网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

番茄青枯病生防链霉菌的分离鉴定及生物学特性  PDF

  • 孙天宇
  • 朱俊玉
  • 王世梅
  • 韦中
  • 徐阳春
  • 沈其荣
南京农业大学 资源与环境科学学院,江苏省固体有机废弃物资源化高技术研究重点实验室,江苏省有机固体废弃物资源化协同创新中心,国家有机类肥料工程技术研究中心,江苏 南京

最近更新:2025-04-09

DOI: 10.13343/j.cnki.wsxb.20240735

CSTR: 32112.14.j.AMS.20240735

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

由青枯劳尔氏菌(Ralstonia solanacearum)引起的番茄青枯病,严重影响番茄的产量和品质,给番茄种植业带来了巨大的经济损失和挑战。

目的

实现链霉菌对番茄青枯病的高效生物防治,为生防链霉菌菌剂的开发提供理论基础。

方法

从土样中筛选出6株对青枯劳尔氏菌具有良好抑菌效果的放线菌(AB_1-AB_6)。分别对菌株进行形态、生理生化和分类鉴定,分析菌株的多种胞外酶活性及根际定殖能力,并进一步通过温室盆栽试验评估菌株对番茄青枯病的生防效果。

结果

六株放线菌对青枯劳尔氏菌的抑菌圈范围为1.76-6.76 cm。经16S rRNA基因序列比对发现,6株放线菌均属于链霉菌属,其中菌株AB_1与Streptomyces gardneri相似度为98.67%,AB_2与S. pratensis相似度为97.59%,AB_3与S. diastatochromogenes相似度为97.33%,AB_4与S. canus相似度为96.54%,AB_5与S. albiflavescens相似度为96.94%,AB_6与S. gramineus相似度为97.34%。盆栽试验结果显示6株链霉菌对番茄青枯病的防效达到69.23%-100.00%。6株链霉菌均能良好地定殖于番茄根际,且具有多种胞外酶活性,如酯酶、淀粉酶、脲酶等,同时也具有广泛的碳氮源利用能力,较强的pH和盐耐受能力等。

结论

六株链霉菌具有良好的环境适应性及番茄根际定殖能力,且对番茄青枯病均展现出良好的盆栽防控效果。本研究结果符合农业绿色发展理念并为链霉菌在番茄青枯病的防治和管理过程中提供了实验基础与理论依据。

番茄(Lycopersicon esculentum)是一种重要的经济型作物,其产量在我国设施农业中位居首[

1]。然而,作为一种喜温作物,高温高湿(温度>20 ℃,湿度>70%)的种植条件也为青枯病病原菌提供了适宜的生长环境。番茄青枯病因其严重的破坏性和难治理的特点,逐渐引起了人们的重视。作为番茄青枯病的病原菌,青枯劳尔氏菌(Ralstonia solanacearum)是一种革兰氏阴性细菌,其主要致病因素包括胞外蛋白、胞外多糖和纤维素[2]。病原菌通过侵染植物根部并定殖,进而侵染木质部,堵塞导管系统,干扰植物对水分和养分的有效吸收,影响植物生长发[3],最终致使植株叶片凋萎,色泽变淡,并呈现青色萎蔫状。在我国长江以南地区,番茄青枯病高发,其传播速度快,危害性大,常导致番茄减产30%-50%,严重地区甚至减产70%以上,造成巨大的经济损[4]

在农业生产中,对番茄青枯病的防治主要有化学防治、农艺措施和生物防治3种方式。化学防治快速有效,但大量施用化学农药会导致环境污染和健康问题。因此,目前更倾向于使用低毒、低残留的化学试剂,如3,4,5-三羟基苯甲酸甲酯,该试剂可破坏青枯菌的细胞壁并提高番茄根系对青枯病的防御能[

5]。农艺措施是一种经济有效的方法,主要包括轮作、嫁接、加强田间管理和抗病品种选育等。例如,采用番茄与非青枯病寄主作物,如玉米、水稻及胡萝卜等广泛种植的大田作物或蔬菜进行轮[6],并辅以科学的田间管理措施,可以高效地预防和控制青枯病的发[7]。然而,在实施轮作策略时,务必注意轮作种植间隔期的安排,一般而言,间隔期越长,防控效果越[8]。此外,嫁接抗病砧木也可提高抗病力,例如抗病砧木嫁接选育出的抗青枯病番茄新品种‘海茄砧1号[9]。然而,嫁接技术费时费力,生产成本高,不易推广。抗病品种选育同样是一种经济有效的方法,我国已培育出一些抗病性番茄品种,如‘粤红玉’和‘抗青19’等,但选育过程中面临果实品质下降、推广困难等问题,选育工作仍面临挑[10-11]。随着环境问题的日益严重,生物防治逐渐受到重视。它主要利用有益微生物或其代谢物来抵御病原菌,更加环保和可持[12]。常见的生防微生物主要包括真菌、噬菌体和细菌等。其中,哈茨木霉是常用的生防真[13-14]。噬菌体具有宿主专一、高效的特点,但因其宿主高度特异性且病原菌宿主产生的胞外多糖阻碍其吸附,其应用受到限[8]。一些细菌,如假单胞菌(Pseudomonas)、芽孢杆菌(Bacillus)和链霉菌(Streptomyces)等土壤常见细菌类群,对青枯菌有较好的防控效[15-17]。特别是链霉菌,以产生活性代谢物而闻名,常被用来防治植物病害,例如链霉菌(S. virginiae) Y30和E36[17],以及链霉菌(S. zhapoensis) H41-26[18]均被报道对青枯病有较好的防控效果。

本研究旨在获得对番茄青枯病具有良好防控效果的链霉菌。以青枯病病原菌为靶标,对链霉菌进行拮抗活性测试,并通过形态学、分子生物学和一系列生理生化试验对分离的菌株进行深入研究。测试其产多种胞外酶的能力以及适应环境的潜力,并结合温室盆栽试验进一步探究链霉菌对番茄青枯病的生防效果。本研究可为研制出环保、高效的链霉菌菌剂提供理论依据。

1 材料与方法

1.1 材料

2020年,从南京市东郊麒麟镇后村(118°57′E,32°03′N)的健康番茄种植园采集土体土。链霉菌菌株的分离培养基为高氏一号培养[

19],纯化培养基为ISP3培养基(international Streptomyces project medium 3, ISP3 medium)[20]。液体培养基及活性测试培养基为营养肉汤培养基[(nutrient broth medium, NB medium) (g/L):蛋白胨5.0,酵母浸粉0.5,牛肉膏3.0,葡萄糖10.0,pH 7.2]和营养琼脂培养基[(nutrient agar medium, NA medium) (g/L):成分同NB,琼脂20)]。青枯菌筛选培养基为SMSA培养基(mL/L):于NA培养基中加入1%氯霉素0.5,1%青霉素0.5,1%结晶紫0.5,1%放线酮10.0,1%多黏菌素10.0,1% TTC 5.0;种子萌发培养基为1/2MS培养基(1/2 murashige and skoog medium, 1/2MS medium)[21]

供试病原菌:青枯劳尔氏菌(Ralstonia solanacearum) QL-Rs1115,GenBank登录号为GU390462。

供试番茄品种:‘红矮生’番茄品种。

1.2 菌株分离纯化

将土样置于阴凉通风处自然阴干,随后放入无菌研钵中研磨成粉末。称取5 g土样粉末,置于装有45 mL无菌水和少量玻璃珠的250 mL三角瓶中,置于摇床中摇匀(280 r/min,12-20 min,28 ℃),此时土壤悬液的稀释度为10-1,之后进行系列稀释,最终选择稀释度为10-3、10-4和10-5的土壤悬液用于链霉菌筛选。吸取200 μL上述稀释倍数的土壤悬液均匀涂布于含有0.1%放线酮(放线酮液体配制方法:50 mg放线酮+ 1 mL无水乙醇)和0.1%萘啶酮酸(萘啶酮酸液体配制方法:10 mg萘啶酮酸+1 mL无菌水)的高氏一号培养基上,置于28 ℃培养箱中培养5-7 d,定期观察菌落生长情况,及时挑取典型放线菌单菌落,并在ISP3培养基上进行纯化培养。

1.3 拮抗青枯菌菌株的筛选

使用无菌接种环挑取青枯菌(R. solanacearum) QL-Rs1115,划线于SMSA培养基,置于30 ℃恒温培养箱中培养36 h后,挑取呈红色且稍具流动性的菌落,接种于NB液体培养基中,置于30 ℃、170 r/min摇床培养过夜。将青枯菌菌液以6 000 r/min离心10 min,弃去上清液后收集菌体并用0.9%生理盐水重悬,通过测量吸光度的方式,将菌悬液浓度调整到107 CFU/mL (OD600值为0.5)。采用单点喷雾法测试目标菌株对青枯菌QL-Rs1115的拮抗能力,先用无菌接种环挑取目标菌株孢子单点接种于NA培养皿正中心,28 ℃培养3-5 d待其形成单菌落后,用无菌喷雾瓶盛装青枯菌菌悬液,在长有单菌落的NA培养皿上均匀喷洒青枯菌菌液1次(约0.2 mL)。于30 ℃培养16 h后测量抑菌圈大小,筛选活性菌株,每株菌设3个重复。

1.4 菌株形态特征、生理生化特征及16S rRNA基因序列分析

将目标菌株在ISP3培养基上划线,于28 ℃培养5 d。使用由美国国内色彩研究学会(Inter Society Colour Council)制作,并由美国国家标准局(National Bereau of Standand)整理而成的 “ISCC-NBS色彩名称表示法” 对菌落颜色进行比[

22]。用无菌薄刀片将新鲜培养5 d的链霉菌菌落的培养基切割成观察面≤6 mm×6 mm,样品厚度≤2 mm。用2.5%戊二醛固定样品8 h以上,之后用磷酸缓冲液冲洗3次,每次10 min,再用50%、70%、80%、90%的乙醇梯度脱水各15 min,100%乙醇脱水3次,每次30 min。用叔丁醇置换3次,每次30 min,最后用冷冻干燥仪干燥样品。用双面胶将样品粘在样品台上,观察面向上,用离子溅射仪给样品镀10 nm金膜,最后通过扫描电镜(SU8010 SEM,HITACHI公司)观察孢子丝及分生孢子的形态。生理生化特征指标测定参考《链霉菌鉴定手册[23]进行实验。

挑取目标菌株单菌落接种于NB培养基中培养4 d,收集菌体后用无菌去离子水洗涤并重悬。使用Invitrogen PureLinkTM基因组DNA试剂盒提取DNA。使用NanoDrop ND-1000分光光度计(ThermoFisher Scientific公司)检测DNA的数量和质量,浓度为10 pmol/μL。使用细菌通用16S rRNA基因扩增引物27F (5′-AGAGTT TGATCATGGCTCAG-3′)和1492R (5′-TACGG TTACCTTGTTACGACTT-3′)[

24]扩增16S rRNA基因。PCR扩增体系:细菌DNA 1 μL,Green Taq Mix 12.5 μL,正、反向引物(10 μmol/L)各1 μL,去离子水9.5 μL。PCR反应条件:94 ℃初变性5 min;94 ℃变性1 min,52 ℃退火1 min 30 s,72 ℃延伸1 min,共35次循环;72 ℃终延伸10 min。PCR产物由上海凌恩生物科技有限公司测序,得到的16S rRNA基因全长序列由EzBioCloud平台进行比对分析,利用MEGA 7软件以邻接(neighbor-joining, NJ)法构建系统发育树。

1.5 菌株在番茄根际定殖能力及生防效果评估

目标菌株孢子悬液涂布于ISP3固体培养基上,28 ℃培养7 d后,用无菌刮铲刮下孢子,与无菌水混合,使用血球计数板调整孢子浓度至108个/mL备用。为了研究菌株在番茄根际的定殖能力,将上述孢子悬液接种到生长在无菌土中的番茄根际,每个处理重复3次,分别于第10、20、30天采集番茄根际样品,使用平板涂布计数法对菌株根际的定殖能力进行量化。温室盆栽试验开展前,先对番茄种子进行表面消毒。首先将种子浸泡在无菌水中16 h,之后用75%乙醇消毒30 s,再用无菌水冲洗种子4次,在10% NaClO中浸泡20 min,最后用无菌水冲洗至少4次并用无菌滤纸吸干水分。将表面消毒的种子转移至1/2MS培养基,28 ℃暗培养3 d。待种子发芽后,播种于每孔含有50 g无菌育苗基质的育苗盘中,在温度为22-32 ℃,相对湿度为70%,光周期为16 h/8 h,光合光子通量密度(photosynthetic photon flux density, PPFD)为200 µmol/(m2·s),每天用无菌水浇灌。在播种后的第17天左右(三叶期),将长势一致的番茄幼苗移栽到装有200 g黄棕壤(有机碳含量为8.1 g/kg,总氮含量为0.79 g/kg,pH为6.5)的盆钵中,培养条件与育苗条件相同。试验设置:Health (不接种任何微生物),链霉菌处理(链霉菌+青枯菌QL-Rs1115),Disease (只接种青枯菌QL-Rs1115)。番茄苗移栽7 d后,将菌株孢子悬液以107 CFU/g土壤的终浓度接种到番茄苗根部。接种孢子悬液7 d后,将青枯菌QL-Rs1115菌悬液以106 CFU/g土壤的终浓度施加到番茄苗根部。每个处理包括3个生物学重复,每个生物学重复包含6株番茄单株(每个处理共18株)。番茄植株在温室条件下生长,定期用无菌水浇灌,在处理期间每2天随机更换同一处理中的植株摆放顺序。温室盆栽试验在接种青枯菌QL-Rs1115之后的第50天结束(插旗为发病株)。采用病情指数(disease index, DI)和生防效率(biocontrol efficiency, BE)对青枯病的严重程度进行量化。病级的取值范围为0-4,0表示植物健康;1表示植株萎蔫叶片数≤25%;2表示植株萎蔫叶片数26%-50%;3表示植株萎蔫叶片数51%-75%;4表示植株萎蔫叶片数76%-100%。病情指数(DI)和生防效率(BE)的计算分别如公式(1)公式(2)所示。

DI=Nd×CdTs×Ad×100 (1)
BE=DICK-DITDICK×100% (2)

式中:Nd为给定病害等级的患病植株数,Cd为对应病害等级,Ts为调查植株总数,Ad为实际最高病害等级,DICK为QL-Rs1115处理的病情指数,DIT为链霉菌处理的病情指[

25-26]

2 结果与分析

2.1 菌株对番茄青枯病病原菌的拮抗活性测定

经筛选后,6株链霉菌(AB_1-AB_6)对青枯病病原菌的抑制效果良好(图1),具体抑菌圈直径如下:AB_1为(4.78±0.04) cm,AB_2为(2.75±0.05) cm,AB_3为(1.93±0.04) cm,AB_4为(6.76±0.03) cm,AB_5为(1.76±0.05) cm,AB_6为(3.79±0.04) cm。

fig

图1  链霉菌对番茄青枯菌的抑制活性

Figure 1  Inhibition effects of Streptomyces strains on Ralstonia solanacearum.

2.2 菌株的分子生物学鉴定

通过对菌株的16S rRNA基因进行序列比对分析(图2),确认这6株菌均为链霉菌属(Streptomyces spp.)。其中,菌株AB_1与EzBioCloud数据库中的Streptomyces gardneri相似度最高,达到98.67%;AB_2与S. pratensis的相似度最高,为97.59%;AB_3与S. diastatochromogenes的相似度最高,达到97.33%;AB_4与S. canus的相似度最高,达到96.54%;AB_5与S. albiflavescens的相似度最高,达到96.94%;AB_6与S. gramineus的相似度最高,达到97.34%。链霉菌AB_1-AB_6的16S rRNA基因序列已提交NCBI数据库,登录号分别为PQ637428-PQ637433。

fig

图2  各链霉菌菌株及其最高相似菌株基于16S rRNA基因序列采用临近法构建的系统发育树。括号内为GenBank登录号;百分数为自展值;标尺为每个位点有0.005 0个核苷酸取代;加粗菌株为本研究菌株。

Figure 2  Phylogenetic tree constructed by the neighbor-joining method based on 16S rRNA sequences of Streptomyces strains and their highest similarity strains. GenBank accession numbers are provided in parentheses; The percentages represent bootstrap values; Bar, 0.005 0 nucleotide substitutions per site; Strains highlighted in bold are those studied in this paper.

2.3 链霉菌的形态特征

链霉菌AB_1-AB_6的菌落呈现圆形或椭圆形,中心微微凸起,质地干燥,边缘呈锯齿状或光滑。通过扫描电镜观察链霉菌孢子,并结合“ISCC-NBS色彩名称表示法”对菌落颜色进行比对(图3),结果表明,链霉菌AB_1的气生菌丝为黄白色(yellowish white),基内菌丝颜色为绿白色(greenish white),产水溶性黄色色素,分生孢子呈柱状,表面粗糙,孢子丝为直线或螺旋状。AB_2的气生菌丝颜色为灰橄榄色(grayish olive),基内菌丝颜色为浅黄绿色(pale yellowish green),产水溶性浅灰色色素,分生孢子呈短杆状,表面粗糙,孢子丝为螺旋状。AB_3的气生菌丝颜色为白色(white),基内菌丝颜色为白色(white),不产色素,分生孢子为短杆状,表面粗糙,孢子丝为直线状。AB_4的气生菌丝颜色为绿白色(greenish white),基内菌丝颜色为温和橄榄色(moderate olive),产水溶性深褐色色素,分生孢子为柱状,表面光滑,孢子丝为直线状。AB_5的气生菌丝颜色为浅紫灰色(light purplish gray),基内菌丝颜色为浅绿灰色(light greenish gray),产水溶性浅黄色色素,分生孢子为柱状,表面光滑,孢子丝为螺旋状。AB_6的气生菌丝颜色为橄榄灰色(olive gray),基内菌丝颜色为灰绿色(grayish olive green),产水溶性褐色色素,分生孢子为柱状,表面光滑,孢子丝为直线或弯曲状。

fig

图3  链霉菌形态学特征(菌落形态及孢子丝形态)

Figure 3  Morphological characteristics of Streptomyces strains (colony morphology and spore filament morphology).

2.4 链霉菌生理生化特征研究

链霉菌的生理生化指标测试参照《链霉菌鉴定手册[

23]进行,结果如表1表2所示。

表1  链霉菌菌株的生理生化指标
Table 1  Physiological and biochemical indexes of Streptomyces strains
CharacteristicsAB_1AB_2AB_3AB_4AB_5AB_6
Temperature range for growth (℃) 10-37 10-37 10-37 10-37 10-40 10-40
pH range for growth 5-11 6-11 5-11 5-11 5-11 5-10
NaCl range for growth (%) 0-3 0-3 0-5 0-5 0-5 0-3
Diastase + - + + + +
Cellulase - - + - - -
Hydrolysis of Tween-20 - + - - - -
Hydrolysis of Tween-40 - + + + + +
Hydrolysis of Tween-80 + - - - - +
Production of H2S - + - + + +
Production of IAA - - - - - -
Urease - + + + + -
Nitrate reduction + + + - + +
Liquefaction of gelatin - + - + + -

+:阳性;-:阴性。

+: Positive; -: Negative.

表2  链霉菌菌株的碳源、氮源利用数据
Table 2  Carbon source and nitrogen source utilization data of Streptomyces strains
Carbon and nitrogen sourceAB_1AB_2AB_3AB_4AB_5AB_6
l-arabinose + - + + - +
d-fructose - + - - - -
d-galactose - - - + - -
Dulcitol - - - - - +
d-glucose + + + + + +
Inositol - - - + - +
Lactose - - - - - +
d-mannitol + + - + + +
d-mannose - - - + - -
d-raffinose - - - - - +
l-rhamnose - + - - - +
d-ribose - - + - + +
d-sorbitol - - - - - +
d-sucrose - - - - - -
d-xylose - - - - - -
l-alanine - + - - - +
l-arginine + - + + + +
l-asparagine + - + + + +
l-aspartic acid + + - + + +
l-glutamic acid + - + + + +
l-glutamine + - + + + +
Glycine - + + + + +
l-proline - - + + + +
l-serine - + + + + +
l-threonine + + + + + +
l-tyrosine + + + - + +

+:阳性;-:阴性。

+: Positive; -: Negative.

2.5 链霉菌的根际定殖能力及对番茄青枯病的盆栽防治效果

通过观察与统计链霉菌的根际定殖能力及防控番茄青枯病的盆栽试验数据(表3-4,图4),发现6株链霉菌均能在番茄根际稳定定殖。在仅接种青枯病病原菌的盆栽处理中,番茄植株发病情况严重,大部分幼苗呈现萎蔫状态,平均发病率高达55.56%,平均病情指数高达54.17。链霉菌各处理可显著降低盆栽发病率(P<0.001,F(6,14)=9.458,ANOVA)和病情指数(P<0.001,F(6,14)=9.777,ANOVA)。各链霉菌处理的平均发病率分别为AB_1=11.11%,AB_2=11.11%,AB_3=11.11%,AB_4=16.67%,AB_5=0.00%,AB_6=5.56%。平均病情指数分别为AB_1=9.72,AB_2=11.11,AB_3=11.11,AB_4=16.67,AB_5=0.00,AB_6=5.56。与病原菌处理(disease)相比,各链霉菌处理的盆栽发病率和病情指数显著降低(表4)。各链霉菌处理的生防效率(biocontrol efficiency, BE)分别为AB_1=82.05%,AB_2=79.49%,AB_3=79.49%,AB_4=69.23%,AB_5=100.00%,AB_6=89.74%。

fig

图4  不同链霉菌对番茄青枯病的盆栽防治效果

Figure 4  Pot experiment results on the control efficacy of different Streptomyces strains against tomato bacterial wilt.

表3  链霉菌菌株在番茄根际的定殖能力
Table 3  Colonization ability of Streptomyces strains in the rhizosphere of tomato (×107 spores/g)
t/dAB_1AB_2AB_3AB_4AB_5AB_6
10 8.13±0.13 8.83±0.04 2.22±0.05 2.38±0.19 6.83±0.06 4.30±0.02
20 6.70±0.28 9.43±0.17 1.31±0.09 2.09±0.06 9.73±0.04 2.93±0.27
30 0.71±0.09 1.20±0.05 0.18±0.02 0.68±0.07 0.88±0.07 1.28±0.08
表4  盆栽试验各处理发病率及病情指数
Table 4  Incidence rate (IR) and disease index (DI) of each treatment in pot experiment
TreatmentsIncidence rate (IR) (%)P-value of IRDisease index (DI)P-value of DI
AB_1 11.11±4.54 0.002 0 9.72±4.09 0.001 0
AB_2 11.11±4.54 0.002 0 11.11±4.54 0.002 0
AB_3 11.11±9.07 0.002 0 11.11±9.07 0.002 0
AB_4 16.67±0.00 0.006 0 16.67±0.00 0.005 0
AB_5 0.00±0.00 0.000 2 0.00±0.00 0.000 2
AB_6 5.56±4.54 0.000 5 5.56±4.54 0.000 5
Disease 55.56±4.54 54.17±3.40

3 讨论与结论

番茄青枯病因其病原菌和宿主范围的多样性而难以控制。利用有益微生物及其分泌的次级代谢物防控植物病害的微生物防治策略,具有安全、可持续的特点,符合绿色农业的发展理念,现已成为防控番茄青枯病的研究热[

27]。其中,发掘有益微生物是实施生物防治抵御植物病害的前[28]。本研究对番茄田间土壤样品中的放线菌进行了分离,通过体外拮抗病原菌试验初步筛选出6株活性放线菌。通过对放线菌菌株的16S rRNA基因测序比对以及形态学观察,初步鉴定这6株放线菌均为链霉菌属。

链霉菌作为一类能够产生丰富多样活性次级代谢物的微生物,在植物病害防控领域发挥着积极作用。其代谢产物涵盖了抗生素类、铁载体、胞外酶、多糖类、有机酸以及激素类等多种物[

29-34],使其在生物防治中扮演着重要角色。本研究中对活性链霉菌的生理生化特性进行测定,结果表明这些链霉菌具有广泛的碳氮源利用能力。同时,这些链霉菌还具有较宽的生长温度范围、pH耐受范围以及盐耐受性,这些特性可能与它们强大的环境适应能力密切相关。

本研究探索了6株活性链霉菌的生理生化特性,这些特性主要集中在淀粉酶、酯酶、脲酶以及硝酸盐还原酶等多种酶的活性上,同时部分菌株还具备产生硫化氢(H2S)等能力。淀粉作为一种关键的高分子化合物和重要的多糖,在微生物的作用下,具有淀粉酶活性的菌株能够将其高效水解为易于吸收利用的单糖。目前,微生物淀粉酶的研究已广泛应用于农业、工业及医药等多个领[

35-37],展现出了极为广阔的应用前景。酯酶同样是一类极具经济价值的酶类,其相关研究已渗透到农业、制造业(如皮革、纸制品、纺织品等)、医药以及燃料等多个领[38-40]。此外,产脲酶的微生物在化工、制药、废水净化以及生态恢复等领域也发挥着重要作[41],其应用前景同样不可小觑。硝酸盐还原菌作为一种有益菌,在生物固氮领域被广泛应用,它们能够将土壤中的硝酸盐还原为氨态氮,为植物生长提供氮素营[42]。相比之下,产H2S的细菌则在缓解重金属对植物的毒[43]、提高植物抗逆[44]、促进植物种子萌[45]以及改善根际形[46]等方面展现出独特优势,同时它们还能调控阴离子通[47],对植物的生长和发育产生重要影响。本研究中的链霉菌不仅具备多种农业上有益的潜在功能,而且在盆栽试验中表现出对番茄青枯病的良好防治效果。这一发现为防控番茄青枯病提供了坚实的理论依据和宝贵的链霉菌种质资源,具有广阔的应用前景和巨大的开发潜力。未来的研究可以进一步探究链霉菌的活性物质及其具体的青枯病生防机制,为农业生产的可持续发展发挥更大的作用。

作者贡献声明

孙天宇:试验设计及开展,数据收集和统计分析及文章撰写等;朱俊玉:进行试验,数据收集;王世梅:试验方案设计及指导,论文修改及审核;韦中:试验方案设计,试验指导,文章修改等;徐阳春:试验方案设计,论文修改等;沈其荣:试验方案设计及试验指导等。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

李乐, 田敏娇, 高艳明, 李建设. 硒肥对基质培番茄生长和矿质元素积累的影响[J]. 浙江农业学报, 2020, 32(2): 253-261. [百度学术] 

LI L, TIAN MJ, GAO YM, LI JS. Effect of selenium fertilizer on growth and mineral element accumulation of tomato in substrate culture[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 253-261 (in Chinese). [百度学术] 

2

乐素菊, 梁承愈, 吴定华. 番茄青枯病抗、感品种(系)结构性差异初探[J]. 华南农业大学学报, 1996, 17(2): 50-53. [百度学术] 

LE SJ, LIANG CY, WU DH. Preliminary study on structural differences of tomato varieties (lines) resistant and susceptible to bacterial wilt[J]. Journal of South China Agricultural University, 1996, 17(2): 50-53 (in Chinese). [百度学术] 

3

VASSE J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum[J]. Molecular Plant-Microbe Interactions, 1995, 8(2): 241. [百度学术] 

4

席超越, 陈丽妃. 番茄青枯病病原菌生物学特性及致病机制研究进展[J]. 现代农业科技, 2024(17): 94-100. [百度学术] 

XI CY, CHEN LF. Research progress on biological characteristics and pathogenic mechanism of tomato bacterial wilt pathogen[J]. Modern Agricultural Science and Technology, 2024(17): 94-100 (in Chinese). [百度学术] 

5

牛义岭, 商丽敏. 番茄青枯病的发生及防治[J]. 现代农业科技, 2023(12): 100-102, 108. [百度学术] 

NIU YL, SHANG LM. Occurrence and control of tomato bacterial wilt[J]. Modern Agricultural Science and Technology, 2023(12): 100-102, 108 (in Chinese). [百度学术] 

6

YU JQ. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a Tomato-Chinese Chive (Allium tuberosum) intercropping system[J]. Journal of Chemical Ecology, 1999, 25(11): 2409-2417. [百度学术] 

7

邱拓宇, 杜文青, 朱金籴, 朱学刚. 番茄青枯病防治技术研究进展[J]. 乡村科技, 2022, 13(13): 71-73. [百度学术] 

QIU TY, DU WQ, ZHU JD, ZHU XG. Research progress on control technology of tomato bacterial wilt[J]. Rural Science and Technology, 2022, 13(13): 71-73 (in Chinese). [百度学术] 

8

韦中. 生物有机肥防控土传番茄青枯病的效果及其机制研究[D]. 南京: 南京农业大学博士学位论文, 2012. [百度学术] 

WEI Z. Study on the effect and mechanism of bio-organic fertilizer in controlling soil-borne tomato bacterial wilt[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2012 (in Chinese). [百度学术] 

9

伍壮生, 吴月燕, 王小娟, 李雪峤, 高芳华. 樱桃番茄抗青枯病砧木新品种海茄砧1号的选育[J]. 中国蔬菜, 2019(12): 78-81. [百度学术] 

WU ZS, WU YY, WANG XJ, LI XQ, GAO FH. A new cherry tomato rootstock F1 hybrid: ‘Haiqiezhen No.1’[J]. China Vegetables, 2019(12): 78-81 (in Chinese). [百度学术] 

10

DUBEY S. Integrated management of bacterial wilt of tomato[J]. Plant Disease Research, 2005, 20: 52-54. [百度学术] 

11

龙良鲲. 番茄青枯病的研究进展[J]. 广西农业科学, 2002, 33(3): 134-137. [百度学术] 

LONG LK. Research progress of tomato bacterial wilt[J]. Guangxi Agricultural Science, 2002, 33(3): 134-137 (in Chinese). [百度学术] 

12

EILENBERG J, HAJEK A, LOMER C. Suggestions for unifying the terminology in biological control[J]. BioControl, 2001, 46(4): 387-400. [百度学术] 

13

HAYWARD AC. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J]. Annual Review of Phytopathology, 1991, 29: 65-87. [百度学术] 

14

黎起秦, 林纬, 陈永宁, 蒙姣荣, 彭好文. 植物土传病害拮抗真菌的筛选[J]. 西南农业学报, 1999, 12(3): 81-84. [百度学术] 

LI QQ, LIN W, CHEN YN, MENG JR, PENG HW. Screening of antagonistic fungi against soil borne diseases[J]. Southwest China Journal of Agricultural Sciences, 1999, 12(3): 81-84 (in Chinese). [百度学术] 

15

RAN LX, LIU CY, WU GJ, van LOON LC, BAKKER PAHM. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China[J]. Biological Control, 2005, 32(1): 111-120. [百度学术] 

16

彭细桥, 刘红艳, 罗宽, 邓正平. 烟草内生青枯病拮抗细菌的筛选和初步鉴定[J]. 中国烟草科学, 2007, 28(2): 38-40. [百度学术] 

PENG XQ, LIU HY, LUO K, DENG ZP. Selection and preliminary identification of tobacco antagonistic endophytic bacteria against Ralstonia solanacearum[J]. Chinese Tobacco Science, 2007, 28(2): 38-40 (in Chinese). [百度学术] 

17

TAN HM, ZHOU SN, DENG ZJ, HE M, CAO LX. Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt[J]. Biological Control, 2011, 59(2): 245-254. [百度学术] 

18

蒲小明, 林壁润, 郑奕雄, 沈会芳. 一株抗花生青枯病菌海洋放线菌的分类鉴定及其活性产物研究[J]. 广东农业科学, 2011, 38(16): 62-65. [百度学术] 

PU XM, LIN BR, ZHENG YX, SHEN HF. Studies on taxonomic identification of a marine actinomycete against Pseudomonas solanacearum and its active product[J]. Guangdong Agricultural Sciences, 2011, 38(16): 62-65 (in Chinese). [百度学术] 

19

WANG WL, GE QJ, WEN J, ZHANG H, GUO YL, LI ZT, XU Y, JI DH, CHEN CS, GUO LD, XU MY, SHI CC, FAN GY, XIE CT. Horizontal gene transfer and symbiotic microorganisms regulate the adaptive evolution of intertidal algae, Porphyra sense lato[J]. Communications Biology, 2024, 7(1): 976. [百度学术] 

20

SHIRLING EB, GOTTLIEB D. Methods for characterization of Streptomyces species[J]. International Journal of Systematic Bacteriology, 1966, 16(3): 313-340. [百度学术] 

21

MURASHIGE T, SKOOG F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473. [百度学术] 

22

韩长龙. 颜色适应对颜色统一命名名称影响的研究[J]. 山东纺织工学院学报, 1992(1): 30-34. [百度学术] 

HAN CL. Study on the influence of color adaptation on the universal color designation names[J]. Journal of Shandong college of textile technology, 1992(1): 30-34 (in Chinese). [百度学术] 

23

中国科学院微生物研究所放线菌分类组. 链霉菌鉴定手册[M]. 北京: 科学出版社, 1975. [百度学术] 

Actinomycete Classification Group, Institute of Microbiology, Chinese Academy of Sciences. Handbook of Streptomyces Identification[M]. Beijing: Science Press, 1975 (in Chinese). [百度学术] 

24

HEUER H, KRSEK M, BAKER P, SMALLA K, WELLINGTON EM. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Applied and Environmental Microbiology, 1997, 63(8): 3233-3241. [百度学术] 

25

TANS-KERSTEN J, BROWN D, ALLEN C. Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment[J]. Molecular Plant-Microbe Interactions, 2004, 17(6): 686-695. [百度学术] 

26

GUO JH, QI HY, GUO YH, GE HL, GONG LY, ZHANG LX, SUN PH. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria[J]. Biological Control, 2004, 29(1): 66-72. [百度学术] 

27

吴思炫, 高复云, 张锐澎, 苏浩, 姚槐应, 范雪莲, 李雅颖. 番茄青枯病生物防治的研究进展[J]. 应用生态学报, 2023, 34(9): 2585-2592. [百度学术] 

WU SX, GAO FY, ZHANG RP, SU H, YAO HY, FAN XL, LI YY. Research progress in biological control of tomato bacterial wilt[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2585-2592 (in Chinese). [百度学术] 

28

卯婷婷, 陶刚, 赵兴丽, 王琦, 李世东. 4种微生物菌剂对辣椒主要病害的生物防治作用[J]. 中国生物防治学报, 2020, 36(2): 258-264. [百度学术] 

MAO TT, TAO G, ZHAO XL, WANG Q, LI SD. Biological control of four kinds of microbial preparations against main diseases of pepper[J]. Chinese Journal of Biological Control, 2020, 36(2): 258-264 (in Chinese). [百度学术] 

29

HAMDAN AM, ABD-EL-MAGEED H, GHANEM N. Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture[J]. Scientific Reports, 2021, 11(1): 9314. [百度学术] 

30

ZHANG D, LU YL, CHEN HC, WU CT, ZHANG H, CHEN LY, CHEN XL. Antifungal peptides produced by actinomycetes and their biological activities against plant diseases[J]. Journal of Antibiotics, 2020, 73(5): 265-282. [百度学术] 

31

KIM SK, PARK JE, OH JM, KIM H. Molecular characterization of four alkaline chitinases from three chitinolytic bacteria isolated from a mudflat[J]. International Journal of Molecular Sciences, 2021, 22(23): 12822. [百度学术] 

32

PASSARI AK, MISHRA VK, GUPTA VK, YADAV MK, SAIKIA R, SINGH BP. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants[J]. PLoS One, 2015, 10(9): e0139468. [百度学术] 

33

WU QH, DEERING RW, ZHANG GY, WANG BX, LI X, SUN JD, CHEN JW, ZHANG HW, ROWLEY DC, WANG H. Albisporachelin, a new hydroxamate type siderophore from the deep ocean sediment-derived actinomycete Amycolatopsisalbispora WP1T[J]. Marine Drugs, 2018, 16(6): 199. [百度学术] 

34

张烨, 杨雅雯. 玫瑰黄链霉菌和哈茨木霉IAA的测定及其发酵液对烟草的影响[J]. 河南农业, 2021(19): 10-12. [百度学术] 

ZHANG Y, YANG YW. Determination of IAA in Streptomyces roseus and Trichoderma harzianum and the effect of their fermentation broth on tobacco[J]. Agriculture of Henan, 2021(19): 10-12 (in Chinese). [百度学术] 

35

金志雄, 毛达勇, 张珍, 王金勇. 产α-淀粉酶菌株液体培养条件的探讨[J]. 环境科学与技术, 2006, 29(2): 32-33. [百度学术] 

JIN ZX, MAO DY, ZHANG Z, WANG JY. Study on culture condition of α-amylase generated B. subtilis[J]. Environmental Science & Technology, 2006, 29(2): 32-33 (in Chinese). [百度学术] 

36

KONSOULA Z, LIAKOPOULOU-KYRIAKIDES M. Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules[J]. Enzyme and Microbial Technology, 2006, 39(4): 690-696. [百度学术] 

37

徐良玉, 石贵阳, 陶飞, 张梁. 快速筛选耐酸性α-淀粉酶生产菌株的平板透明圈法[J]. 无锡轻工大学学报(食品与生物技术), 2003(5): 91-94. [百度学术] 

XU LY, SHI GY, TAO F, ZHANG L. A rapid plate culture method for screening micro-organisms producing acid-tolerant amylase[J]. Journal of Wuxi University of Light Industry (Food and Biotechnology), 2003(5): 91-94 (in Chinese). [百度学术] 

38

JAEGER KE, EGGERT T. Lipases for biotechnology[J]. Current Opinion in Biotechnology, 2002, 13(4): 390-397. [百度学术] 

39

HASAN F, ALI SHAH A, HAMEED A. Industrial applications of microbial lipases[J]. Enzyme and Microbial Technology, 2006, 39(2): 235-251. [百度学术] 

40

王宝娟, 苏蕊蕊, 朱国萍. 链霉菌酯酶研究进展[J]. 安徽师范大学学报(自然科学版), 2011, 34(2): 165-170. [百度学术] 

WANG BJ, SU RR, ZHU GP. The progress of esterase from Streptomyces[J]. Journal of Anhui Normal University (Natural Science), 2011, 34(2): 165-170 (in Chinese). [百度学术] 

41

刘津江, 王淼, 樊敏, 刘西周. 产脲酶微生物的筛选和应用研究进展[J]. 生物技术, 2022, 32(1): 107-113, 119. [百度学术] 

LIU JJ, WANG M, FAN M, LIU XZ. Research advances in application and screening of urease-producing microorganisms[J]. Biotechnology, 2022, 32(1): 107-113, 119 (in Chinese). [百度学术] 

42

张艳敏, 吴耿, 蒋宏忱. 热泉微生物驱动的氮循环研究进展及展望[J]. 微生物学报, 2018, 58(4): 649-659. [百度学术] 

ZHANG YM, WU G, JIANG HC. Research progress in microorganisms involved in nitrogen cycles in hot springs[J]. Acta Microbiologica Sinica, 2018, 58(4): 649-659 (in Chinese). [百度学术] 

43

CUI WT, CHEN HP, ZHU KK, JIN QJ, XIE YJ, CUI J, XIA Y, ZHANG J, SHEN WB. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (Homo)glutathione and reactive oxygen species homeostases[J]. PLoS One, 2014, 9(10): e109669. [百度学术] 

44

裴雁曦. 植物中的气体信号分子硫化氢: 无香而立, 其臭如兰[J]. 中国生物化学与分子生物学报, 2016, 32(7): 721-733. [百度学术] 

Pei YX. Gasotransmitter hydrogen sulfide in plants: stinking to high heaven, but refreshing to fine life[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(7): 721-733 (in Chinese). [百度学术] 

45

ZHANG H, HU LY, HU KD, HE YD, WANG SH, LUO JP. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress[J]. Journal of Integrative Plant Biology, 2008, 50(12): 1518-1529. [百度学术] 

46

LIN YT, LI MY, CUI WT, LU W, SHEN WB. Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation[J]. Journal of Plant Growth Regulation, 2012, 31(4): 519-528. [百度学术] 

47

WANG L, WAN RJ, SHI YH, XUE SW. Hydrogen sulfide activates S-type anion channel via OST1 and Ca(2+) modules[J]. Molecular Plant, 2016, 9(3): 489-491. [百度学术]