Bacillus subtilis on cotton Verticillium wilt[J]. China Cotton, 2021, 48(12): 13-19 (in Chinese). [百度学术]
SONG J, WANG D, HAN DF, ZHANG DD, LI R, KONG ZQ, DAI XF, SUBBARAO KV, CHEN JY. Characterization of the endophytic Bacillus subtilis KRS015 strain for its biocontrol efficacy against Verticillium dahliae[J]. Phytopathology, 2024, 114(1): 61-72. [百度学术]
贾慧慧, 谢心悦, 潘园园, 任争光, 刘钢, 魏艳敏. 芽胞杆菌BJ-6的鉴定及对甜瓜细菌性果斑病的防治[J]. 微生物学报, 2020, 60(5): 982-991. [百度学术]
JIA HH, XIE HY, PAN YY, REN ZG, LIU G, WEI YM. Identification of Bacillus sp. BJ-6 for biocontrol of bacterial fruit blotch of melon[J]. Acta Microbiologica Sinica, 2020, 60(5): 982-991(in Chinese). [百度学术]
周京龙, 冯自力, 冯鸿杰, 李云卿, 袁媛, 李志芳, 魏锋, 师勇强, 赵丽红, 孙正祥, 朱荷琴, 周燚. 棉花内生蜡状芽孢杆菌YUPP-10对棉花黄萎病的防治作用及机制[J]. 中国农业科学, 2017, 50(14): 2717-2727. [百度学术]
ZHOU JL, FENG ZL, FENG HJ, LI YQ, YUAN Y, LI ZF, WEI F, SHI YQ, ZHAO LH, SUN ZX, ZHU HQ, ZHOU Y. Biocontrol effect and mechanism of cotton endophytic bacterium Bacillus cereus YUPP-10 against Verticillium wilt in Gossypium hirsutum[J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727 (in Chinese). [百度学术]
刘杉, 安屹, 程慧洁, 于雷, 曹晓东, 安国勇. 短小芽孢杆菌Y106对棉花黄萎病的防治作用[J]. 河南大学学报(自然科学版), 2018, 48(3): 334-341. [百度学术]
LIU C, AN Y, CHENG HJ, YU L, CAO XD, AN GY. The effect of Bacillus pumilus Y106 on controlling cotton Verticillium wilt[J]. Journal of Henan University (Natural Science), 2018, 48(3): 334-341 (in Chinese). [百度学术]
周燚, 杨廷宪, 王斌先, 孙正祥. 棉花内生拮抗菌Paenibacillus xylanilyticus YUPP-1抗黄萎病研究[J]. 棉花学报, 2012, 24(1): 71-77. [百度学术]
ZHOU Y, YANG TX, WANG BX, SUN ZX. Biological control of cotton Verticillium wilt by endophytic Paenibacillus xylanilyticus YUPP-1[J]. Cotton Science, 2012, 24(1): 71-77 (in Chinese). [百度学术]
陈丽华, 袁德超, 吴毅歆, 何鹏飞, 何月秋. 棉花黄萎病生防内生芽孢杆菌LH-L3的分离鉴定[J]. 棉花学报, 2017, 29(6): 550-559. [百度学术]
CHEN LH, YUAN DC, WU YX, HE PF, HE YQ. Isolation and characterization of endophytic Bacillus methylotrophicus LH-L3 antagonist of cotton Verticillium wilt[J]. Cotton Science, 2017, 29(6): 550-559 (in Chinese). [百度学术]
高畅, 刘桂敏, 曾红. 阿萨尔基亚芽孢杆菌对大丽轮枝菌微菌核的抑制作用[J]. 西北农业学报, 2022, 31(1): 99-104. [百度学术]
GAO C, LIU GM, ZENG H. Inhibition effect of Bacillus axarquiensis TUBP1 on microsclerotia germination of Verticillium dahliae Kleb[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(1): 99-104 (in Chinese). [百度学术]
戚家明, 孙杉杉, 张东旭, 肖建中, 徐志文. 生防菌株PF-1基于全基因组数据的分类鉴定及拮抗能力分析[J]. 浙江农业学报, 2020, 32(10): 1816-1822. [百度学术]
QI JM, SUN SS, ZHANG DX, XIAO JZ, XU ZW. Identification and biocontrol activity analysis of biocontrol strain PF-1 based on genome-wide data[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1816-1822 (in Chinese). [百度学术]
NI H, KONG WL, ZHANG Y, WU XQ. Effects of volatile organic compounds produced by Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae[J]. Journal of Fungi, 2022, 8(7): 697. [百度学术]
NIU QH, LEI SW, ZHANG G, WU GH, TIAN Z, CHEN KY, ZHANG L. Inhibition of Verticillium wilt in cotton through the application of Pseudomonas aeruginosa ZL6 derived from fermentation residue of kitchen waste[J]. Journal of Microbiology and Biotechnology, 2024, 34(5): 1040-1050. [百度学术]
TOMAH AA, ALAMER ISA, KHATTAK AA, AHMED T, HATAMLEH AA, AL-DOSARY MA, ALI HM, WANG DZ, ZHANG JZ, XU LH, LI B. Potential of Trichoderma virens HZA14 in controlling Verticillium wilt disease of eggplant and analysis of its genes responsible for microsclerotial degradation[J]. Plants (Basel), 2023, 12(21): 3761. [百度学术]
JIN LR, YANG L, LI WJ, XU D, YANG NN, LI GQ, WAN P. Diversity and biocontrol potential of culturable endophytic fungi in cotton[J]. Front Microbiol, 2021, 12: 698930. [百度学术]
MONTES-OSUNA N, CABANÁS CGL, VALVERDE-CORREDOR A, BERENDSEN RL, PRIETO P, MERCADO-BLANCO J. Assessing the involvement of selected phenotypes of Pseudomonas simiae picf7 in olive root colonization and biological control of Verticillium dahliae[J]. Plants (Basel), 2021, 10(2): 412. [百度学术]
SU XF, WU SY, LIU L, LU GQ, LIU HY, JIN X, WANG Y, GUO HM, WANG C, CHENG HM. Potential antagonistic bacteria against Verticillium dahliae isolated from artificially infested nursery[J]. Cells, 2021, 10(12): 3588. [百度学术]
PEI DL, ZHANG QC, ZHU XQ, ZHANG L. Biological control of Verticillium wilt and growth promotion in tomato by rhizospheric soil-derived Bacillus amyloliquefaciens oj-2.16[J]. Pathogens, 2022, 12(1): 37. [百度学术]
BUBICI G, MARSICO AD, D'AMICO M, AMENDUNI M, CIRULLI M. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant[J]. Applied Soil Ecology, 2013, 72: 128-134. [百度学术]
ZHANG Q, LIN RR, YANG J, ZHAO JJ, LI HR, LIU K, XUE XH, ZHAO HX, HAN SC, ZHAO HP. Transcriptome analysis reveals that C17 mycosubtilin antagonizes Verticillium dahliae by interfering with multiple functional pathways of fungi[J]. Biology (Basel), 2023, 12(4): 513. [百度学术]
AHMED W, ZHOU GS, YANG J, MUNIR S, AHMED A, LIU Q, ZHAO ZX, JI GH. Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 25. [百度学术]
VERMA P, HIREMANI NS, GAWANDE SP, SAIN SK, NAGRALE DT, NARKHEDKAR NG, PRASAD YG. Modulation of plant growth and antioxidative defense system through endophyte biopriming in cotton (Gossypium spp.) and non-host crops[J]. Heliyon, 2022, 8(5): e09487. [百度学术]
MOHAMAD OAA, LIU YH, HUANG Y, LI L, MA JB, EGAMBERDIEVA D, GAO L, FANG BZ, HATAB S, JIANG HC, LI WJ. The metabolic potential of endophytic Actinobacteria associated with medicinal plant Thymus roseus as a plant-growth Stimulator[J]. Microorganisms, 2022, 10(9): 1802. [百度学术]
陈丽华, 何鹏飞, 袁德超, 欧晓慧, 吴毅歆, 何月秋. 一种防治棉花黄萎病的生物复合种衣剂的研制[J]. 棉花学报, 2018, 30(3): 282-291. [百度学术]
CHEN LH, HE PF, YUAN DC, OU XH, WU YX, HE YQ. Development of a biological complex seed-coating agent to control Verticillium wilt[J]. Cotton Science, 2018, 30(3): 282-291 (in Chinese). [百度学术]
娄善伟, 张鹏忠, 王大光, 鹿秀云, 边洋, 那马加普, 马腾飞, 努尔塞吾来, 张晓东, 张怀军. 枯草芽孢杆菌种子包衣对棉花黄萎病抑制作用的研究[J]. 中国棉花, 2016, 43(6): 28-30. [百度学术]
LOU SW, ZHANG PZ, WANG DG, LU XY, BIAN Y, NA M, MA TF, NU E, ZHANG XD, ZHANG HJ. Study on the inhibitory effect of cotton Verticillium wilt by seed coating with Bacillus subtilis[J]. China Cotton, 2016, 43(6): 28-30 (in Chinese). [百度学术]
杨杰, 程炳尚, 卢函姝, 马洪娟, 任启超, 曹耀峰. 复合微生物菌配方“中棉菌乐土”对棉花黄萎病大田防效[J]. 中国棉花, 2021, 48(6): 22-25, 36. [百度学术]
YANG J, CHENG BS, LU HS, MA HJ, REN QC, CAO YF. Biological control effect of the compound microbial formula “Zhongmian Junletu” against cotton Verticillium wilt in field[J]. China Cotton, 2021, 48(6): 22-25, 36 (in Chinese). [百度学术]
DEKETELAERE S, TYVAERT L, FRANçA SC, HöFTE M. Desirable traits of a good biocontrol agent against Verticillium wilt[J]. Front Microbiol, 2017, 8: 1186. [百度学术]