摘要
日益严重的土传病害威胁多种作物的生产,影响农业的可持续发展。作为既环保安全又经济长效的生物防治资源,链霉菌生物菌剂已被广泛探究,但其防控效果及影响因素有待进一步优化。
目的
探究链霉菌施用对常见土传病害的防控效果及其主要影响因素。
方法
基于Web of Science和中国知网(CNKI)数据库,以“链霉菌”和“枯萎病”、“链霉菌”和“青枯病”、“Streptomyces”和“Fusarium oxysporum”、“Streptomyces”和“Ralstonia solanacearum (或Pseudomonas solanacearum)”为关键词进行检索,筛选具有实验组(施用链霉菌)和对照组(不施用链霉菌)的发病率及其样本量和均值的文献,获得防控枯萎病的文献76篇(113组数据)、防控青枯病的文献19篇(28组数据)。
结果
施用链霉菌处理后,枯萎病的平均发病率从75.58%降至24.49%,平均防控效率为67.60%;青枯病的平均发病率从73.75%降至19.83%,平均防控效率为73.11%。土壤中链霉菌的数量、土壤中链霉菌/病原菌终浓度比值和气候类型是影响其对2种病害防治效果的主要因素。链霉菌终浓度为1
结论
应用链霉菌作为生物菌剂防控土传病害时,应在明确致病菌种类的情况下,根据土壤中病原菌的浓度调整链霉菌生物菌剂的施用剂量;此外,在热带季风气候区域施用链霉菌生物菌剂可以达到更好的防控效果。
受耕地资源的限制和现代化农耕设施的普及,土地集约化利用程度逐渐提高,复种指数迅速增加。这一耕种模式在提高农业生产效率的同时,也给农业生产、生态环境带来了诸多挑战。例如,日益严重的土传病害已成为危害土壤健康、限制作物高产、影响农业可持续发展的关键因素之
常见的土传病害防控措施包括物理防治、化学防治和生物防治。其中,生物防治因其无污染、环境友好、成本低等优势而备受关注,被认为是防控作物土传病害最有前景的措施之
研究表明,植物生长受气候条件复杂性、土壤类型多样性等的严重影响。因此,在链霉菌产品的应用与评估过程中,需综合考虑气候条件、作物类型、施用浓度、施用方式及菌剂形式等多种因
1 材料与方法
1.1 数据收集
本研究所选文献均来源于CNKI和WoS数据库。CNKI数据库分别以“链霉菌”和“枯萎病”、“链霉菌”和“青枯病”为关键词,WoS数据库分别以“Streptomyces”和“Fusarium oxysporum”、“Streptomyces”和“Ralstonia solanacearum (或Pseudomonas solanacearum)”为关键词进行检索,检索时间分别为2024年1月4日和2023年12月14日。通过检索,CNKI数据库中链霉菌防控枯萎病的相关文献有111篇,防控青枯病的相关文献有32篇;WoS数据库中链霉菌防控枯萎病的文献有231篇,防控青枯病的文献有68篇。文献筛选标准如下:(1) 具有不施加链霉菌的空白对照组;(2) 提供发病率,若同一实验多次测定样本的发病率,则收集最后一次的发病率数据;(3) 提供平均发病率和样本量;(4) 数据重复的文献仅选其中一篇。最终,将链霉菌防控枯萎病的76篇文献和防控青枯病的19篇文献[原始数据文献存储在国家微生物科学数据中心(http://nmdc.cn),编号为NMDCX0002099]中涉及的113组和28组数据纳入本研究。收集的信息包括:对照组和处理组的平均值、标准差和样本量;同时收集试验时链霉菌菌剂的施用形式、作物科类、施用剂量、施用方式、和气候类型等。根据收集到的数据,将菌剂形式分为固体菌剂、液体菌剂和生物有机肥3类;施用剂量分为1
1.2 Meta分析
参考Rosentha
(1) |
v= | (2) |
CE=(Xc-Xe)/Xc×100% | (3) |
式中:Xc为对照组的发病率平均值,Xe为处理组的发病率平均值,v为研究内方差,SDc为对照组标准差,SDe为处理组标准差,Nc为对照组样本量,Ne为处理组的样本量。
1.3 系统发育树构建及遗传距离计算
根据1.1节搜集的链霉菌登录号,从NCBI的GenBank数据库下载相关菌株的16S rRNA基因序列,共计37个有效序列。基于MEGA 7.0软件对获得的有效序列进行比对,并基于邻接(neighbor joining)法构建系统发育
1.4 数据处理与统计分析
采用Excel 2019软件对获得的数据进行汇总和分组。利用SPSS 26软件对数据进行单因素方差分析(one-way ANOVA, LSD事后检验)和独立双尾t-检验(two-tailed t-test)统计学分析,以P<0.05判定差异具有统计学意义。使用R语言的“dplyr”包进行相关性分析,采用“ggplot2”和“forestplot”包进行结果可视
2 结果与分析
2.1 链霉菌抗病研究试验点分布
根据上述筛选条件,共纳入95篇文献,提取141组数据,其中链霉菌防控枯萎病的文献为76篇、数据113组,防控青枯病的文献为19篇、数据28组。试验点主要分布于3.05°N-47.87°N,涵盖中国、韩国、日本、泰国、印度、巴西、意大利、越南等国家,其中枯萎病的研究分布更为广泛。我国对链霉菌防控土传枯萎病与青枯病的研究广泛分布于热带、亚热带及部分温暖气候区,共覆盖13个地区,尤以长江流域及其以南地区为主,例如云南、贵州、台湾等地均有发生。其中,广西、广东、浙江、江苏、福建等地的研究点位数量较多。
2.2 发表偏倚检验
发表偏倚检验可用于评估meta分析结果的可靠性。结果显示:整体的失安全系数N0=16 292,研究组数K0 (整体)=141,5K0+10=715,N0远大于5K0+10,说明整体meta分析结果可靠,发表偏倚影响较小;枯萎病的失安全系数N1=13 976,研究组数K1 (枯萎病)=113,5K1+10=575,N1远大于5K1+10,表明枯萎病meta分析结果稳定可靠;青枯病的失安全系数为N2=2 552,研究组数K2 (青枯病)=28,5K2+10=150,N2远大于5K2+10,说明青枯病分析结果也较为可信,未受到明显发表偏倚的干扰。
2.3 链霉菌的防控效果评估
基于MetaWin软件对链霉菌施用对土传病害防控效果进行meta分析,结果表明,链霉菌的施用可显著降低2种土传病害的平均效应值(MES整体=-1.39,PQ整体=0.000 02;MES枯萎病=-1.31,PQ枯萎病=0.000 6;MES青枯病=-1.69,PQ青枯病=0.002 4),进一步对3组数据进行总体异质性Q检验,均显示存在显著异质性(PQ<0.05),说明结果受多种变量影响,可引入相关调节因子进一步探讨其作用机制。此外,对3类数据的平均防控效率进行分析,结果表明链霉菌处理显著降低了土传病害(如青枯病、枯萎病)的发病率,平均防控效率分别为整体(68.67±1.46)%、枯萎病(67.60±1.55)%和青枯病(73.11±3.88)% (
Soil-borne diseases | Xc (%) | Xe (%) | CE (%) | MES | k | P | LCI | UCI | Q | PQ |
---|---|---|---|---|---|---|---|---|---|---|
Two diseases | 75.22 | 23.57 | 68.67 | -1.39*** | 141 | 0.001*** | -1.5 | -1.3 | 683* | 0.000 02*** |
Fusarium wilt | 75.58 | 24.49 | 67.60 | -1.31*** | 113 | 0.010* | -1.4 | -1.2 | 1 074** | 0.000 60*** |
Bacterial wilt | 73.75 | 19.83 | 73.11 | -1.69*** | 28 | 0.001*** | -2.0 | -1.4 | 292* | 0.002 40** |
Xc表示对照组的发病率平均值;Xe表示处理组的发病率平均值;CE表示链霉菌菌剂处理的平均防控效率;MES表示平均效应值;k表示样本量;P表示差异显著性;LCI表示95%置信区间下限;UCI表示95%置信区间上限;Q表示异质性;PQ表示Q的显著性检验值。*、**、***分别表示P<0.05、P<0.01、P<0.001。下同。
Xc represents the average disease incidence of the control; Xe represents the average disease incidence of the treatment; CE represents the average control efficacy Streptomyces-based bio-agents; MES represents the mean of effect size value; k represents sample size; P represents the significance; LCI represents the lower limit of 95% confidence interval; UCI represents the upper limit of 95% confidence interval; Q represents the heterogeneity; PQ represents the significance of Q. *, **, *** represents P<0.05, P<0.01, P<0.001, respectively. The same below.
2.4 链霉菌防效的影响因素异质性检验
引入变量进行影响因素探究,结果见
Influencing factors | Two diseases | Fusarium wilt | Bacterial wilt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | QM | P | k | QM | P | k | QM | P | |||
Experiment type | 140 | 1.8 | 0.3 | 112 | 3.9* | P<0.05 | 27 | 1.9 | 0.2 | ||
Crop family | 139 | 17.0** | P<0.01 | 111 | 12.6* | P<0.05 | 26 | 0.4 | 0.8 | ||
Streptomyces form | 140 | 0.6 | 0.9 | 112 | 3.1 | 0.4 | 26 | 0.2 | 0.7 | ||
Application mode | 140 | 3.0 | 0.6 | 112 | 1.2 | 0.9 | 26 | 10.1** | P<0.01 | ||
Application dose | 86 | 27.5*** | P<0.001 | 67 | 12.1* | P<0.05 | 17 | 1.0 | 0.3 | ||
Concentration ratio of Streptomyces to pathogen | 68 | 27.4*** | P<0.001 | 49 | 11.0* | P<0.05 | 17 | 6.0* | P<0.05 | ||
Climate type | 139 | 16.7** | P<0.01 | 112 | 15.7** | P<0.01 | 26 | 14.0*** | P<0.001 |
k表示样本量;QM表示异质性;P为QM的显著性。
k represents sample size; QM represents heterogeneity; P represents the significance of QM.
2.5 链霉菌防控2种土传病害的影响因子探究
为了明确作物类型、土壤中链霉菌终浓度、链霉菌/病原菌浓度比值和气候类型对链霉菌生物菌剂防控2种土传病害效率的影响,根据作物科类将数据分为6个类别:葫芦科、锦葵科、茄科、禾本科、芭蕉科和“其他科类”作物(如大葱、杭白菊、草莓等)。结果显示,除了锦葵科外,其他作物科类均显示出显著的防控效果(

图1 不同因子对链霉菌防控土传病害效应的影响。A:作物种类;B:施用剂量; C:终浓度比;D:气候类型。
Figure 1 The effect size of different factors on the biocontrol efficacy of Streptomyces against soil-borne disease. A: Crop family; B: Application dose; C: Concentration ratio of Streptomyces to pathogen; D: Climate type.
2.6 链霉菌防控土传枯萎病的影响因素分析
对影响链霉素防效的因素进行探究,结果如

图2 不同因子对链霉菌防控枯萎病效应的影响。A:实验类型;B:作物科类;C:施用剂量;D:终浓度比;E:气候类型。
Figure 2 The effect size of different factors on the biocontrol efficacy of Streptomyces against Fusarium wilt disease. A: Experiment type; B: Crop family; C: Application dose; D: Concentration ratio of Streptomyces to pathogen; E: Climate type.
2.7 链霉菌防控土传青枯病的影响因素分析
为了明确施用方式、土壤中链霉菌/病原菌浓度比值和气候类型对链霉菌防控土传青枯病效率的影响,结果如

图3 不同因子对链霉菌防控青枯病效应的影响。A:施用方式;B:终浓度比;C:气候类型。
Figure 3 The effect size of different factors on the biocontrol efficacy of Streptomyces against bacterial wilt disease. A: Application mode; B: Concentration ratio of Streptomyces to pathogen; C: Climate type.
2.8 不同菌株及遗传距离对链霉菌防控效率的影响
对收集的37条有效16S rRNA基因序列进行MEGA系统发育分析,结果显示7个链霉菌菌株的防控效率超过85.00%,具体为:Streptomyces ramulosus B 2714 (98.00%)、S. toxytricini XF-7 (96.93%)、S. sampsonii KJ 40 (92.70%)、S. racemochromogenes A20 (91.48%)、S. griseofuscus 12870 (91.10%)、S. hydrogenans DH16 (89.85%)、S. pratensis S10 (86.62%) (

图4 不同菌株及遗传距离对链霉菌防控效率的影响。A:链霉菌的系统发育关系及防控率;B:防控效率差异(Δ)与遗传距离的相关性。在链霉菌的系统发育树中,每个菌株名称后括号内为其在GenBank数据库中的登录号,百分比为该菌株在防控病害实验中的防效平均值(control efficiency)。系统发育树采用邻接(neighbor-joining, NJ)法构建,树上分支点处的数字表示链霉菌间的亲缘关系(bootstrap法,n=1 000次)。
Figure 4 The effect of different strains and the phylogenetic distances on the biocontrol efficacy of Streptomyces against soil-borne disease. A: Phylogenetic relationship of the tested sequences of Streptomyces with its efficacy; B: Correlation between the change (Δ) of biocontrol efficacy and phylogenetic distance. In the phylogenetic tree of Streptomyces, strain names are followed by their corresponding accession numbers in the GenBank database, and the percentages represent the mean of control efficiency in disease management assays. The phylogenetic tree was constructed using the neighbor-joining (NJ) method, numbers at the nodes of branch indicate the phylogenetic relationship between Streptomyces (calculated by bootstrap, n=1 000).
3 讨论
土传病害是指寄居于土壤中的植物病原物在适宜条件下侵染植物并引起作物发病的一类病害,这些病原物危害性强、宿主广泛,往往造成严重的经济损
Wang
生防菌在植物根际的定殖是其发挥防控效果的重要前提,定殖的有效性直接决定了生防菌是否能在根际环境中稳定存在并发挥作
研究表明,植物有益细菌的多样性在低纬度地区达到峰值,呈现出显著的纬度多样性梯度,其分布主要受环境过滤和宿主植物种类的影
研究表明,自然界中70%以上的抗生素由链霉菌产生,如春雷霉素、白肽霉素、磷氮霉素、鱼藤霉素、变构霉素和变构菌素等,均可有效抑制土传病害的发
4 结论
链霉菌的施用对枯萎病和青枯病均表现出显著的防控效果,平均防效分别为67.60%和73.11%。在热带季风气候区,采用拌土法施用链霉菌,并使土壤中链霉菌的终浓度达到1
作者贡献声明
白鸽:数据收集,统计分析,论文撰写等;李言雨:部分数据收集;刘彩霞:统计分析指导;邱巍:软件使用指导;袁军:论文框架指导,论文修改等;秦华:分析指导;赵梦丽:论文框架设计,分析指导,图片可视化,论文修改等;徐秋芳:分析指导。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
韦中, 沈宗专, 杨天杰, 王孝芳, 李荣, 徐阳春, 沈其荣. 从抑病土壤到根际免疫: 概念提出与发展思考[J]. 土壤学报, 2021, 58(4): 814-824. [百度学术]
WEI Z, SHEN ZZ, YANG TJ, WANG XF, LI R, XU YC, SHEN QR. From suppressive soil to rhizosphere immunity: towards an ecosystem thinking for soil-borne pathogen control[J]. Acta Pedologica Sinica, 2021, 58(4): 814-824 (in Chinese). [百度学术]
胡星磊, 白鸽, 邱巍, 袁军, 秦华, 赵梦丽, 徐秋芳. 生物菌剂对青枯病防控效果及其影响因素的优化[J]. 植物营养与肥料学报, 2024, 30(4): 655-665. [百度学术]
HU XL, BAI G, QIU W, YUAN J, QIN H, ZHAO ML, XU QF. Control effect of biological agents on soil-born bacterial wilt and the optimization of the influencing factors[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(4): 655-665 (in Chinese). [百度学术]
杨凡, 姜华艳, 马凯, 蔡毓新, 常高正, 史宣杰. 瓜菜枯萎病及生防根际微生物组研究进展[J]. 微生物学通报, 2024, 51(1): 50-65. [百度学术]
YANG F, JIANG HY, MA K, CAI YX, CHANG GZ, SHI XJ. Research progress in Fusarium wilt of cucurbitaceous vegetables and rhizosphere microbiome for biocontrol[J]. Microbiology China, 2024, 51(1): 50-65 (in Chinese). [百度学术]
吴思炫, 高复云, 张锐澎, 苏浩, 姚槐应, 范雪莲, 李雅颖. 番茄青枯病生物防治的研究进展[J]. 应用生态学报, 2023, 34(9): 2585-2592. [百度学术]
WU SX, GAO FY, ZHANG RP, SU H, YAO HY, FAN XL, LI YY. Research progress in biological control of tomato bacterial wilt[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2585-2592 (in Chinese). [百度学术]
林钰恒. 基于币斑病菌菌丝富集的草坪草种子内源生防细菌的高效筛选及其生防潜能评估[D]. 南京: 南京农业大学, 2022. [百度学术]
LIN YH. Efficient screening of endogenous biocontrol bacteria from turfgrass seeds based on mycelium enrichment and evaluation of biocontrol potential[D]. Nanjing: Nanjing Agricultural University, 2022 (in Chinese). [百度学术]
WANG XF, WEI Z, YANG KM, WANG JN, JOUSSET A, XU YC, SHEN QR, FRIMAN VP. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513-1520. [百度学术]
YUAN XF, HONG S, XIONG W, RAZA W, SHEN ZZ, WANG BB, LI R, RUAN YZ, SHEN QR, DINI-ANDREOTE F. Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation[J]. Microbiome, 2021, 9(1): 200. [百度学术]
LIU HW, LI JY, SINGH BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress[J]. Nature Plants, 2024, 10(8): 1159-1171. [百度学术]
ZHAO ML, YUAN J, ZHANG RF, DONG MH, DENG XH, ZHU CZ, LI R, SHEN QR. Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil[J]. Applied Soil Ecology, 2018, 132: 83-90. [百度学术]
李志丹, 黄奇, 林刿, 陈浩, 薛健, 雷鹏, 王瑞, 李莎, 徐虹, 谷益安. 利迪链霉菌M01对番茄生长、青枯病发病率及根际细菌群落组成的影响[J]. 微生物学通报, 2023, 50(6): 2508-2518. [百度学术]
LI ZD, HUANG Q, LIN G, CHEN H, XUE J, LEI P, WANG R, LI S, XU H, GU YA. Effects of Streptomyces lydicus M01 on growth, bacterial wilt incidence, and rhizosphere bacterial community composition of tomatoes[J]. Microbiology China, 2023, 50(6): 2508-2518 (in Chinese). [百度学术]
SANSINENEA E, ORTIZ A. Melanin: a photoprotection for Bacillus thuringiensis based biopesticides[J]. Biotechnology Letters, 2015, 37(3): 483-490. [百度学术]
GLARE TR, O’CALLAGHAN M. Microbial biopesticides for control of invertebrates: progress from New Zealand[J]. Journal of Invertebrate Pathology, 2019, 165: 82-88. [百度学术]
索琳娜, 马杰, 刘宝存, 孙向阳, 陈广锋. 土壤调理剂应用现状及施用风险研究[J]. 农业环境科学学报, 2021, 40(6): 1141-1149. [百度学术]
SUO LN, MA J, LIU BC, SUN XY, CHEN GF. Soil conditioner application status and application of risk research[J]. Journal of Agro-Environment Science, 2021, 40(6): 1141-1149 (in Chinese). [百度学术]
操一凡, 沈宗专, 刘珊珊, 姜雪婷, 李荣, 沈其荣. Meta分析评估中国木霉对枯萎病防控效果及其影响因素[J]. 土壤学报, 2019, 56(3): 716-727. [百度学术]
CAO YF, SHEN ZZ, LIU SS, JIANG XT, LI R, SHEN QR. Evaluation of effect of Trichoderma controlling Fusarium wilt disease and its influencing factors with meta-analysis in China[J]. Acta Pedologica Sinica, 2019, 56(3): 716-727 (in Chinese). [百度学术]
ROSENTHAL R. The file drawer problem and tolerance for null results[J]. Psychological Bulletin, 1979, 86(3): 638-641. [百度学术]
MA XM, ZHU B, NIE YX, LIU Y, KUZYAKOV Y. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: a meta-analysis[J]. Soil Biology and Biochemistry, 2021, 163: 108418. [百度学术]
彭少麟, 郑凤英. Meta分析及MetaWin软件[J]. 土壤与环境, 1999, 8(4): 295-299. [百度学术]
PENG SL, ZHENG FY. Introduction of MetaWin software[J]. Soil and Environmental Sciences, 1999, 8(4): 295-299 (in Chinese). [百度学术]
HEDGES LV, GUREVITCH J, CURTIS PS. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. [百度学术]
CASPERMEYER J. MEGA software celebrates silver anniversary[J]. Molecular Biology and Evolution, 2018, 35(6): 1558-1560. [百度学术]
XIA LM, MIAO YZ, CAO AL, LIU Y, LIU ZH, SUN XL, XUE YS, XU ZH, XUN WB, SHEN QR, ZHANG N, ZHANG RF. Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus[J]. Nature Communications, 2022, 13: 1023. [百度学术]
张荣胜, 戴秀华, 陈志谊. 解淀粉芽孢杆菌Lx-11对水稻细菌性条斑病的防治效果[J]. 江苏农业科学, 2014, 42(10): 115-116. [百度学术]
ZHANG RS, DAI XH, CHEN ZY. The control effect of Bacillus amyloliformis Lx-11 on bacterial stripe disease in rice[J]. Jiangsu Agricultural Sciences, 2014, 42(10): 115-116 (in Chinese). [百度学术]
蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究[J]. 土壤学报, 2016, 53(2): 305-310. [百度学术]
CAI ZC, HUANG XQ. Soil-borne pathogens should not be ignored by soil science[J]. Acta Pedologica Sinica, 2016, 53(2): 305-310 (in Chinese). [百度学术]
任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229-235. [百度学术]
REN GD, WANG GF, MA Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229-235 (in Chinese). [百度学术]
陈雪, 莫芹, 陈一帆, 李丹, 沈渊, 章寅, 吕贝贝. 大豆土传病害生防菌及其应用研究进展[J]. 中国油料作物学报, 2023, 45(5): 1082-1094. [百度学术]
CHEN X, MO Q, CHEN YF, LI D, SHEN Y, ZHANG Y, LYU BB. Research progress on biocontrol bacteria for soybean soil-borne diseases and its application[J]. Chinese Journal of Oil Crop Sciences, 2023, 45(5): 1082-1094 (in Chinese). [百度学术]
徐国辉. 甘薯黑斑病生防菌的筛选鉴定及防病促生效果研究[D]. 泰安: 山东农业大学, 2023. [百度学术]
XU GH. Screening and identification of biocontrol bacteria against sweet potato black spot and effect of disease control and growth promotion[D]. Tai’an: Shandong Agricultural University, 2023 (in Chinese). [百度学术]
黄穗萍, 李其利, 韦绍龙, 唐利华, 陈小林, 黄素梅, 郭堂勋. 米修链霉菌TF78对香蕉枯萎病的田间防效及根际土壤微生物的影响[J]. 微生物学通报, 2022, 49(9): 3693-3708. [百度学术]
HUANG SP, LI QL, WEI SL, TANG LH, CHEN XL, HUANG SM, GUO TX. Effects of Streptomyces misionensis TF78 on Fusarium wilt of field-grown banana and rhizosphere soil microorganisms[J]. Microbiology China, 2022, 49(9): 3693-3708 (in Chinese). [百度学术]
王文丽, 金涵, 从炳成, 周蕾, 韦中, 王世梅. 复合微生物菌剂对番茄青枯病的生防效应[J]. 南京农业大学学报, 2022, 45(6): 1174-1182. [百度学术]
WANG WL, JIN H, CONG BC, ZHOU L, WEI Z, WANG SM. Biocontrol effect of composite microbial agent on tomato bacterial wilt[J]. Journal of Nanjing Agricultural University, 2022, 45(6): 1174-1182 (in Chinese). [百度学术]
WANG XB, LIANG GB. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum[J]. BioMed Research International, 2014, 2014(1): 465435. [百度学术]
ZHANG N, WANG ZQ, SHAO JH, XU ZH, LIU YP, XUN WB, MIAO YZ, SHEN QR, ZHANG RF. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture[J]. Microbial Biotechnology, 2023, 16(12): 2250-2263. [百度学术]
冯永新, 关辉, 靳彦峰, 徐伟, 张卫东, 谭宏祥, 王静, 王杰. 短小芽孢杆菌与化学杀细菌剂协同防治烟草青枯病研究[J]. 中国烟草科学, 2021, 42(4): 44-49. [百度学术]
FENG YX, GUAN H, JIN YF, XU W, ZHANG WD, TAN HX, WANG J, WANG J. Synergistic control effect of Bacillus pumilus AR03 and fungicides against tobacco bacterial wilt[J]. Chinese Tobacco Science, 2021, 42(4): 44-49 (in Chinese). [百度学术]
姚博, 朱瑞芬, 徐远东, 孙万斌, 刘畅, 陈积山. 基于Meta评估生防菌剂对饲草作物真菌病害防效及其影响因素[J]. 草业学报, 2025, 34(4): 189-200. [百度学术]
YAO B, ZHU RF, XU YD, SUN WB, LIU C, CHEN JS. Effect of biocontrol agents to control forage crop fungal diseases and factors influencing their effectiveness: a meta-analysis[J]. Acta Prataculturae Sinica, 2025, 34(4): 189-200 (in Chinese). [百度学术]
LIU YP, ZHANG HH, WANG J, GAO WT, SUN XT, XIONG Q, SHU X, MIAO YZ, SHEN QR, XUN WB, ZHANG RF. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome[J]. Nature Communications, 2024, 15: 1907. [百度学术]
LIU YP, XU ZH, CHEN L, XUN WB, SHU X, CHEN Y, SUN XL, WANG ZQ, REN Y, SHEN QR, ZHANG RF. Root colonization by beneficial rhizobacteria[J]. FEMS Microbiology Reviews, 2024, 48(1): fuad066. [百度学术]
赵梦丽. 生物有机肥驱动抑病型番茄根际微生物群落组装的微生态机制[D]. 南京: 南京农业大学, 2020. [百度学术]
ZHAO ML. Microbial ecological mechanism of disease suppressive bacterial community in tomato rhizosphere driven by bio-organic fertilizer application[D]. Nanjing: Nanjing Agricultural University, 2020 (in Chinese). [百度学术]
葛越. 几种土壤生防微生物对烟粉虱控害潜能的研究[D]. 沈阳: 沈阳农业大学, 2021. [百度学术]
GE Y. Study on the application of several soil microorganisms for whitefly control[D]. Shenyang: Shenyang Agricultural University, 2021 (in Chinese). [百度学术]
蒋春号. 蜡质芽胞杆菌AR156诱导植物对丁香假单胞菌及南方根结线虫抗性机理研究[D]. 南京: 南京农业大学, 2016. [百度学术]
JIANG CH. Studys on the mechanisms of inducing systemic resistance to Pseudomonas syringae and Meloidogyne incognita by Bacillus cereus AR156 in plant[D]. Nanjing: Nanjing Agricultural University, 2016 (in Chinese). [百度学术]
陈杰. 连作马铃薯健康生长的微生态机制及土传真菌病害生防菌研究[D]. 杨凌: 西北农林科技大学, 2013. [百度学术]
CHEN J. Microecological mechanism of healthy plant growth in continuous cropping potato fields and biocontrol microorganisms of soil-borne fungal diseases[D]. Yangling: Northwest A&F University, 2013 (in Chinese). [百度学术]
郭志英. 生防菌剂接种方法对辣椒防病促生作用及根区微生态的影响[D]. 杨凌: 西北农林科技大学, 2008. [百度学术]
GUO ZY. Effect of biocontrol agents’s inoculated methods on the pepper disease Prevention、Growth promoting function and microecology[D]. Yangling: Northwest A&F University, 2008 (in Chinese). [百度学术]
LI PF, TEDERSOO L, CROWTHER TW, DUMBRELL AJ, DINI-ANDREOTE F, BAHRAM M, KUANG L, LI T, WU M, JIANG YJ, LUAN L, SALEEM M, de VRIES FT, LI ZP, WANG BZ, JIANG JD. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100[J]. Nature Food, 2023, 4(11): 996-1006. [百度学术]
张修群, 韩小平, 雷国明. 蔬菜枯萎病和青枯病的识别与治理[J]. 中国植保导刊, 2008, 28(7): 22-23. [百度学术]
ZHANG XQ, HAN XP, LEI GM. Identification and control of vegetable wilt and bacterial wilt[J]. China Plant Protection Guide, 2008, 28(7): 22-23 (in Chinese). [百度学术]
赵杨, 苗则彦, 李颖, 白元俊. 番茄灰霉病防治研究进展[J]. 中国植保导刊, 2014, 34(7): 21-29. [百度学术]
ZHAO Y, MIAO ZY, LI Y, BAI YJ. Research progress on controlling against tomato gray mold[J]. China Plant Protection, 2014, 34(7): 21-29 (in Chinese). [百度学术]
张林普. 农用抗生素作用机制[J]. 国外药学(抗生素分册), 1982, 3(2): 134-140. [百度学术]
ZHANG LP. Mechanisms of action of agricultural antibiotics[J]. Foreign Pharmacy (Antibiotics Section), 1982, 3(2): 134-140 (in Chinese). [百度学术]
李莉, 刘晓梅, 姜兆远, 王继春, 蔡红岩, 侯佳贤, 孙辉, 李建敏, 任金平. 三种药剂复配剂对诱导水稻稻瘟病抗性的影响[J]. 吉林农业科学, 2015, 40(3): 59-61. [百度学术]
LI L, LIU XM, JIANG ZY, WANG JC, CAI HY, HOU JX, SUN H, LI JM, REN JP. Effects of 3 kinds of chemical mixture on induced rice blast resistance[J]. Journal of Jilin Agricultural Sciences, 2015, 40(3): 59-61 (in Chinese). [百度学术]
李桂花, 谭琳, 沈程文, 邓玉莲, 黄虹, 史子涵, 吉进军, 胡秋龙. 茶树根腐病拮抗放线菌分离、鉴定及生防潜能研究[J]. 植物保护, 2024, 50(5): 87-96, 204. [百度学术]
LI GH, TAN L, SHEN CW, DENG YL, HUANG H, SHI ZH, JI JJ, HU QL. Isolation, identification, and biocontrol potential of antagonistic actinomycetes against tea root rot caused by Fusarium cugenangense[J]. Plant Protection, 2024, 50(5): 87-96, 204 (in Chinese). [百度学术]
林志伟, 于春生, 李海燕, 孙冬梅, 李敏, 张匀华. 哈茨木霉抗多菌灵突变株对大豆菌核病的诱导抗性生理[J]. 大豆科学, 2016, 35(3): 472-476. [百度学术]
LIN ZW, YU CS, LI HY, SUN DM, LI M, ZHANG YH. Induced resistance physiological on stem rot of soybean by carbendazim resistance mutant strain of Trichoderma harzinaum[J]. Soybean Science, 2016, 35(3): 472-476 (in Chinese). [百度学术]
薛正莲, 王珊, 孙俊峰, 王芳, 周健. 链霉菌形态分化与次级代谢产物合成的研究进展[J]. 微生物学报, 2021, 61(12): 3870-3886. [百度学术]
XUE ZL, WANG S, SUN JF, WANG F, ZHOU J. Research progress on morphological differentiation and secondary metabolite biosynthesis of Streptomyces[J]. Acta Microbiologica Sinica, 2021, 61(12): 3870-3886 (in Chinese). [百度学术]
AIYAZ M, DIVAKARA ST, PARTHASARATHY S, HARIPRASAD P, NAYAKA SC, NIRANJANA SR. Genetic diversity and biocontrol potential of rhizospheric microbes isolated from tomato and maize[J]. Journal of Pure and Applied Microbiology, 2015, 9: 239-248. [百度学术]