摘要
激酶是一种通过磷酸化作用调控细胞内信号传导的蛋白质,可催化高能供体分子的磷酸基团转移至特定底物上,是细胞功能的关键调节分子。激酶的功能多样,能够调控底物蛋白质的活化、亚细胞定位及构象改变。近年来,越来越多的研究表明,宿主激酶在小RNA病毒感染过程中发挥着重要的调控作用。小RNA病毒科成员可引起人和动物的多种疾病,曾在全球范围内引发严重的公共卫生问题,并造成巨大的经济负担。全面了解小RNA病毒的感染过程有助于预防和治疗这些疾病。本文综述了宿主激酶调控小RNA病毒感染的研究进展,旨在更全面地阐述宿主激酶与小RNA病毒的相互作用机制,同时讨论了宿主激酶作为预防疾病的有效措施及其药物靶点的可操作性,以期为未来开发新的抗小RNA病毒药物和疫苗研发提供启示。
宿主激酶广泛存在于真核细胞中,其家族成员众多,可达500多
1 宿主激酶的种类和功能
宿主激酶在细胞周期进程、细胞生长、分化、迁移、代谢和凋亡等关键细胞过程中对蛋白质活性的控制发挥着重要作
1.1 蛋白质丝氨酸/苏氨酸激酶
蛋白质丝氨酸/苏氨酸激酶在宿主蛋白激酶中占据绝大多数,根据功能与结合位点的不同可大致将其分为5组:(1) AGC组即依赖于环磷酸腺苷(cylic adenosine monophosphate, cAMP)的蛋白激酶A (protein kinase A, PKA)、依赖于环磷酸鸟苷(cyclic guanosine monophosphate, cGMP)的蛋白激酶G (protein kinase G, PKG)和依赖于钙离子和磷脂的蛋白激酶C (protein kinase C, PKC);(2) 钙/钙调素依赖性蛋白激酶(Ca/calmodulin-dependent protein kinase, CAMK)组;(3) 酪蛋白激酶1 (casein kinase 1, CK1)组;(4) CMGC组,即细胞周期蛋白依赖性激酶(cyclin dependent kinases, CDK)、有丝分裂原活化蛋白激酶(mitogen-activated protein kinases, MAPK)、糖原合成酶激酶3 (glycogen synthesis kinanse 3, GSK3)和类细胞分裂周期激酶(cell division cycle-like kinase, CLK);(5) STE (sterile)组。
AGC组包括PKA、PKG、PKC家族,其主要功能是参与许多关键的细胞内信号转导通
1.2 蛋白质酪氨酸激酶
蛋白质酪氨酸激酶是分布在细胞膜表面的酶偶联型受体,一般分为受体酪氨酸激酶(receptor tyrosine kinase, RTKs)和非受体酪氨酸激酶(non-receptor tyrosine kinases, NRTKs) 2类。RTKs是一种跨膜糖蛋白,与同源配体结合后会被激活,并通过使受体本身(自体磷酸化)和下游信号蛋白上的酪氨酸残基磷酸化,将细胞外信号传递到细胞质中;据报道,受体酪氨酸激酶(anexelekto, Axl)是一种新型的新型冠状病毒(SARS-CoV-2)候选受体,它可能在促进人类呼吸系统的病毒感染中发挥重要作用,并且是未来临床干预策略的潜在目
除RTKs和NRTKs之外,还存在一种酪氨酸激酶样(tyrosine kinase-like, TKL)的蛋白激酶,其中的受体相互作用蛋白激酶(receptor-interacting protein kinase, RIPK)同时具有酪氨酸激酶和丝氨酸/苏氨酸激酶的活
1.3 非典型蛋白激酶
非典型激酶是一类与传统蛋白激酶结构和作用机制不同的蛋白激
1.4 类蛋白激酶
类蛋白激酶包括一系列脂质、糖类和其他小分子激酶,它们的功能与蛋白激酶相似,都是通过磷酸化脂质、糖类或其他小分子,在细胞内发挥重要的动态调节功能。例如,核黄素代谢中的关键酶核黄素激酶(riboflavin kinase, RFK
除此之外,存在一些脂质的类蛋白激酶。例如,脂质激酶家族中的PI3K,它能使细胞膜上磷脂酰肌醇环的3-羟基磷酸
综上所述,以上4类激酶都可参与调控病毒复制。本文重点讨论以上各类宿主激酶和小RNA病毒感染之间的相互作用关系,
Types of kinases | Kinases | Viruses | References |
---|---|---|---|
Serine/threonine kinases | AKT | FMDV |
[ |
TPL2 | FMDV |
[ | |
AKT2 | CV |
[ | |
MAPK | EMCV, TMEV, SVV |
[ | |
p38MAPK | SVV |
[ | |
AMPK | SVV |
[ | |
ERK | TMEV, SVV, CV |
[ | |
GSK-3β | TMEV |
[ | |
ILK | CV |
[ | |
PKD | FMDV, HRV, PV |
[ | |
Pak1 | EV |
[ | |
PKCα | EV |
[ | |
MAP2K3 | HAV |
[ | |
Tyrosine kinases | Tyrosine kinase | EMCV, HAV |
[ |
Abl | CV |
[ | |
Fyn | CV |
[ | |
p56Lck | CV |
[ | |
JAK | EV, HAV |
[ | |
Other kinases | PI4KA | EMCV |
[ |
PI3K | EMCV |
[ | |
PKR | FMDV, EMCV |
[ | |
PERK | CV |
[ | |
PIKFYVE | CV, PV, EV |
[ |
FMDV:口蹄疫病毒;CV:柯萨奇病毒;EMCV:脑心肌炎病毒;TMEV:泰勒氏小鼠脑脊髓炎病毒;SVV:塞内卡谷病毒;HAV:甲型肝炎病毒;HRV:人鼻病毒;PV:脊髓灰质炎病毒;EV:肠道病毒;AKT:蛋白激酶B;AKT2:蛋白激酶B2;TPL2:肿瘤进展位点2;ERK:细胞外信号调节激酶;GSK-3β:糖原合酶激酶3β;MAP2K3:丝裂原活化蛋白激酶激酶3;PKD:蛋白激酶D;ILK:整合素连接激酶;Pak1:p21激活激酶;PKCα:蛋白激酶Cα;AMPK:AMP激活的蛋白激酶;Abl, JAK:酪氨酸激酶;p56Lck:淋巴细胞特异性蛋白酪氨酸激酶;PI4KA:磷脂酰肌醇4激酶IIIα;PKR:双链RNA依赖性蛋白激酶;PERK:PKR样内质网激酶;PIKFYVE:含FYVE指磷酸肌醇激酶。
FMDV: Foot and mouth disease virus; CV: Coxsackievirus; EMCV: Encephalomyocarditis virus; TMEV: Theiler’s murine encephalomyelitis virus; SVV: Seneca Valley virus; HAV: Hepatitis A virus; HRV: Human Rhinovirus; PV: Poliovirus; EV: Enterovirus; AKT: Protein kinase B; AKT2: Protein kinase B2; TPL2: Tumor progression locus 2; ERK: Extra-cellular signal-regulated kinase; GSK-3β: Glycogen synthase kinase-3β; MAP2K3: Mitogen-activated protein kinase kinase-3; PKD: Protein kinase D; ILK: Integrin-linked kinase; Pak1: p21-activated kinases; PKCα: Protein kinase Cα; AMPK: AMP-activated protein kinase; Abl: Abelson kinase; JAK: Janus kinase; p56Lck: Lymphocyte-specific protein tyrosine kinase; PI4KA: Phosphatidylinositol 4-kinase IIIα; PKR: Double-stranded RNA-dependent protein kinase; PERK: PKR-like endoplasmic reticulum kinase; PIKFYVE: Phosphoinositide kinase, five finger-containing.
2 宿主激酶对小RNA病毒感染的调控
小RNA病毒为无包膜、单股正链的RNA病毒,它们的基因组从7-10 kb不等,依次由5′非翻译区(untranslated region, UTR)、单个开放阅读框(open reading frame, ORF)、3′ UTR和3′ poly(A)尾组
2.1 宿主激酶对口蹄疫病毒属病毒的调控机制
口蹄疫病毒(foot and mouth disease virus, FMDV)是口蹄疫病毒属的成员,为口蹄疫的致病病原体;FMDV基因组为正链RNA,长度约为8.5 kb,包含一个单股RNA分子,基因组被包裹在由4种结构蛋白VP1-VP4形成的二十面体衣壳
FMDV是对家畜危害最大的动物病毒之一。2021年以来,全球多个国家报告有口蹄疫疫情,以亚洲和非洲最为严重;境外毒株的传入,造成我国口蹄疫疫情多发,流行毒株较复杂,需要持续强化针对性的高效疫苗研发和储
2.1.1 丝氨酸/苏氨酸激酶对口蹄疫病毒属病毒的调控机制
研究表明,丝氨酸/苏氨酸激酶参与调控FMDV感染。Raf丝氨酸/苏氨酸激酶的抑制剂索拉非尼(sorafenib)是一种抗癌药物,索拉非尼剂量依赖地抑制FMDV复制;进一步研究表明,索拉非尼有望成为一种治疗FMDV感染的药物,其作用机制可能是通过靶向丝氨酸/苏氨酸激酶来抑制FMDV复
AKT又称蛋白激酶B (protein kinase B, PKB),它能够激活mTOR信号通路进而调节自噬相关蛋白5 (autophagy-related protein 5, ATG5)的表达和自噬进程;有研究表明AKT激酶会协助FMDV完成其生命周期,AKT通过与FMDV结构蛋白VP3合作在病毒感染期间促进自噬过程,在AKT-mTOR-ATG5依赖性自噬途径中与组蛋白去乙酰化酶8 (histone deacetylase 8, HDAC8)相互作用,并降解HDAC8,FMDV得以逃避宿主的天然免疫反应;这是口蹄疫病毒进化出的一种策略,即在病毒感染期间通过自噬途径降解相关宿主蛋白来促进病毒复
病毒感染过程中与宿主的相互作用对感染的进程至关重要。TPL2是一种丝氨酸/苏氨酸激酶,属于丝裂原活化蛋白激酶激酶激酶(mitogen-activated protein kinase kinase kinase, MAP3K)家族,在病原感染中发挥着重要作用。Zhang等的研究首次证明,宿主TPL2在FMDV复制过程中通过上调干扰素和抗病毒细胞因子的表达来发挥抗病毒作
2.1.2 其他激酶对口蹄疫病毒属病毒的调控机制
双链RNA依赖性蛋白激酶(double-stranded RNA-dependent protein kinase, PKR)在宿主抵抗病毒感染过程中发挥重要作
综上所述,在病毒感染过程中,宿主激酶对病毒的调控方式多样。有些激酶能够抑制病毒的复制过程,同时在调控过程中也存在协同病毒进行生命周期的宿主激酶。
2.2 宿主激酶对心病毒属病毒的调控机制
心病毒属病毒可以感染多种哺乳动物,包括啮齿类动物和人类,其中研究较多的是脑心肌炎病毒(encephalomyocarditis virus, EMCV)和泰勒氏小鼠脑脊髓炎病毒(Theiler’s murine encephalomyelitis virus, TMEV
2.2.1 丝氨酸/苏氨酸激酶对心病毒属病毒的调控机制
有报道称,EMCV可能会通过反式激活应答RNA结合蛋白(transactivation response RNA-binding protein, TRBP)的磷酸化而减弱IFN应答,从而逃避宿主的天然免疫反应;机制研究显示,EMCV感染宿主细胞后会引起MAPK对TRBP的磷酸化,从而激活TRBP,减弱了IFN应答以促进病毒复
Moore
Benítez-fernández等构建出类似于原发进展型多发性硬化症(primary progressive multiple sclerosis, PPMS)的临床前模型,即泰勒氏小鼠脑脊髓炎病毒诱导的脱髓鞘疾病(Theiler’s mouse encephalomyelitis virus-induced demyelinated disease, TMEV-IDD),通过该模型研究了糖原合酶激酶3β (glycogen synthase kinase-3β, GSK-3β)的抑制剂即小分子VP3.15;VP3.15能延缓TMEV感染小鼠的进程,改善运动障碍,在治疗脱髓鞘疾病方面显示出了巨大的治疗潜
2.2.2 酪氨酸激酶对心病毒属病毒的调控机制
Src家族激酶(Src family kinases, SFKs)是一种非受体酪氨酸激酶。Freudenburg等报道,在病毒感染巨噬细胞时期的炎症基因表达中,SFKs发挥了积极的调控作用,抑制SFKs可减弱EMCV诱导的环氧化酶-2 (cyclooxygenase-2, COX-2)等的表达,从而减弱机体的抗病毒过
Li
2.2.3 其他激酶对心病毒属病毒的调控机制
EMCV在进行基因组复制时需要PI4KA的协助,该激酶在EMCV的复制过程中起协同作
在建立EMCV持续感染模型的过程中发现,PKR在原核细胞U937中的表达受到抑制后,高度细胞溶解性的EMCV感染可转变为持续性感染;由于PKR具有凋亡潜能,EMCV在感染缺乏PKR的U937细胞后,由病毒诱导的凋亡被延迟,造成了在U937细胞中EMCV的持续感
2.3 宿主激酶对肠病毒属病毒的调控机制
肠病毒属的小RNA病毒包含脊髓灰质炎病毒(Poliovirus, PV)、柯萨奇病毒(Coxsackievirus, CV)和肠道病毒(Enterovirus, EV)
2.3.1 丝氨酸/苏氨酸激酶对肠病毒属病毒的调控机制
研究表明,AKT2参与各种心肌细胞信号转导过程,包括对生存和新陈代谢非常重要的过程;已知柯萨奇病毒B3 (coxsackievirus B3, CVB3)是引起人类心肌炎最常见的病原体之一,由于AKT2在CVB3感染中的作用尚不清楚,Kim
细胞外基质蛋白激活整合素时会触发整合素连接激酶(integrin-linked kinase, ILK),进而激活下游靶标,包括AKT和GSK-3β。Lowenstei
PKD参与控制高尔基体囊泡和脂质转运,同时小RNA病毒的复制会重塑高尔基体膜和内质网膜,研究发现PKD可能协助病毒复
B型肠道病毒(enterovirus B, EVB)可导致多种不同程度的急性感染。Marjomäki
2.3.2 酪氨酸激酶对肠病毒属病毒的调控机制
另一类常见的蛋白激酶酪氨酸蛋白激酶主要分布于细胞膜表
IFN-I已被证明可以抑制肠道病毒71 (enterovirus 71, EV71)的复制过程,但其下游的具体机制尚未可知。Zheng
2.3.3 其他激酶对肠病毒属病毒的调控机制
PERK可参与调控CVB3的感染过程。内质网(endoplasmic reticulum, ER)是蛋白质合成、折叠和运输的重要细胞器,ER功能受到干扰会导致未折叠或者错误折叠的蛋白质在ER腔内积累,这种情况统称为内质网应激(endoplasmic reticulum stress, ERs);ERs发生时,会引发活化转录因子6 (activating transcription factor 6, ATF6)和PERK的激活,并诱导复杂的细胞保护信号通路活化,以促进ER的平衡以及功能的恢
Luo等发现,含FYVE指磷酸肌醇激酶(phosphoinositide kinase, five finger-containing, PIKFYVE)可以调节内体分选转运复合体(endosomal sorting complex required for transport, ESCRT)通路参与RNA病毒复制过程,并在病毒的复制过程中起协同作用;且PIKFYVE的特异性抑制剂YM201636可以通过抑制PIKFYVE激酶从而阻断ESCRT通路和内体转运,导致亚细胞组分中调控EV71进入和复制的复合物被破坏,抑制细胞内EV71复制和病毒诱导的炎症反应;进一步研究发现,YM201636能广泛抑制其他小RNA病毒的复制,包括CVB3和PV
2.4 宿主激酶对肝病毒属病毒的调控机制
肝病毒属中的甲型肝炎病毒(hepatitis A virus, HAV)是直径约27 nm的球形颗粒,由32个壳微粒组成对称的二十面体核衣壳,内含线型单股RNA;HAV具有4个结构蛋白,即VP1-VP4,其中VP1与VP3为构成病毒衣壳蛋白的主要抗原多肽,可诱导中和抗体的产
2.4.1 丝氨酸/苏氨酸激酶对肝病毒属病毒的调控机制
丝氨酸/苏氨酸激酶丝裂原活化蛋白激酶激酶3 (mitogen-activated protein kinase kinase-3, MAP2K3)可协助HAV的复制。氯化锌能有效对抗HAV感染,Kanda
2.4.2 酪氨酸激酶对肝病毒属病毒的调控机制
Sasaki-Tanaka
2.5 宿主激酶对塞内卡病毒属病毒的调控机制
塞内卡谷病毒(Seneca Valley virus, SVV)是小RNA病毒科塞内卡病毒属的成员,为单股正链RNA病毒,基因组全长约7.3 kb,由5′非编码区、单一且完整的ORF、3′非编码区以及poly(A)尾组成,它的ORF编码一个多聚蛋白,最终裂解为结构蛋白VP1-VP4和非结构蛋白L、2A、2B、2C、3A、3B、3C和3
SVV能通过PERK和ATF6未折叠蛋白反应途径激活自噬,并促进病毒复制;Song
综上所述,各类宿主激酶可以在小RNA病毒的生命周期中发挥至关重要的作用,但因其研究的局限性,一些宿主激酶如何调控病毒的感染过程尚不清楚,还需后续探索研究。如

图1 宿主激酶对小RNA病毒感染过程的调控。Ⅰ:在小RNA病毒侵入宿主的过程中发挥调控作用的激酶;Ⅱ:小RNA病毒在宿主细胞内脱壳和复制过程中发挥调控作用的激酶;Ⅲ:参与小RNA病毒感染阶段但效应不明确的激酶。
Figure 1 The regulation of host kinase on the process of picornavirus infection.Ⅰ: The kinases that regulate picornavirus entry; Ⅱ: The kinases that involve in the uncoating and replication of picornavirus in host cells; Ⅲ: The kinases that involve in picornavirus infection with unclear mechanisms.
3 总结与展望
宿主体内激酶的种类众多,它们都在小RNA病毒感染的各个阶段执行着不同的使命。目前,宿主激酶参与调控口蹄疫病毒属、肠病毒属和心病毒属病毒感染过程的研究较多。PKR、AKT和MAPK等激酶还有酪氨酸激酶家族成员均在小RNA病毒感染阶段发挥调控作用。虽然部分激酶对小RNA病毒感染的具体调控机制尚不明确,还需后续进一步地研究和确认,但是各种激酶抑制剂的作用也可以从侧面反映一种宿主激酶作用小RNA病毒感染过程调控的可能性,也揭示了开发这些激酶作为抗病毒药物的潜在靶点的重要意义。此外,宿主激酶调控肝病毒属和塞内卡病毒属病毒感染的研究目前仍处于起步阶段,具有广阔的未来与应用前景。
宿主激酶对宿主本身来说是一种必不可少的关键蛋白,发挥着重要的调节作用,尤其是在炎症反应和免疫应答中。在宿主与病毒的共进化中,有些病毒会开发出一种策略,利用与宿主激酶协同的方式逃避宿主的先天性免疫应答,从而建立感染。在共进化的过程中,还有一些宿主激酶可以拮抗病毒感染的过程,在其中发挥着关键性作用。在未来,可以进一步深入探究宿主激酶调控小RNA病毒感染的具体机制,通过研究宿主激酶与小RNA病毒的相互作用,可以揭示如何阻断病毒的入侵、复制和释放等关键步骤,阐明宿主激酶在病毒感染中的具体作用,为开发新型抗病毒药物和治疗策略提供重要的科学依据。同时聚焦于开发针对宿主激酶的特异性抑制剂或激活剂,以增强抗病毒免疫反应,为小RNA病毒感染提供新的治疗策略。此外,还可以结合患者的具体情况,研究患者基因组与激酶活性之间的关系,探索个体化治疗方案,可能为个体化抗小RNA病毒感染的防治提供新的思路。最后,通过与分子生物学、免疫学和药理学等多学科合作,推动在这一领域内的研究,有助于揭示宿主激酶在病毒感染过程中的潜在应用价值。
总之,宿主激酶调控小RNA病毒感染的研究具有广阔的未来发展空间和重要的研究价值,通过深入了解宿主激酶与病毒相互作用的机制,将开发出更有效的抗病毒药物和治疗策略,为防控病毒感染和保障公共卫生做出重要贡献。
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
作者贡献声明
窦雪儿:数据收集和处理及论文撰写;连瑞雅:数据收集和处理及论文修改;王娜:论文绘图及参与论文讨论;李莎莎:论文整体框架的设计、论文审阅与修改;李慧霞:论文构思和设计、论文修改。
利益冲突
公开声明
参考文献
ATTWOOD MM, FABBRO D, SOKOLOV AV, KNAPP S, SCHIÖTH HB. Trends in kinase drug discovery: targets, indications and inhibitor design[J]. Nature Reviews Drug Discovery, 2021, 20(11): 839-861. [百度学术]
LEOPOLD AV, CHERNOV KG, VERKHUSHA VV. Optogenetically controlled protein kinases for regulation of cellular signaling[J]. Chemical Society Reviews, 2018, 47(7): 2454-2484. [百度学术]
PILLAIYAR T, LAUFER S. Kinases as potential therapeutic targets for anti-coronaviral therapy[J]. Journal of Medicinal Chemistry, 2022, 65(2): 955-982. [百度学术]
KEATING JA, STRIKER R. Phosphorylation events during viral infections provide potential therapeutic targets[J]. Reviews in Medical Virology, 2012, 22(3): 166-181. [百度学术]
章金钢. 小RNA病毒——新型的基因工程疫苗载体[J]. 生物科学信息, 1990, 6: 246-247. [百度学术]
ZHANG JG. Picornaviruses—novel genetically engineered vaccine vectors[J]. Chinese Bulletin of Life Sciences, 1990, 6: 246-247 (in Chinese). [百度学术]
GARCÍA-CÁRCELES J, CABALLERO E, GIL C, MARTÍNEZ A. Kinase inhibitors as underexplored antiviral agents[J]. Journal of Medicinal Chemistry, 2022, 65(2): 935-954. [百度学术]
CASTELO-SOCCIO L, KIM H, GADINA M, SCHWARTZBERG PL, LAURENCE A, O’SHEA JJ. Protein kinases: drug targets for immunological disorders[J]. Nature Reviews Immunology, 2023, 23(12): 787-806. [百度学术]
HUNTER T. Protein kinase classification[J]. Methods in Enzymology, 1991, 200: 3-37. [百度学术]
KANEV GK, GRAAF C, ESCH IJP, LEURS R, WÜRDINGER T, WESTERMAN BA, KOOISTRA AJ. The landscape of atypical and eukaryotic protein kinases[J]. Trends in Pharmacological Sciences, 2019, 40(11): 818-832. [百度学术]
LEROUX AE, SCHULZE JO, BIONDI RM. AGC kinases, mechanisms of regulation and innovative drug development[J]. Seminars in Cancer Biology, 2018, 48: 1-17. [百度学术]
ZHANG LL, WEI XB, WANG ZM, LIU PY, HOU YF, XU YF, SU HL, KOCI MD, YIN H, ZHANG CG. NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking[J]. Cell Reports, 2023, 42(3): 112185. [百度学术]
JOHNSON J, ALBARANI V, NGUYEN M, GOLDMAN M, WILLEMS F, AKSOY E. Protein kinase Calpha is involved in interferon regulatory factor 3 activation and type I interferon-beta synthesis[J]. The Journal of Biological Chemistry, 2007, 282(20): 15022-15032. [百度学术]
MAIER LS, BERS DM. Role of C
SUNKARI YK, MEIJER L, FLAJOLET M. The protein kinase CK1: inhibition, activation, and possible allosteric modulation[J]. Frontiers in Molecular Biosciences, 2022, 9: 916232. [百度学术]
CHOWDHURY I, DASHI G, KESKITALO S. CMGC kinases in health and cancer[J]. Cancers, 2023, 15(15): 3838. [百度学术]
BÖRGELING Y, SCHMOLKE M, VIEMANN D, NORDHOFF C, ROTH J, LUDWIG S. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection[J]. Journal of Biological Chemistry, 2014, 289(1): 13-27. [百度学术]
MÜLLER-TAUBENBERGER A, ISHIKAWA-ANKERHOLD HC, KASTNER PM, BURGHARDT E, GERISCH G. The STE group kinase SepA controls cleavage furrow formation in Dictyostelium[J]. Cell Motility and the Cytoskeleton, 2009, 66(11): 929-939. [百度学术]
WANG S, QIU ZY, HOU YN, DENG XY, XU W, ZHENG TT, WU PH, XIE SF, BIAN WX, ZHANG C, SUN ZW, LIU KP, SHAN C, LIN AF, JIANG SB, XIE YH, ZHOU Q, LU L, HUANG J, LI X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells[J]. Cell Research, 2021, 31(2): 126-140. [百度学术]
HUBBARD SR, TILL JH. Protein tyrosine kinase structure and function[J]. Annual Review of Biochemistry, 2000, 69: 373-398. [百度学术]
SHI QK, ZHAO R, CHEN LN, LIU TY, DI T, ZHANG CW, ZHANG ZY, WANG FF, HAN ZX, SUN JF, LIU SW. Newcastle disease virus activates diverse signaling pathways via Src to facilitate virus entry into host macrophages[J]. Journal of Virology, 2024, 98(3): e0191523. [百度学术]
LIU YG, CHEN Y, WANG XH, ZHAO P, ZHU YZ, QI ZT. Ezrin is essential for the entry of Japanese encephalitis virus into the human brain microvascular endothelial cells[J]. Emerging Microbes & Infections, 2020, 9(1): 1330-1341. [百度学术]
CUNY GD, DEGTEREV A. RIPK protein kinase family: atypical lives of typical kinases[J]. Seminars in Cell & Developmental Biology, 2021, 109: 96-105. [百度学术]
DANIELS BP, SNYDER AG, OLSEN TM, OROZCO S, 3rdOGUIN TH, TAIT SWG, MARTINEZ J, JrGALE M, LOO YM, OBERST A. RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation[J]. Cell, 2017, 169(2): 301-313.e11. [百度学术]
SCHEEFF ED, BOURNE PE. Structural evolution of the protein kinase-like superfamily[J]. PLoS Computational Biology, 2005, 1(5): e49. [百度学术]
DENIZ O, HASYGAR K, HIETAKANGAS V. Cellular and physiological roles of the conserved atypical MAP kinase ERK7[J]. FEBS Letters, 2023, 597(5): 601-607. [百度学术]
ERSAHIN T, TUNCBAG N, CETIN-ATALAY R. The PI3K/AKT/mTOR interactive pathway[J]. Molecular BioSystems, 2015, 11(7): 1946-1954. [百度学术]
XIANG KL, WANG B. Role of the PI3K-AKT-mTOR pathway in hepatitis B virus infection and replication[J]. Molecular Medicine Reports, 2018, 17(3): 4713-4719. [百度学术]
GARCIA G, SHARMA A, RAMAIAH A, SEN C, PURKAYASTHA A, KOHN DB, PARCELLS MS, BECK S, KIM H, BAKOWSKI MA, KIRKPATRICK MG, RIVA L, WOLFF KC, HAN B, YUEN C, ULMERT D, PURBEY PK, SCUMPIA P, BEUTLER N, ROGERS TF, et al. Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication[J]. Cell Reports, 2021, 35(1): 108940. [百度学术]
ZHANG MR, CHEN HQ, ZHANG WL, LIU Y, DING LY, GONG JW, MA RF, ZHENG SH, ZHANG YL. Biomimetic remodeling of microglial riboflavin metabolism ameliorates cognitive impairment by modulating neuroinflammation[J]. Advanced Science, 2023, 10(12): e2300180. [百度学术]
ANOZ-CARBONELL E, RIVERO M, POLO V, VELÁZQUEZ-CAMPOY A, MEDINA M. Human riboflavin kinase: species-specific traits in the biosynthesis of the FMN cofactor[J]. FASEB Journal, 2020, 34(8): 10871-10886. [百度学术]
LI Q, ZHANG LR, YANG Q, LI M, PAN XX, XU JL, ZHONG C, YAO FF, ZHANG RZ, ZHOU SQ, DAI XZ, SHI XL, DAI YJ, XU J, CHENG X, XIAO WC, SHE ZG, WANG K, QIAN XF, PU LY, et al. Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and-independent manners[J]. Cell Metabolism, 2023, 35(6): 912-927.e7. [百度学术]
RAMEH LE, CANTLEY LC. The role of phosphoinositide 3-kinase lipid products in cell function[J]. The Journal of Biological Chemistry, 1999, 274(13): 8347-8350. [百度学术]
LAMBERT PJ, SHAHRIER AZ, WHITMAN AG, DYSON OF, REBER AJ, McCUBREY JA, AKULA SM. Targeting the PI3K and MAPK pathways to treat Kaposi’s-sarcoma-associated herpes virus infection and pathogenesis[J]. Expert Opinion on Therapeutic Targets, 2007, 11(5): 589-599. [百度学术]
ZHANG HJ, WANG XW, QU M, LI ZY, YIN XP, TANG LJ, LIU XT, SUN YF. Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication[J]. Autophagy, 2023, 19(11): 2869-2883. [百度学术]
ZHANG KS, YAN MH, HAO JH, SHEN CC, ZHU ZX, ZHANG DJ, HOU J, XU GW, LI D, ZHENG HX, LIU XT. Foot-and-mouth disease virus structural protein VP1 destroys the stability of TPL2 trimer by degradation TPL2 to evade host antiviral immunity[J]. Journal of Virology, 2021, 95(7): e02149-20. [百度学术]
KIM SH, SHIN HH, KIM JH, PARK JH, JEON ES, LIM BK. Protein kinase B2 (PKB2/AKT2) is essential for host protection in CVB3-induced acute viral myocarditis[J]. International Journal of Molecular Sciences, 2022, 23(3): 1489. [百度学术]
CHUNHAPHINYOKUL B, HOSOKAI E, MIYAMOTO M, KOMURO A. Differential regulation of ATP hydrolysis of RIG-I-like receptors by transactivation response RNA-binding protein[J]. Bioscience Reports, 2023, 43(5): BSR20222152. [百度学术]
PORTER FW, BROWN B, PALMENBERG AC. Nucleoporin phosphorylation triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases[J]. Journal of Virology, 2010, 84(24): 12538-12548. [百度学术]
MOORE TC, BUSH KL, CODY L, BROWN DM, PETRO TM. Control of early Theiler’s murine encephalomyelitis virus replication in macrophages by interleukin-6 occurs in conjunction with STAT1 activation and nitric oxide production[J]. Journal of Virology, 2012, 86(19): 10841-10851. [百度学术]
SONG JW, HOU L, QUAN R, WANG D, JIANG HJ, LIU J. Synergetic contributions of viral VP1, VP3, and 3C to activation of the AKT-AMPK-MAPK-MTOR signaling pathway for Seneca Valley virus-induced autophagy[J]. Journal of Virology, 2022, 96(2): e0155021. [百度学术]
XIN L, MA XL, XIAO ZH, YAO HL, LIU ZW. Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways[J]. Infection, Genetics and Evolution, 2015, 36: 46-54. [百度学术]
BENÍTEZ-FERNÁNDEZ R, GIL C, GUAZA C, MESTRE L, MARTÍNEZ A. The dual PDE7-GSK3β inhibitor, VP3.15, as neuroprotective disease-modifying treatment in a model of primary progressive multiple sclerosis[J]. International Journal of Molecular Sciences, 2022, 23(22): 14378. [百度学术]
LOWENSTEIN CJ. Integrin-linked kinase plays a key role in coxsackievirus replication[J]. Circulation Research, 2006, 99(4): 346-347. [百度学术]
GUEDÁN A, SWIEBODA D, CHARLES M, TOUSSAINT M, JOHNSTON SL, ASFOR A, PANJWANI A, TUTHILL TJ, DANAHAY H, RAYNHAM T, MOUSNIER A, SOLARI R. Investigation of the role of protein kinase D in human rhinovirus replication[J]. Journal of Virology, 2017, 91(9): e00217-17. [百度学术]
MARJOMÄKI V, TURKKI P, HUTTUNEN M. Infectious entry pathway of enterovirus B species[J]. Viruses, 2015, 7(12): 6387-6399. [百度学术]
KANDA T, SASAKI-TANAKA R, MASUZAKI R, MATSUMOTO N, OKAMOTO H, MORIYAMA M. Knockdown of mitogen-activated protein kinase kinase 3 negatively regulates hepatitis A virus replication[J]. International Journal of Molecular Sciences, 2021, 22(14): 7420. [百度学术]
FREUDENBURG W, CORBETT JA. Src family kinases participate in the regulation of encephalomyocarditis virus-induced cyclooxygenase-2 expression by macrophages[J]. The Journal of General Virology, 2010, 91(Pt 9): 2278-2285. [百度学术]
DVORAK CMT, HALL DJ, HILL M, RIDDLE M, PRANTER A, DILLMAN J, DEIBEL M, PALMENBERG AC. Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation[J]. Virology, 2001, 290(2): 261-271. [百度学术]
SASAKI-TANAKA R, SHIBATA T, MORIYAMA M, KOGURE H, HIRAI-YUKI A, OKAMOTO H, KANDA T. Masitinib inhibits hepatitis A virus replication[J]. International Journal of Molecular Sciences, 2023, 24(11): 9708. [百度学术]
COYNE CB, BERGELSON JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions[J]. Cell, 2006, 124(1): 119-131. [百度学术]
LIU P, AITKEN K, KONG YY, OPAVSKY MA, MARTINO T, DAWOOD F, WEN WH, KOZIERADZKI I, BACHMAIER K, STRAUS D, MAK TW, PENNINGER JM. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease[J]. Nature Medicine, 2000, 6(4): 429-434. [百度学术]
ZHENG BS, ZHOU XL, TIAN L, WANG J, ZHANG WY. IFN-β1b induces OAS3 to inhibit EV71 via IFN-β1b/JAK/STAT1 pathway[J]. Virologica Sinica, 2022, 37(5): 676-684. [百度学术]
KANDA T, NAKAMOTO S, WU S, NAKAMURA M, JIANG X, HAGA Y, SASAKI R, YOKOSUKA O. Direct-acting antivirals and host-targeting agents against the hepatitis A virus[J]. Journal of Clinical and Translational Hepatology, 2015, 3(3): 205-210. [百度学术]
DOROBANTU CM, HARAK C, KLEIN R, van der LINDEN L, STRATING JRPM, van der SCHAAR HM, LOHMANN V, van KUPPEVELD FJM. Tyrphostin AG1478 inhibits encephalomyocarditis virus and hepatitis C virus by targeting phosphatidylinositol 4-kinase IIIα[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(10): 6402-6406. [百度学术]
SVITKIN YV, HAHN H, GINGRAS AC, PALMENBERG AC, SONENBERG N. Rapamycin and wortmannin enhance replication of a defective encephalomyocarditis virus[J]. Journal of Virology, 1998, 72(7): 5811-5819. [百度学术]
FREUDENBURG W, MORAN JM, LENTS NH, BALDASSARE JJ, CORBETT JA. Phosphatidylinositol 3-kinase regulates macrophage responses to double-stranded RNA and encephalomyocarditis virus[J]. Journal of Innate Immunity, 2010, 2(1): 77-86. [百度学术]
PREJEAN C, SARMA T, KURNASOV O, USACHEVA A, HEMMINGS B, CANTLEY L, FRUMAN DA, MORRISON LA, BULLER RM, COLAMONICI OR. Phosphatidylinositol 3-kinase confers resistance to encephalomyocarditis and herpes simplex virus-induced cell death through the activation of distinct downstream effectors[J]. Journal of Immunology (Baltimore, Md, 2001, 167(8): 4553-4559. [百度学术]
CHINSANGARAM J, KOSTER M, GRUBMAN MJ. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase[J]. Journal of Virology, 2001, 75(12): 5498-5503. [百度学术]
YEUNG MC, CHANG DL, CAMANTIGUE RE, LAU AS. Inhibitory role of the host apoptogenic gene PKR in the establishment of persistent infection by encephalomyocarditis virus in U937 cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(21): 11860-11865. [百度学术]
KHABAR KS, DHALLA M, SIDDIQUI Y, ZHOU A, AL-AHDAL MN, DER SD, SILVERMAN RH, WILLIAMS BR. Effect of deficiency of the double-stranded RNA-dependent protein kinase, PKR, on antiviral resistance in the presence or absence of ribonuclease L: HSV-1 replication is particularly sensitive to deficiency of the major IFN-mediated enzymes[J]. Journal of Interferon & Cytokine Research, 2000, 20(7): 653-659. [百度学术]
CAI ZJ, SHEN L, MA H, YANG J, YANG D, CHEN H, WEI J, LU QL, WANG DW, XIANG MX, WANG JA. Involvement of endoplasmic reticulum stress-mediated C/EBP homologous protein activation in coxsackievirus B3-induced acute viral myocarditis[J]. Circulation Heart Failure, 2015, 8(4): 809-818. [百度学术]
LUO Z, LIANG YC, TIAN MF, RUAN ZH, SU R, SHEREEN MA, YIN JL, WU KL, GUO J, ZHANG QW, LI YK, WU JG. Inhibition of PIKFYVE kinase interferes ESCRT pathway to suppress RNA virus replication[J]. Journal of Medical Virology, 2023, 95(2): e28527. [百度学术]
ZHANG XL, PAGET M, WANG CC, ZHU ZX, ZHENG HX. Innate immune evasion by picornaviruses[J]. European Journal of Immunology, 2020, 50(9): 1268-1282. [百度学术]
RYU WS. Molecular Virology of human pathogenic viruses[M]. London: Academic Press, 2017: 367-381. [百度学术]
DOMINGO E, BARANOWSKI E, ESCARMÍS C, SOBRINO F. Foot-and-mouth disease virus[J]. Comparative Immunology, Microbiology and Infectious Diseases, 2002, 25(5/6): 297-308. [百度学术]
杨小龙. 家畜口蹄疫的临床症状及预防措施[J]. 中国畜牧兽医文摘, 2016, 32(2): 165. [百度学术]
BROOKSBY JB. Portraits of viruses: foot-and-mouth disease virus[J]. Intervirology, 1982, 18(1/2): 1-23. [百度学术]
ZHANG R, QIN XD, YANG Y, ZHU XL, ZHAO SY, ZHANG ZX, SU QL, ZHAO ZX, YIN XP, MENG XL, ZHANG ZD, LI YM. STING1 is essential for an RNA-virus triggered autophagy[J]. Autophagy, 2022, 18(4): 816-828. [百度学术]
THEERAWATANASIRIKUL S, LUEANGARAMKUL V, SEMKUM P, LEKCHAROENSUK P. Antiviral mechanisms of sorafenib against foot-and-mouth disease virus via c-RAF and AKT/PI3K pathways[J]. Veterinary Research Communications, 2024, 48(1): 329-343. [百度学术]
LI CT, ZHU ZX, DU XL, CAO WJ, YANG F, ZHANG XL, FENG HH, LI D, ZHANG KS, LIU XT, ZHENG HX. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication[J]. Virology, 2017, 509: 222-231. [百度学术]
VISSER LJ, MEDINA GN, RABOUW HH, de GROOT RJ, LANGEREIS MA, de LOS SANTOS T, van KUPPEVELD FJM. Foot-and-mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation[J]. Journal of Virology, 2019, 93(2): e00922-18. [百度学术]
张敏怡, 由芳菲, 陈清. 小核糖核酸病毒感染与人兽共患病的关系[J]. 中国人兽共患病学报, 2022, 38(10): 922-930. [百度学术]
ZHANG MY, YOU FF, CHEN Q. Relationship between picornavirus infections and zoonotic diseases[J]. Chinese Journal of Zoonoses, 2022, 38(10): 922-930 (in Chinese). [百度学术]
LI L, FAN H, SONG ZB, LIU XW, BAI J, JIANG P. Encephalomyocarditis virus 2C protein antagonizes interferon-β signaling pathway through interaction with MDA5[J]. Antiviral Research, 2019, 161: 70-84. [百度学术]
TSUNODA I, SATO F, OMURA S, FUJITA M, SAKIYAMA N, PARK AM. Three immune-mediated disease models induced by Theiler’s virus: multiple sclerosis, seizures and myocarditis[J]. Clinical & Experimental Neuroimmunology, 2016, 7(4): 330-345. [百度学术]
LI QY, LIU Y, XU SJ, ZHAO KX, LING Y, LIU RX, ALI A, BAI JL. Caveolin-1 is involved in encephalomyocarditis virus replication in BHK-21 cells[J]. Virology Journal, 2021, 18(1): 63. [百度学术]
陈伟, 王明丽. 肠道病毒71型感染研究进展[J]. 中国热带医学, 2009, 9(2): 370-372, 388. [百度学术]
CHEN W, WANG ML. Advance in the research of enterovirus 71 infection[J]. China Tropical Medicine, 2009, 9(2): 370-372, 388 (in Chinese). [百度学术]
TEBRUEGGE M, CURTIS N. Enterovirus infections in neonates[J]. Seminars in Fetal and Neonatal Medicine, 2009, 14(4): 222-227. [百度学术]
STALDER D, GERSHLICK DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane[J]. Seminars in Cell and Developmental Biology, 2020, 107: 112-125. [百度学术]
BELOV GA. Dynamic lipid landscape of picornavirus replication organelles[J]. Current Opinion in Virology, 2016, 19: 1-6. [百度学术]
JIAO QL, BI L, REN YD, SONG SL, WANG Q, WANG YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance[J]. Molecular Cancer, 2018, 17(1): 36. [百度学术]
DELORME-AXFORD E, SADOVSKY Y, COYNE CB. Lipid raft- and SRC family kinase-dependent entry of coxsackievirus B into human placental trophoblasts[J]. Journal of Virology, 2013, 87(15): 8569-8581. [百度学术]
CHEN XY, SHI CR, HE MH, XIONG SQ, XIA XB. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 352. [百度学术]
STUART DI, REN JS, WANG XX, RAO ZH, FRY EE. Hepatitis A virus capsid structure[J]. Cold Spring Harbor Perspectives in Medicine, 2019, 9(5): a031807. [百度学术]
KANDA T, SASAKI R, MASUZAKI R, TAKAHASHI H, MIZUTANI T, MATSUMOTO N, NIREI K, MORIYAMA M. Co-occurrence of hepatitis A infection and chronic liver disease[J]. International Journal of Molecular Sciences, 2020, 21(17): 6384. [百度学术]
BURKE MJ. Oncolytic Seneca Valley virus: past perspectives and future directions[J]. Oncolytic Virotherapy, 2016, 5: 81-89. [百度学术]
BENNETT B, URZÚA-ENCINA C, PARDO-ROA C, ARIYAMA N, LECOCQ C, RIVERA C, BADÍA C, SUÁREZ P, AGREDO M, AGUAYO C, ÁVILA C, ARAYA H, PÉREZ P, BERRIOS F, AGÜERO B, MENDIETA V, PITUCO EM, de ALMEIDA IG, MEDINA R, BRITO B, et al. First report and genetic characterization of Seneca Valley virus (SVV) in Chile[J]. Transboundary and Emerging Diseases, 2022, 69(6): e3462-e3468. [百度学术]
ZHANG XL, ZHU ZX, YANG F, CAO WJ, TIAN H, ZHANG KS, ZHENG HX, LIU XT. Review of Seneca Valley virus: a call for increased surveillance and research[J]. Frontiers in Microbiology, 2018, 9: 940. [百度学术]