摘要
产甲烷古菌是缺氧环境中碳循环的核心驱动者。近年的研究表明,产甲烷古菌还参与了(类)金属的生物地球化学循环,但其介导的金属转化机制尚未得到系统的总结。本文综合了最新的研究成果,重点解析了产甲烷古菌对铁(Fe)、汞(Hg)、钒(V)、铬(Cr)、镉(Cd)、砷(As)、硒(Se)等典型(类)金属的氧化、还原、甲基化及去甲基化过程。(1) Fe(Ⅲ)还原对甲烷生成具有双向调控作用,当胞外Fe(Ⅲ)还原不能耦合能量代谢时,会显著抑制产甲烷古菌的生长及产甲烷过程,例如巴氏甲烷八叠球菌(Methanosarcina barkeri);而当胞外Fe(Ⅲ)还原耦合能量代谢时,则会促进产甲烷古菌的生理代谢活性,例如噬乙酸甲烷八叠球菌(Methanosarcina acetivorans);(2) 在汞甲基化机制方面,产甲烷古菌通过hgcAB基因簇编码的甲基转移酶实现Hg(Ⅱ)向甲基汞(methylmercury, MeHg)的转化,且部分菌株,如卢米尼甲烷马赛球菌(Methanomassiliicoccus luminyensis)的甲基化活性与死细胞释放的酶活性相关;(3) 砷转化机制呈现多样性,M. acetivorans通过As(Ⅲ)S-腺苷甲硫氨酸甲基转移酶(arsenic methyltransferase, ArsM)催化As(Ⅲ)甲基化,同时可利用砷酸盐还原酶(arsenate reductase, ArsC)还原As(V)为As(Ⅲ),而稻田古菌群落还表现出有机胂的去甲基化能力;(4) 硒的生物转化具有双重性,低浓度硒纳米颗粒(selenium nanoparticles, SeNPs)能够促进产甲烷活性并诱导有机硒合成,而高浓度则会引发氧化应激。在环境效应方面,(类)金属通过改变氧化还原电位、竞争电子受体或诱导毒性胁迫,显著影响产甲烷古菌的代谢活性与群落结构。本文系统地揭示了产甲烷古菌在(类)金属循环中的多功能性,并提出未来需要结合宏组学与代谢组学技术解析关键酶的分子机制,同时探索基于产甲烷古菌的(类)金属污染生物修复新策略。
作为地球上最古老的生命形式之一,产甲烷古菌在碳的生物地球化学循环中发挥着重要作

图1 产甲烷古菌对多种(类)金属的转化机制
Figure 1 Transformation mechanisms of metals and metalloids by methanogenic archaea.
1 产甲烷古菌类群
甲烷(CH4)在全球碳和能量循环中起着重要作
产甲烷古菌是目前已知的唯一大量产甲烷的微生物,广泛存在于地球上各种缺氧环境中,如稻田土壤、海洋沉积物、湿地甚至热泉等极端环

图2 产甲烷古菌的主要产甲烷代谢途
Figure 2 Key methanogenic pathways in methanogenic archae
2 产甲烷古菌对金属的转化
2.1 铁
铁是地球上最丰富的过渡金属元素,其 Fe(Ⅲ)/Fe(Ⅱ)氧化还原循环产生电子跃迁为地球表层系统提供了丰富的能量通
研究表明,多种产甲烷古菌介导无定形铁还原从而抑制甲烷生
此外,产甲烷古菌还可还原铁矿物中的结构Fe(Ⅲ)。Liu
从这些研究来看,学者们提出了2种Fe(Ⅲ)矿物抑制产甲烷作用的潜在机制:(1) 在胞外Fe(Ⅲ)存在条件下,电子流从CO2还原(CH4生成)转向Fe(Ⅲ)还
与上述铁氧化物还原抑制甲烷生成的报道不同,陆雅海团队发现从青藏高原天然湿地分离的产甲烷古菌Methanosarcina mazei zm-15能够还原Fe(Ⅲ),并显著促进甲烷生
此外,部分产甲烷古菌还能通过耦合呼吸代谢过程进行Fe(Ⅲ)的还原。在乙酸型产甲烷过程中,如噬乙酸甲烷八叠球菌(Methanosarcina acetivorans)能够通过细胞色素c进行依赖Fe(Ⅲ)还原的呼吸代谢,显著促进了其生长和甲烷产量,而细胞膜结合的多血红素细胞色素c (multiheme c-type cytochrome, MHC)可能在这一途径中发挥了重要作
Wang
氧化铁矿物和产甲烷古菌无处不在,并在缺氧环境中共存。Fe(Ⅲ)还原对甲烷生成具有双向调控作用。当胞外Fe(Ⅲ)还原不能耦合能量代谢时,产甲烷古菌的生长及产甲烷过程受到显著抑制;而当胞外Fe(Ⅲ)还原耦合能量代谢时,则会促进产甲烷古菌的生理代谢活性。此外,产甲烷古菌介导的铁转化过程多样,在铁的生物地球化学循环中发挥重要作用,并可能对全球甲烷通量产生重要影响。
2.2 汞
汞(Hg)是一种剧毒重金属,对人类和环境健康具有严重危
早在1968年,产甲烷古菌就被提出可以进行汞甲基
微生物介导的甲基化过程是无机汞生物转化的主要途径。然而,在过去很长一段时间,SRB和IRB被认为是主要的汞甲基化微生物。上述研究表明,产甲烷古菌在汞甲基化过程中同样发挥重要作用,其参与沉积物、水体和土壤等多种环境中的汞甲基化过程,同时还参与了有机汞的去甲基化过程,极大地拓展了对汞生物地球化学循环的认知。
2.3 镉
镉(Cd)是一种剧毒的非必需重金属,在自然环境中仅以+2价形式稳定存在。广泛存在于土壤、海洋、湖泊、河流等自然环境
据报
2.4 钒和铬
钒是一种过渡金属元素,自然环境中一般以+3、+4、+5价存
自20世纪70年代以来,多种细菌或真菌[如奥奈达湖希瓦氏菌(Shewanella oneidensis)]对钒的生物还原能力被陆续报
以H2/CO2作为底物,Methanothermobacter thermautotrophicus还被报道能够还原Cr(Ⅵ),在0.2 mmol/L和0.4 mmol/L低浓度下能达到完全还原,在较高浓度下则能实现3.7%-43.6%的还原,这可能是由于高浓度铬对产甲烷古菌产生了毒性;还原态铬主要以氢氧化物或氧化物样的无定形固体形式存在,并含有一定比例的可溶性Cr(Ⅲ),其甲烷生成也受到了不同程度抑制,可能是由于Cr(Ⅵ)具有细胞毒性,也可能由于部分电子从甲烷生成转移到了铬还
将高毒性、迁移性的V(V)和Cr(Ⅵ)还原为较低的氧化态,被认为是一种从受污染地下水等环境去除钒和铬的修复方法,而产甲烷古菌介导的V(V)和Cr(Ⅵ)的生物还原在缺氧环境污染修复上展现出重要应用潜力。截至目前,关于其具体还原机制与调控网络仍不清楚,还需进一步深入探究。
3 产甲烷古菌对类金属的转化
3.1 砷
砷(As)是一种广泛存在于自然界的剧毒元
研究表
与上述研究不同的是,产甲烷古菌还被报道能够使稻田土壤中的有机胂去甲基
这些研究表明产甲烷古菌在砷的甲基化、还原、去甲基化过程中均发挥了关键作用,产甲烷古菌介导砷的转化呈现多样性,同时最新的报道也阐明了产甲烷古菌不同于细菌的砷转化机制,为理解砷的生物地球化学循环提供了新的理论依据。
3.2 硒
硒是一种微量元素,既是生物体必需的营养元素,也是一种环境毒
在古菌中,只有甲烷球菌属(Methanococcus)、甲烷热球菌属(Methanocaldococcus)和甲烷火菌属(Methanopyrus)可以合成硒蛋白,它们仅通过甲烷生成的氢营养途径保存能量以供生
近期,Liu
上述研究表明,产甲烷古菌在硒的利用、去甲基化等过程中均发挥了关键作用,同时其对SeNPs的生物转化具有双重性:低浓度SeNPs会促进产甲烷活性并诱导有机硒合成,而高浓度则引发氧化应激。这些发现对进一步解析硒的生物地球化学循环及其环境影响具有重要的研究价值。
本文汇总整理了上述多种产甲烷古菌对(类)金属的转化情况及其生长代谢受到的影响,详见
Organism | Substrate | Types of metal(loid)s | Methanogenesis | Main transformation products | References |
---|---|---|---|---|---|
Methanosarcina barkeri | H2/CO2 |
Amorphous Fe(OH)3/goethite/ nontronite NAu-2 | Inhibition | Fe(Ⅱ) |
[ |
Methanosarcina barkeri | Methanol | Amorphous Fe(OH)3 | Inhibition | Fe(Ⅱ) |
[ |
Methanosarcina barkeri | Acetate | Amorphous Fe(OH)3 | Inhibition | Fe(Ⅲ) |
[ |
Methanosarcina barkeri | Acetate | Nontronite NAu-2 | - | Fe(Ⅲ) |
[ |
Methanosarcina barkeri | Methanol | Nontronite NAu-2 |
Inhibit initially but enhance ultimately | Fe(Ⅱ) |
[ |
Methanosarcina barkeri | Close to natural conditions |
Amorphous Fe(OH)3/ hematite/magnetite | Inhibition | Fe(Ⅱ) |
[ |
Methanosarcina barkeri | Acetate | NanoFe3O4 | Enhancement | Fe(Ⅱ) |
[ |
Methanosarcina barkeri | H2/CO2 | Ferrihydrite | - | Fe(Ⅱ) and ZVI |
[ |
Methanosarcina mazei | Methanol | Clay minerals (nontronite NAu-2/mixed-layer illite-smectite RAr-1 and ISCz-1/illite IMt-1) | Inhibition | Fe(Ⅱ) |
[ |
Methanosarcina mazei | Acetate | NanoFe3O4 | Enhancement | Redox cycling of Fe(Ⅱ) and Fe(Ⅲ) |
[ |
Methanosarcina mazei | Acetate | Ferric citrate/ferrihydrite | Enhancement | Fe(Ⅱ) |
[ |
Methanosarcina mazei | Methanol | Ferrihydrite | Enhancement | Fe(Ⅱ) |
[ |
Methanosarcina mazei | Methanol | Goethite/hematite | No impact | Fe(Ⅲ) |
[ |
Methanococcus voltae | H2/CO2 | Amorphous Fe(OH)3 | Inhibition | Fe(Ⅱ) |
[ |
Methanospirillum hungatei | H2/CO2/acetate | Amorphous Fe(OH)3 | Inhibition | - |
[ |
Methanothrix soehngenii | Acetate | Amorphous Fe(OH)3 | Inhibition | - |
[ |
Methanothermobacter thermautotrophicus | H2/CO2 |
Clay minerals (nontronite NAu-2/wyoming montmorillonite SWy-2)/ferrihydrite | Inhibition | Fe(Ⅱ) |
[ |
Methanothrix thermoacetophila | Acetate | Ferrihydrite | Inhibition | Fe(Ⅲ) |
[ |
Methanothrix thermoacetophila (high-density cultures) | H2/CO2 | Ferrihydrite | - | Fe(Ⅱ) |
[ |
Methanothrix thermoacetophila (high-density cultures) | Acetate and H2/CO2 | Ferrihydrite | Inhibition | Fe(Ⅱ) |
[ |
Methanosarcina thermophila | Methanol and H2/CO2 | Ferrihydrite | Little inhibition | Fe(Ⅱ) |
[ |
Methanosarcina thermophila | H2/CO2 | Ferrihydrite | - | Fe(Ⅱ) |
[ |
Methanosarcina thermophila | Acetate/methanol | Ferrihydrite | Inhibition | Fe(Ⅲ) |
[ |
Methanopyrus kandleri | H2/CO2 | Ferric citrate | - | Fe(Ⅱ) |
[ |
Methanothermococcus thermolithotrophicus | H2/CO2 | Ferric citrate | - | Fe(Ⅱ) |
[ |
Methanosarcina barkeri | Methanol | Pyrite | - | Fe(Ⅱ) (reductive dissolution of FeS2) |
[ |
Methanococcus voltae | Formate | Pyrite | - | Fe(Ⅱ) (reductive dissolution of FeS2) |
[ |
Methanosarcina acetivorans | Acetate | Ferrihydrite | Enhancement | Fe(Ⅱ) |
[ |
Methanospirillum hungatei | Na-formate | HgCl2 | - | MeHg |
[ |
Methanomethylovorans hollandica | Methanol | Inorganic Hg | - | MeHg |
[ |
Methanolobus tindarius | Methanol | Inorganic Hg | - | MeHg |
[ |
Methanomassiliicoccus luminyensis | - | Inorganic Hg | - | MeHg |
[ |
Methanosarcina acetivorans | Methanol | CdCl2 | No impact | - |
[ |
Methanosarcina acetivorans | Acetate | CdCl2 | Enhancement | - |
[ |
Methanosarcina mazei | Methanol | NaVO3 | Inhibition | V(Ⅳ) |
[ |
Methanosarcina mazei | Acetate | NaVO3 | Inhibition | V(Ⅳ) |
[ |
Methanosarcina mazei | H2/CO2 | NaVO3 | Inhibition | V(Ⅳ) |
[ |
Methanothermobacter thermautotrophicus | H2/CO2 | NaVO3 | Inhibition | V(Ⅳ) |
[ |
Methanothermobacter thermautotrophicus | H2/CO2 | K2Cr2O7 | Inhibition | Cr(Ⅲ) |
[ |
Methanosarcina thermophila | - | Arsenite | - | Methylated thioarsenates |
[ |
Methanosarcina acetivorans | Methanol | As(Ⅲ) | - | MMA |
[ |
Methanomassiliicoccus luminyensis | Methanol | DMA(Ⅲ) | - | As(Ⅲ) |
[ |
Methanosarcina acetivorans | Methanol | SeNPs | Concentration-dependent promotion and inhibition | Inorganic selenium and organic selenium species |
[ |
4 总结与展望
产甲烷古菌是生物产甲烷过程的关键微生物,在全球碳循环和生物能源生产中发挥着重要作用。近年来,产甲烷古菌在(类)金属生物地球化学循环中的重要作用已被广泛报道。本文系统梳理了产甲烷古菌对部分(类)金属——Fe、Hg、V、Cr、Cd、As、Se的转化机制,并阐述了该转化过程对产甲烷古菌自身生长和产气的影响。
然而,目前关于产甲烷古菌对(类)金属的转化机制其实还缺乏更为深入的研究。例如,产甲烷古菌是通过何种机制进行钒和铬的还原?产甲烷古菌对于有机胂的去甲基化又是如何实现的?因此未来研究应重点关注以下方向:首先,需要结合新型实验技术和方法,深入探究产甲烷古菌对(类)金属的转化机理。考虑到不同产甲烷古菌的代谢底物和电子传递途径可能存在显著差异,可整合比较基因组学、转录组分析等高通量技术,并结合基因敲除等分子生物学手段,以阐明这些转化行为背后的分子机制。其次,应进一步探究复杂环境基质中多种(类)金属的协同转化规律,开发基于产甲烷古菌的(类)金属污染生物修复技术。此外,还需综合运用元素通量模型、同位素示踪与指纹分析、长期监测与大数据整合等手段,系统评估此类转化过程对全球元素循环的贡献,研究重点包括:量化局部环境中的(类)金属形态转化速率、结合地球化学模型(如Geochemist’s Workbench)解析(类)金属转化对碳-硫耦合循环的影响、预测未来气候变化下的生物转化趋势,从而为环境治理和可持续发展提供创新的生物技术策略支持。
作者贡献声明
黄馨:论文撰写和修改;李冠慧:图表绘制;梁艳萍:参与论文讨论;闫震:论文构思与修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
ROTHMAN DH, FOURNIER GP, FRENCH KL, ALM EJ, BOYLE EA, CAO CQ, SUMMONS RE. Methanogenic burst in the end-Permian carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5462-5467. [百度学术]
MEYER J, MICHALKE K, KOURIL T, HENSEL R. Volatilisation of metals and metalloids: an inherent feature of methanoarchaea[J]. Systematic and Applied Microbiology, 2008, 31(2): 81-87. [百度学术]
STARR MP, STOLP H, TRÜPER HG, BALOWS A, SCHLEGEL HG. The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria[M]. Berlin: Springer Science & Business Media, 2013: 6-662. [百度学术]
YAN Z, DU KF, YAN YF, HUANG R, ZHU FP, YUAN XZ, WANG SG, FERRY JG. Respiration-driven methanotrophic growth of diverse marine methanogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(39): e2303179120. [百度学术]
WOESE CR, KANDLER O, WHEELIS ML. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12): 4576-4579. [百度学术]
方晓瑜, 李家宝, 芮俊鹏, 李香真. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1): 1-9. [百度学术]
FANG XY, LI JB, RUI JP, LI XZ. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9 (in Chinese). [百度学术]
DRIDI B, FARDEAU ML, OLLIVIER B, RAOULT D, DRANCOURT M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8): 1902-1907. [百度学术]
SOROKIN DY, MERKEL AY, ABBAS B, MAKAROVA KS, RIJPSTRA WIC, KOENEN M, SINNINGHE DAMSTÉ JS, GALINSKI EA, KOONIN EV, van LOOSDRECHT MCM. Methanonatronarchaeum Thermophilum gen. nov., sp. nov. and “Candidatus Methanohalarchaeum thermophilum”, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(7): 2199-2208. [百度学术]
BORREL G, ADAM PS, McKAY LJ, CHEN LX, SIERRA-GARCÍA IN, SIEBER CMK, LETOURNEUR Q, GHOZLANE A, ANDERSEN GL, LI WJ, HALLAM SJ, MUYZER G, de OLIVEIRA VM, INSKEEP WP, BANFIELD JF, GRIBALDO S. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea[J]. Nature Microbiology, 2019, 4(4): 603-613. [百度学术]
RINKE C, CHUVOCHINA M, MUSSIG AJ, CHAUMEIL PA, DAVÍN AA, WAITE DW, WHITMAN WB, PARKS DH, HUGENHOLTZ P. A standardized archaeal taxonomy for the genome taxonomy database[J]. Nature Microbiology, 2021, 6(7): 946-959. [百度学术]
任师杰, 孔令豆, 刘骏, 李乐, 张勍, 陈集双, 周俊. 产甲烷古菌的分类及代谢途径研究进展[J]. 中国生物工程杂志, 2024, 44(9): 100-112. [百度学术]
REN SJ, KONG LD, LIU J, LI L, ZHANG Q, CHEN JS, ZHOU J. Advances in classification and metabolic pathways of methanogenic archaea[J]. China Biotechnology, 2024, 44(9): 100-112 (in Chinese). [百度学术]
LIU YC, WHITMAN WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189. [百度学术]
OFFRE P, SPANG A, SCHLEPER C. Archaea in biogeochemical cycles[J]. Annual Review of Microbiology, 2013, 67: 437-457. [百度学术]
承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5): 1143-1164. [百度学术]
CHENG L, ZHENG ZZ, WANG C, ZHANG H. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5): 1143-1164 (in Chinese). [百度学术]
LEADBETTER JR, BREZNAK JA. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes[J]. Applied and Environmental Microbiology, 1996, 62(10): 3620-3631. [百度学术]
FERRY JG. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1): 13-38. [百度学术]
MAYUMI D, MOCHIMARU H, TAMAKI H, YAMAMOTO K, YOSHIOKA H, SUZUKI Y, KAMAGATA Y, SAKATA S. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309): 222-225. [百度学术]
ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PÉREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2021, 601(7892): 257-262. [百度学术]
易悦, 周卓, 黄艳, 承磊. 我国产甲烷古菌研究进展与展望[J]. 微生物学报, 2023, 63(5): 1796-1814. [百度学术]
YI Y, ZHOU Z, HUANG Y, CHENG L. Methanogen research in China: current status and prospective[J]. Acta Microbiologica Sinica, 2023, 63(5): 1796-1814 (in Chinese). [百度学术]
VARGAS M, KASHEFI K, BLUNT-HARRIS EL, LOVLEY DR. Microbiological evidence for Fe(Ⅲ) reduction on early earth[J]. Nature, 1998, 395(6697): 65-67. [百度学术]
KAPPLER A, BRYCE C, MANSOR M, LUEDER U, BYRNE JM, SWANNER ED. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374. [百度学术]
STUCKI JW, KOSTKA JE. Microbial reduction of iron in smectite[J]. Comptes Rendus Geoscience, 2006, 338(6/7): 468-475. [百度学术]
DONG H, JAISI DP, KIM J, ZHANG G. Microbe-clay mineral interactions[J]. American Mineralogist, 2009, 94(11/12): 1505-1519. [百度学术]
STUCKI JW, LEE K, ZHANG L, LARSON RA. Effects of iron oxidation states on the surface and structural properties of smectites[J]. Pure and Applied Chemistry, 2002, 74(11): 2145-2158. [百度学术]
ZHANG J, DONG HL, LIU D, FISCHER TB, WANG S, HUANG LQ. Microbial reduction of Fe(Ⅲ) in illite-smectite minerals by methanogen Methanosarcina mazei[J]. Chemical Geology, 2012, 292: 35-44. [百度学术]
BOND DR, LOVLEY DR. Reduction of Fe(Ⅲ) oxide by methanogens in the presence and absence of extracellular quinones[J]. Environmental Microbiology, 2002, 4(2): 115-124. [百度学术]
van BODEGOM PM, SCHOLTEN JCM, STAMS AJM. Direct inhibition of methanogenesis by ferric iron[J]. FEMS Microbiology Ecology, 2004, 49(2): 261-268. [百度学术]
SIVAN O, SHUSTA SS, VALENTINE DL. Methanogens rapidly transition from methane production to iron reduction[J]. Geobiology, 2016, 14(2): 190-203. [百度学术]
LIU D, WANG HM, DONG HL, QIU X, DONG XZ, CRAVOTTA CA. Mineral transformations associated with goethite reduction by Methanosarcina barkeri[J]. Chemical Geology, 2011, 288(1/2): 53-60. [百度学术]
ELIANI-RUSSAK E, TIK Z, UZI-GAVRILOV S, MEIJLER MM, SIVAN O. The reduction of environmentally abundant iron oxides by the methanogen Methanosarcina barkeri[J]. Frontiers in Microbiology, 2023, 14: 1197299. [百度学术]
LIU D, DONG HL, BISHOP ME, WANG HM, AGRAWAL A, TRITSCHLER S, EBERL DD, XIE SC. Reduction of structural Fe(Ⅲ) in nontronite by methanogen Methanosarcina barkeri[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1057-1071. [百度学术]
ZHANG J, DONG HL, LIU D, AGRAWAL A. Microbial reduction of Fe(Ⅲ) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta, 2013, 106: 203-215. [百度学术]
YAMADA C, KATO S, KIMURA S, ISHII M, IGARASHI Y. Reduction of Fe(Ⅲ) oxides by phylogenetically and physiologically diverse thermophilic methanogens[J]. FEMS Microbiology Ecology, 2014, 89(3): 637-645. [百度学术]
HIRANO S, MATSUMOTO N, MORITA M, SASAKI K, OHMURA N. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Ethanothermobacter thermautotrophicus[J]. Letters in Applied Microbiology, 2013, 56(5): 315-321. [百度学术]
FETZER S, CONRAD R. Effect of redox potential on methanogenesis by Methanosarcina barkeri[J]. Archives of Microbiology, 1993, 160(2): 108-113. [百度学术]
WANG H, BYRNE JM, LIU PF, LIU J, DONG XZ, LU YH. Redox cycling of Fe(Ⅱ) and Fe(Ⅲ) in magnetite accelerates aceticlastic methanogenesis by Methanosarcina mazei[J]. Environmental Microbiology Reports, 2020, 12(1): 97-109. [百度学术]
GUO CJ, LU YH. Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by Methanosarcina mazei[J]. Applied and Environmental Microbiology, 2025, 91(3): e0223824. [百度学术]
YANG Z, LU YH. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15[J]. Environmental Microbiology Reports, 2022, 14(5): 804-811. [百度学术]
PRAKASH D, CHAUHAN SS, FERRY JG. Life on the thermodynamic edge: respiratory growth of an acetotrophic methanogen[J]. Science Advances, 2019, 5(8): eaaw9059. [百度学术]
SONG YX, HUANG R, LI L, DU KF, ZHU FP, SONG C, YUAN XZ, WANG MY, WANG SG, FERRY JG, ZHOU SG, YAN Z. Humic acid-dependent respiratory growth of Methanosarcina acetivorans involves pyrroloquinoline quinone[J]. The ISME Journal, 2023, 17(11): 2103-2111. [百度学术]
YAN Z, JOSHI P, GORSKI CA, FERRY JG. A biochemical framework for anaerobic oxidation of methane driven by Fe(Ⅲ)-dependent respiration[J]. Nature Communications, 2018, 9(1): 1642. [百度学术]
FU L, ZHOU T, WANG JY, YOU LX, LU YH, YU LP, ZHOU SG. NanoFe3O4 as solid electron shuttles to accelerate acetotrophic methanogenesis by Methanosarcina barkeri[J]. Frontiers in Microbiology, 2019, 10: 388. [百度学术]
SHANG HT, DAYE M, SIVAN O, BORLINA CS, TAMURA N, WEISS BP, BOSAK T. Formation of zerovalent iron in iron-reducing cultures of Methanosarcina barkeri[J]. Environmental Science & Technology, 2020, 54(12): 7354-7365. [百度学术]
KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654. [百度学术]
JIANG SH, PARK S, YOON Y, LEE JH, WU WM, DAN NP, SADOWSKY MJ, HUR HG. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community[J]. Environmental Science & Technology, 2013, 47(17): 10078-10084. [百度学术]
BERNER RA. Sedimentary pyrite formation: an update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615. [百度学术]
CANFIELD DE, HABICHT KS, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466): 658-661. [百度学术]
PAYNE D, SPIETZ RL, BOYD ES. Reductive dissolution of pyrite by methanogenic archaea[J]. The ISME Journal, 2021, 15(12): 3498-3507. [百度学术]
YU RQ, BARKAY T. Advances in Applied Microbiology[M]. Amsterdam: Elsevier Academic Press, 2022: 31-90. [百度学术]
陶少洋, 杨婧铱, 高峻, 董洪哲, 刘丽红, 何滨, 毛宇翔, 胡立刚, 江桂斌. 产甲烷菌中汞甲基化研究进展与展望[J]. 环境化学, 2024, 43(7): 2153-2165. [百度学术]
TAO SY, YANG JY, GAO J, DONG HZ, LIU LH, HE B, MAO YX, HU LG, JIANG GB. Research progress and prospect of mercury methylation in methanogens[J]. Environmental Chemistry, 2024, 43(7): 2153-2165 (in Chinese). [百度学术]
GILMOUR CC, ELIAS DA, KUCKEN AM, BROWN SD, PALUMBO AV, SCHADT CW, WALL JD. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12): 3938-3951. [百度学术]
MA M, DU HX, WANG DY. Mercury methylation by anaerobic microorganisms: a review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(20): 1893-1936. [百度学术]
WOOD JM, KENNEDY FS, ROSEN CG. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220(5163): 173-174. [百度学术]
HAMELIN S, AMYOT M, BARKAY T, WANG YP, PLANAS D. Methanogens: principal methylators of mercury in lake periphyton[J]. Environmental Science & Technology, 2011, 45(18): 7693-7700. [百度学术]
YU RQ, REINFELDER JR, HINES ME, BARKAY T. Mercury methylation by the methanogen Methanospirillum hungatei[J]. Applied and Environmental Microbiology, 2013, 79(20): 6325-6330. [百度学术]
PARKS JM, JOHS A, PODAR M, BRIDOU R, JrHURT RA, SMITH SD, TOMANICEK SJ, QIAN Y, BROWN SD, BRANDT CC, PALUMBO AV, SMITH JC, WALL JD, ELIAS DA, LIANG LY. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6125): 1332-1335. [百度学术]
GILMOUR CC, PODAR M, BULLOCK AL, GRAHAM AM, BROWN SD, SOMENAHALLY AC, JOHS A, JrHURT RA, BAILEY KL, ELIAS DA. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 2013, 47(20): 11810-11820. [百度学术]
PODAR M, GILMOUR CC, BRANDT CC, SOREN A, BROWN SD, CRABLE BR, PALUMBO AV, SOMENAHALLY AC, ELIAS DA. Global prevalence and distribution of genes and microorganisms involved in mercury methylation[J]. Science Advances, 2015, 1(9): e1500675. [百度学术]
GILMOUR CC, BULLOCK AL, McBURNEY A, PODAR M, ELIAS DA. Robust mercury methylation across diverse methanogenic archaea[J]. mBio, 2018, 9(2): e02403-17. [百度学术]
OREMLAND RS, CULBERTSON CW, WINFREY MR. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 1991, 57(1): 130-137. [百度学术]
CHENG SP. Heavy metal pollution in China: origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192-198. [百度学术]
SIMPSON WR. A critical review of cadmium in the marine environment[J]. Progress in Oceanography, 1981, 10(1): 1-70. [百度学术]
LIRA-SILVA E, SANTIAGO-MARTÍNEZ MG, HERNÁNDEZ-JUÁREZ V, GARCÍA-CONTRERAS R, MORENO-SÁNCHEZ R, JASSO-CHÁVEZ R. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans[J]. PLoS One, 2012, 7(11): e48779. [百度学术]
JASSO-CHÁVEZ R, LIRA-SILVA E, GONZÁLEZ-SÁNCHEZ K, LARIOS-SERRATO V, MENDOZA-MONZOY DL, PÉREZ-VILLATORO F, MORETT E, VEGA-SEGURA A, TORRES-MÁRQUEZ ME, ZEPEDA-RODRÍGUEZ A, MORENO-SÁNCHEZ R. Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress[J]. Frontiers in Microbiology, 2019, 10: 2432. [百度学术]
LIRA-SILVA E, SANTIAGO-MARTÍNEZ MG, GARCÍA-CONTRERAS R, ZEPEDA-RODRÍGUEZ A, MARÍN-HERNÁNDEZ A, MORENO-SÁNCHEZ R, JASSO-CHÁVEZ R. C
HUANG JH, HUANG F, EVANS L, GLASAUER S. Vanadium: global (bio)geochemistry[J]. Chemical Geology, 2015, 417: 68-89. [百度学术]
ZHONG JW, YIN WZ, LI YT, LI P, WU JH, JIANG GB, GU JJ, LIANG H. Column study of enhanced Cr(Ⅵ) removal and longevity by coupled abiotic and biotic processes using F
ZHANG BG, JIANG YF, ZUO KC, HE C, DAI YR, REN ZJ. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater[J]. Journal of Hazardous Materials, 2020, 382: 121228. [百度学术]
LI WQ, LI MX, YIN WZ, ZHANG WN, ZHONG JW, LI P, DENG H, WU JH. Effects of electron donors and acceptors on Cr(Ⅵ) removal in biotic Fe0 columns preloaded with microorganisms[J]. Water, Air, & Soil Pollution, 2022, 233(12): 483. [百度学术]
CARPENTIER W, SANDRA K, de SMET I, BRIGÉ A, de SMET L, BEEUMEN JV. Microbial reduction and precipitation of vanadium by Shewanella oneidensis[J]. Applied and Environmental Microbiology, 2003, 69(6): 3636-3639. [百度学术]
REHDER D. Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated[J]. Organic & Biomolecular Chemistry, 2008, 6(6): 957-964. [百度学术]
ZHANG J, DONG HL, ZHAO LD, McCARRICK R, AGRAWAL A. Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens[J]. Chemical Geology, 2014, 370: 29-39. [百度学术]
SINGH R, DONG HL, LIU D, ZHAO LD, MARTS AR, FARQUHAR E, TIERNEY DL, ALMQUIST CB, BRIGGS BR. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta, 2015, 148: 442-456. [百度学术]
ABERNATHY CO, THOMAS DJ, CALDERON RL. Health effects and risk assessment of arsenic[J]. The Journal of Nutrition, 2003, 133(5): 1536S-1538S. [百度学术]
ZHU YG, YOSHINAGA M, ZHAO FJ, ROSEN BP. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467. [百度学术]
AKTER KF, OWENS G, DAVEY DE, NAIDU R. Arsenic speciation and toxicity in biological systems[J]. Reviews of Environmental Contamination and Toxicology, 2005, 184: 97-149. [百度学术]
ZHAO FJ, MA YB, ZHU YG, TANG Z, McGRATH SP. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. [百度学术]
THOMAS F, DIAZ-BONE RA, WUERFEL O, HUBER B, WEIDENBACH K, SCHMITZ RA, HENSEL R. Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis[J]. Applied and Environmental Microbiology, 2011, 77(24): 8669-8675. [百度学术]
WUERFEL O, THOMAS F, SCHULTE MS, HENSEL R, DIAZ-BONE RA. Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis[J]. Applied Organometallic Chemistry, 2012, 26(2): 94-101. [百度学术]
WANG PP, SUN GX, ZHU YG. Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A[J]. Environmental Science & Technology, 2014, 48(21): 12706-12713. [百度学术]
VIACAVA K, MEIBOM KL, ORTEGA D, DYER S, GELB A, FALQUET L, MINTON NP, MESTROT A, BERNIER-LATMANI R. Variability in arsenic methylation efficiency across aerobic and anaerobic microorganisms[J]. Environmental Science & Technology, 2020, 54(22): 14343-14351. [百度学术]
WANG LX, GUO QH, WU G, YU ZC, NININ JML, PLANER-FRIEDRICH B. Methanogens-driven arsenic methylation preceding formation of methylated thioarsenates in sulfide-rich hot springs[J]. Environmental Science & Technology, 2023, 57(19): 7410-7420. [百度学术]
LIANG YP, YAN YF, SHI LL, WANG MY, YUAN XZ, WANG SG, YE L, YAN Z. Molecular basis of thioredoxin-dependent arsenic transformation in methanogenic archaea[J]. Environmental Science & Technology, 2025, 59(1): 443-453. [百度学术]
CHEN C, LI LY, HUANG K, ZHANG J, XIE WY, LU YH, DONG XZ, ZHAO FJ. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal, 2019, 13(10): 2523-2535. [百度学术]
CHEN C, LI LY, WANG YF, DONG XZ, ZHAO FJ. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease[J]. The ISME Journal, 2023, 17(11): 1851-1861. [百度学术]
RAYMAN MP. Selenium and human health[J]. The Lancet, 2012, 379(9822): 1256-1268. [百度学术]
FAN TWM, TEH SJ, HINTON DE, HIGASHI RM. Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California[J]. Aquatic Toxicology, 2002, 57(1/2): 65-84. [百度学术]
AMWEG EL, STUART DL, WESTON DP. Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water[J]. Aquatic Toxicology, 2003, 63(1): 13-25. [百度学术]
ASTRATINEI V, van HULLEBUSCH E, LENS P. Bioconversion of selenate in methanogenic anaerobic granular sludge[J]. Journal of Environmental Quality, 2006, 35(5): 1873-1883. [百度学术]
NIESS UM, KLEIN A. Dimethylselenide demethylation is an adaptive response to selenium deprivation in the archaeon Methanococcus voltae[J]. Journal of Bacteriology, 2004, 186(11): 3640-3648. [百度学术]
LIU XY, MA JY, WANG Y, DUAN JL, FENG LJ, ZHU FP, SUN XD, YAN Z, YUAN XZ. Chemical dynamics of selenium nanoparticles in archaeal systems[J]. ACS Nano, 2024, 18(24): 15661-15670. [百度学术]
STOCK T, SELZER M, ROTHER M. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea[J]. Molecular Microbiology, 2010, 75(1): 149-160. [百度学术]
ROTHER M, RESCH A, WILTING R, BÖCK A. Selenoprotein synthesis in archaea[J]. BioFactors, 2001, 14(1/2/3/4): 75-83. [百度学术]
POEHLEIN A, HEYM D, QUITZKE V, FERSCH J, DANIEL R, ROTHER M. Complete genome sequence of the Methanococcus maripaludis type strain JJ (DSM 2067), a model for selenoprotein synthesis in archaea[J]. Genome Announcements, 2018, 6(14): e00237-18. [百度学术]
QUITZKE V, FERSCH J, SEYHAN D, ROTHER M. Selenium-dependent gene expression in Methanococcus maripaludis: involvement of the transcriptional regulator HrsM[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2018, 1862(11): 2441-2450. [百度学术]
FUNKNER K, POEHLEIN A, JEHMLICH N, EGELKAMP R, DANIEL R, von BERGEN M, ROTHER M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis[J]. mSystems, 2024, 9(5): e0133823. [百度学术]
MUKHOPADHYAY B, JOHNSON EF, WOLFE RS. Reactor-scale cultivation of the hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities[J]. Applied and Environmental Microbiology, 1999, 65(11): 5059-5065. [百度学术]
BURGGRAF S, FRICKE H, NEUNER A, KRISTJANSSON J, ROUVIER P, MANDELCO L, WOESE CR, STETTER KO. Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system[J]. Systematic and Applied Microbiology, 1990, 13: 263-269. [百度学术]
WHITMAN WB, ANKWANDA E, WOLFE RS. Nutrition and carbon metabolism of Methanococcus voltae[J]. Journal of Bacteriology, 1982, 149(3): 852-863. [百度学术]