摘要
毒素-抗毒素(toxin-antitoxin, TA)系统广泛分布于细菌和古菌中。TA系统通常由一个能够抑制细菌生长的毒素和一个能够中和毒素毒性的抗毒素组成。目前,TA系统分为I-VIII型,其中II型TA系统的研究最为深入。然而,近年来也发现了一些非典型TA系统,如单顺反子TA系统和三组分TA系统等。自20世纪80年代发现首个TA系统(CcdB/CcdA)以来,TA系统被认为在微生物的多种生理过程中发挥重要功能。本文综述了近年来TA系统在抵抗噬菌体感染方面的功能,特别是TA系统如何特异性感知入侵噬菌体及其分子机制,旨在为探索未知TA系统的生物功能及调控机制提供参考。
毒素-抗毒素(toxin-antitoxin, TA)系统广泛存在于原核生物基因组中,特别是在细菌和古菌中,其中毒素能够降低细菌的代谢从而抑制其生长,而抗毒素可以通过精巧的方式解除毒素对细菌生长的抑制,截至目前,根据抗毒素的性质及其中和毒素的方式,TA系统已被分为I-VIII
1 TA系统的分类与功能
TA系统通常由一个毒素和对应的抗毒素组成,人们根据抗毒素的性质(蛋白质或RNA)及毒素被中和的方式,将TA系统分为I-VIII
1.1 经典TA系统的分类
TA系统被分为I-VIII
1.2 非经典TA系统
除了如RnlAB、DarTG等二元TA系统外,还发现了一些非经典的TA系统,包括三组分TA系统和单顺反子TA系
1.3 TA系统的生物学功能
尽管TA系统在生物中广泛存在,但目前对TA系统功能的研究仍不够清晰。一些研究表明,TA系统在促进微生物抗逆性、维持基因组稳定性、抵抗噬菌体感
1.3.1 质粒稳定性的维持
F质粒上的CcdA/CcdB是首个被鉴定的TA系
1.3.2 TA系统在抗噬菌体中的功能
在生物在进化过程中,细菌产生了许多自我保护和防御机制来抵抗噬菌体感染。除了CRISPR-Cas系统和限制性修饰系统外,近年来还发现了包括TA系统在内的许多新颖的抗噬菌体系统。
尽管早在1996年就已发现TA系统可以抵抗噬菌体感
2 TA系统介导的抗噬菌体感染及机制进展
2.1 RnlA通过降解mRNA抵抗T4噬菌体感染
RnlAB属于Ⅱ型TA系统,其中毒素RnlA曾称作为Rnase LS,具有核糖核酸内切酶功
最新研究表明,RnlA是一种高等真核生物和原核生物核苷酸结合(higher eukaryotes and prokaryotes nucleotide binding, HEPN)蛋白,包含N端结构域(N-terminal domain, NTD)、N末端重复结构域(N-terminal repetitive domain, NRD)和C端负责与Dmd识别的结构域(Dmd-binding domain, DBD);其中NTD对底物的结合至关重要,C端结构域具有典型的HEPN核酸酶折叠,在无底物或无抗毒素RnlB结合的情况下,RnlA以非经典二聚态形式存在,抗毒素RnlB结合在HEPN二聚体界面,由1个RnlA二聚体与2个单体RnlB分子相互作用形成复合物,阻止底物接近RX4H的酶活中心,从而抑制RnlA的毒性;当噬菌体感染时,抗毒素RnlB会快速降解,导致毒素RnlA释放,激活核糖核酸内切酶活性,降解噬菌体mRN
RnlAB能够通过流产感染(abortive infection, Abi)的方式应对Dmd突变的T4噬菌体。所谓流产感染,是指噬菌体感染细菌时,诱导细菌 “自杀”,使病毒复制被中断或无法继续进行,从而防止噬菌体扩散并感染更多 “细菌

图1 RnlA通过降解mRNA抵抗T4噬菌体
Figure 1 RnlA resists T4 phage infection by degrading mRNA.
2.2 ToxIN TA系统
ToxIN是一个研究较为清晰的III型TA系统,其中毒素ToxN具有核酸内切酶活性,而抗毒素为一系列短串联重复序列的RN
Fineran
2.3 DarTG通过ADP核糖基化DNA阻断噬菌体dsDNA复制
DarTG是一类在多种微生物中广泛分布的TA系统,首次在结核分枝杆菌中被发
最近,通过生物信息学在微生物基因组的其他防御系统附近发现了与DarTG同源的2个TA系统,即DarTG1和DarTG2;这2个TA系统中,毒素DarT都是ADP-核糖基转移酶家族蛋白,而抗毒素属于不同的蛋白质家族;其中,DarG1具有一个YbiA家族蛋白,而DarG2的N端则有一个macrodomain结构域;研究表明RB69和T5噬菌体的感染会使毒素DarT快速释放,进而导致噬菌体DNA的ADP-核糖基化修饰,阻止病毒复制,进一步影响成熟噬菌体颗粒的产
DarT家族被证明在细胞中进行过表达可以使单链DNA (single-stranded DNA, ssDNA)发生腺苷核糖基化修饰;DarT作为一种毒素,具有ADP核糖转移酶活性,在激活后可以通过将细胞内的DNA进行ADP核糖基化,阻断噬菌体双链DNA (double-stranded DNA, dsDNA)的复
2.4 CapRelSJ46 通过积累ppApp影响蛋白质合成抵抗噬菌体感染
虽然上述TA系统被证明在抵御噬菌体感染过程中发挥重要功能,但对于这些TA系统如何感知噬菌体的入侵并导致TA系统的激活(毒素从复合物的释放)尚不清楚。CapRe
CapRe

图2 CapRe
Figure 2 CapRe
CapRe
2.5 TAC系统抗噬菌体功能
毒素-抗毒素-分子伴侣(toxin-antitoxin-chaperone, TAC)系统由一个HigBA类型的Ⅱ型 TA系统和一个分子伴侣SecB组成,在该系统中,毒素HigB是一个核糖体依赖的核糖核酸酶(ribonuclease),能够切割核糖体A位点结合的mRNA,从而抑制蛋白质合成,而抗毒素的中和作用则依赖于HigBA和SecB的共同作

图3 噬菌体主要尾部蛋白GpV激活HigBAC,抵御噬菌体感染
Figure 3 The HigBAC can resist phage infection by recognizing the GpV tail protein of phage.
除了HigBAC之外,CmdTAC也属于TAC系统。来自大肠杆菌ECOR22的CmdTAC (也称PD-T4-9)中,毒素CmdT是一个具有HYE家族ADP-核糖基转移酶功能的效应蛋白,而抗毒素为CmdA,在该TA系统中,分子伴侣样的CmdC作为感知噬菌体衣壳蛋白的感应器,当噬菌体感染发生时,新合成的T4噬菌体的衣壳蛋白会被CmdC感知,从而触发CmdC从CmdTAC中分离出来,导致该TA系统的不稳定和抗毒素CmdA的降解,最终导致具有ADP-核糖基转移酶活性的毒素的释
2.6 AriB通过切割宿主tRNALys 抵抗噬菌体感染
细菌噬菌体抗限制诱导系统(phage anti-restriction-induced system, PARIS)是最近被鉴定的位于细菌基因组的防御岛的抗噬菌体系统,它存在于整合到宿主大肠杆菌基因组中的P4样噬菌体卫星位点;PARIS包含1个SMC家族ATPase蛋白AriA和1个金属依赖的TOPRIM/OLD家族核酸酶,先前的研究表明,T7噬菌体的Ocr的错义突变可以使其逃逸细菌的PARIS免疫系
最近的研究还发现,PARIS属于II型TA系统,其中AriA作为抗毒素,而AriB则充当毒素的角色,在未受到噬菌体感染时,由于AriA的结合,毒素AriB处于无活性状态,研究人员通过冷冻电镜解析了PARIS系统的结构,发现单独的AriA以六聚体形式存在,而AriA和AriB会组装成一个比例为6:3的类似水母状的复合物,从而维持其无活性状态;与AirA分离的毒素AirB可降解宿主赖氨酸tRNA (tRN
3 总结与展望
研究发现,TA系统在致病微生物中的分布较为广泛,且与微生物的致病性密切相关,这一特性引起了众多微生物学家及医药学界的广泛关注。特别是本文重点阐述的TA系统,能够直接感知并响应噬菌体的存在,从而发挥强大的抗噬菌体功能。噬菌体能够特异性杀死细菌,而不引起细菌的耐药性的产生,被视为抗生素的一个替代方案。然而,细菌体内所携带的如TA系统、CRISPR-Cas等免疫系统,会对噬菌体产生显著影响,可以被用于工业上,开发防止噬菌体感染的发酵菌
作者贡献声明
朱青健:负责论文的撰写与修改;欧阳松应:对论文进行了审阅;王勖荣:负责绘图工作并汇总了相关文献。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
JURĖNAS D, FRAIKIN N, GOORMAGHTIGH F, van MELDEREN L. Biology and evolution of bacterial toxin-antitoxin systems[J]. Nature Reviews Microbiology, 2022, 20(6): 335-350. [百度学术]
SONG S, WOOD TK. A primary physiological role of toxin/antitoxin systems is phage inhibition[J]. Frontiers in Microbiology, 2020, 11: 1895. [百度学术]
OGURA T, HIRAGA S. Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(15): 4784-4788. [百度学术]
NAKA KT, QI D, YONESAKI T, OTSUKA Y. RnlB antitoxin of the Escherichia coli RnlA-RnlB toxin-antitoxin module requires RNase HI for inhibition of RnlA toxin activity[J]. Toxins, 2017, 9(1): 29. [百度学术]
BRIELLE R, PINEL-MARIE ML, FELDEN B. Linking bacterial type I toxins with their actions[J]. Current Opinion in Microbiology, 2016, 30: 114-121. [百度学术]
GERDES K. The parB (hok/sok) locus of plasmid R1: a general purpose plasmid stabilization system[J]. Bio/Technology, 1988, 6: 1402-1405. [百度学术]
JIANG Y, POGLIANO J, HELINSKI DR, KONIECZNY I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase[J]. Molecular Microbiology, 2002, 44(4): 971-979. [百度学术]
BLOWER TR, SHORT FL, RAO F, MIZUGUCHI K, PEI XY, FINERAN PC, LUISI BF, SALMOND GP. Identification and classification of bacterial type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Research, 2012, 40(13): 6158-6173. [百度学术]
BLOWER TR, FINERAN PC, JOHNSON MJ, TOTH IK, HUMPHREYS DP, SALMOND GPC. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia[J]. Journal of Bacteriology, 2009, 191(19): 6029-6039. [百度学术]
MASUDA H, TAN Q, AWANO N, WU KP, INOUYE M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli[J]. Molecular Microbiology, 2012, 84(5): 979-989. [百度学术]
CHENG HY, SOO VWC, ISLAM S, McANULTY MJ, BENEDIK MJ, WOOD TK. Toxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress[J]. Environmental Microbiology, 2014, 16(6): 1741-1754. [百度学术]
MARKOVSKI M, WICKNER S. Preventing bacterial suicide: a novel toxin-antitoxin strategy[J]. Molecular Cell, 2013, 52(5): 611-612. [百度学术]
YAO JY, ZHEN XK, TANG KH, LIU TL, XU XL, CHEN Z, GUO YX, LIU XX, WOOD TK, OUYANG SY, WANG XX. Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system[J]. Nucleic Acids Research, 2020, 48(19): 11054-11067. [百度学术]
CHOI JS, KIM W, SUK S, PARK H, BAK G, YOON J, LEE Y. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli[J]. RNA Biology, 2018, 15(10): 1319-1335. [百度学术]
WANG XX, YAO JY, SUN YC, WOOD TK. Type VII toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins[J]. Trends in Microbiology, 2021, 29(5): 388-393. [百度学术]
AHMAD S, WANG B, WALKER MD, TRAN HR, STOGIOS PJ, SAVCHENKO A, GRANT RA, MCARTHUR AG, LAUB MT, WHITNEY JC. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp[J]. Nature, 2019, 575(7784): 674-678. [百度学术]
SWOBODA JG, CAMPBELL J, MEREDITH TC, WALKER S. Wall teichoic acid function, biosynthesis, and inhibition[J]. ChemBioChem, 2010, 11(1): 35-45. [百度学术]
SCHUSTER CF, BERTRAM R. Toxin-antitoxin systems of Staphylococcus aureus[J]. Toxins, 2016, 8(5): 140. [百度学术]
VANG NIELSEN S, TURNBULL KJ, ROGHANIAN M, BÆRENTSEN R, SEMANJSKI M, BRODERSEN DE, MACEK B, GERDES K. Serine-threonine kinases encoded by split hipA homologs inhibit tryptophanyl-tRNA synthetase[J]. mBio, 2019, 10(3): e01138-19. [百度学术]
BÆRENTSEN RL, NIELSEN SV, SKJERNING RB, LYNGSØ J, BISIAK F, PEDERSEN JS, GERDES K, SØRENSEN MA, BRODERSEN DE. Structural basis for kinase inhibition in the tripartite E. coli HipBST toxin-antitoxin system[J]. eLife, 2023, 12: RP90400. [百度学术]
GERMAIN E, CASTRO-ROA D, ZENKIN N, GERDES K. Molecular mechanism of bacterial persistence by HipA[J]. Molecular Cell, 2013, 52(2): 248-254. [百度学术]
SAT B, RECHES M, ENGELBERG-KULKA H. The Escherichia coli mazEF suicide module mediates thymineless death[J]. Journal of Bacteriology, 2003, 185(6): 1803-1807. [百度学术]
FRAIKIN N, ROUSSEAU CJ, GOEDERS N, van MELDEREN L. Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation: mqsA is transcriptionally uncoupled from mqsR[J]. mBio, 2019, 10(6): e02678-19. [百度学术]
MORI H, OGURA T, HIRAGA S. Prophage lambda induction caused by mini-F plasmid genes[J]. Molecular and General Genetics, 1984, 196(2): 185-193. [百度学术]
AFIF H, ALLALI N, COUTURIER M, van MELDEREN L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system[J]. Molecular Microbiology, 2001, 41(1): 73-82. [百度学术]
TAM JE, KLINE BC. The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins[J]. Molecular & General Genetics, 1989, 219(1/2): 26-32. [百度学术]
WOZNIAK RAF, WALDOR MK. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element[J]. PLoS Genetics, 2009, 5(3): e1000439. [百度学术]
KAI T, SELICK HE, YONESAKI T. Destabilization of bacteriophage T4 mRNAs by a mutation of gene 61.5[J]. Genetics, 1996, 144(1): 7-14. [百度学术]
OTSUKA Y, YONESAKI T. A novel endoribonuclease, RNase LS, in Escherichia coli[J]. Genetics, 2005, 169(1): 13-20. [百度学术]
IWAMOTO A, LEMIRE S, YONESAKI T. Post-transcriptional control of Crp-cAMP by RNase LS in Escherichia coli[J]. Molecular Microbiology, 2008, 70(6): 1570-1578. [百度学术]
KOGA M, OTSUKA Y, LEMIRE S, YONESAKI T. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system[J]. Genetics, 2011, 187(1): 123-130. [百度学术]
GARCIA-RODRIGUEZ G, CHARLIER D, WILMAERTS D, MICHIELS J, LORIS R. Alternative dimerization is required for activity and inhibition of the HEPN ribonuclease RnlA[J]. Nucleic Acids Research, 2021, 49(12): 7164-7178. [百度学术]
OTSUKA Y, YONESAKI T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins[J]. Molecular Microbiology, 2012, 83(4): 669-681. [百度学术]
UENO H, YONESAKI T. Recognition and specific degradation of bacteriophage T4 mRNAs[J]. Genetics, 2001, 158(1): 7-17. [百度学术]
WEI Y, GAO ZQ, ZHANG H, DONG YH. Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA[J]. Biochemical and Biophysical Research Communications, 2016, 472(4): 592-597. [百度学术]
SHORT FL, AKUSOBI C, BROADHURST WR, SALMOND GPC. The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity[J]. Scientific Reports, 2018, 8(1): 1013. [百度学术]
BLOWER TR, PEI XY, SHORT FL, FINERAN PC, HUMPHREYS DP, LUISI BF, SALMOND GPC. A processed noncoding RNA regulates an altruistic bacterial antiviral system[J]. Nature Structural & Molecular Biology, 2011, 18(2): 185-190. [百度学术]
FINERAN PC, BLOWER TR, FOULDS IJ, HUMPHREYS DP, LILLEY KS, SALMOND GPC. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 894-899. [百度学术]
GUEGLER CK, LAUB MT. Shutoff of host transcription triggers a toxin-antitoxin system to cleave phage RNA and abort infection[J]. Molecular Cell, 2021, 81(11): 2361-2373.e9. [百度学术]
GUEGLER CK, TEODORO GIC, SRIKANT S, CHETLAPALLI K, DOERING CR, GHOSE DA, LAUB MT. A phage-encoded RNA-binding protein inhibits the antiviral activity of a toxin-antitoxin system[J]. Nucleic Acids Research, 2024, 52(3): 1298-1312. [百度学术]
Sundaram K, Vajravelu LK, Paul AJ. Functional characterization of toxin-antitoxin system in Mycobacterium tuberculosis[J]. Indian Journal of Tuberculosis, 2023, 70(2):149-157. [百度学术]
SCHULLER M, BUTLER RE, ARIZA A, TROMANS-COIA C, JANKEVICIUS G, CLARIDGE TDW, KENDALL SL, GOH S, STEWART GR, AHEL I. Molecular basis for DarT ADP-ribosylation of a DNA base[J]. Nature, 2021, 596(7873): 597-602. [百度学术]
LAWARÉE E, JANKEVICIUS G, COOPER C, AHEL I, UPHOFF S, TANG CM. DNA ADP-ribosylation stalls replication and is reversed by RecF-mediated homologous recombination and nucleotide excision repair[J]. Cell Reports, 2020, 30(5): 1373-1384.e4. [百度学术]
LeROUX M, SRIKANT S, TEODORO GIC, ZHANG T, LITTLEHALE ML, DORON S, BADIEE M, LEUNG AKL, SOREK R, LAUB MT. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA[J]. Nature Microbiology, 2022, 7(7): 1028-1040. [百度学术]
JANKEVICIUS G, ARIZA A, AHEL M, AHEL I. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA[J]. Molecular Cell, 2016, 64: 1109-1116. [百度学术]
DEEP A, SINGH L, KAUR J, VELUSAMY M, BHARDWAJ P, SINGH R, THAKUR KG. Structural insights into DarT toxin neutralization by cognate DarG antitoxin: ssDNA mimicry by DarG C-terminal domain keeps the DarT toxin inhibited[J]. Structure, 2023, 31(7): 780-789.e4. [百度学术]
GROSLAMBERT J, PROKHOROVA E, AHEL I. ADP-ribosylation of DNA and RNA[J]. DNA Repair, 2021, 105: 103144. [百度学术]
GACA AO, KUDRIN P, COLOMER-WINTER C, BELJANTSEVA J, LIU K, ANDERSON B, WANG JD, REJMAN D, POTRYKUS K, CASHEL M, HAURYLIUK V, LEMOS JA. From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp Synthesized by the small alarmone synthetase of Enterococcus faecalis[J]. Journal of Bacteriology, 2015, 197(18): 2908-2919. [百度学术]
JIMMY S, SAHA CK, KURATA T, STAVROPOULOS C, OLIVEIRA SRA, KOH A, CEPAUSKAS A, TAKADA H, REJMAN D, TENSON T, STRAHL H, GARCIA-PINO A, HAURYLIUK V, ATKINSON GC. A widespread toxin-antitoxin system exploiting growth control via alarmone signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 10500-10510. [百度学术]
DOMINGUEZ-MOLINA L, KURATA T, CEPAUSKAS A, ECHEMENDIA-BLANCO D, ZEDEK S, TALAVERA-PEREZ A, ATKINSON GC, HAURYLIUK V, GARCIA-PINO A. Mechanisms of neutralization of toxSAS from toxin-antitoxin modules[J]. Nature Chemical Biology, 2024, 32(7): 1059-1073. [百度学术]
KURATA T, BRODIAZHENKO T, ALVES OLIVEIRA SR, ROGHANIAN M, SAKAGUCHI Y, TURNBULL KJ, BULVAS O, TAKADA H, TAMMAN H, AINELO A, POHL R, REJMAN D, TENSON T, SUZUKI T, GARCIA-PINO A, ATKINSON GC, HAURYLIUK V. RelA-SpoT homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis[J]. Molecular Cell, 2021, 81(15): 3160-3170. [百度学术]
ZHANG T, CEPAUSKAS A, NADIEINA A, THUREAU A, WALLANT KC', MARTENS C, LIM DC, GARCIA-PINO A, LAUB MT. A bacterial immunity protein directly senses two disparate phage proteins[J]. Nature, 2024, 635(8039): 728-735. [百度学术]
BORDES P, CIRINESI AM, UMMELS R, SALA A, SAKR S, BITTER W, GENEVAUX P. SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8438-8443. [百度学术]
SCHURECK MA, MAEHIGASHI T, MILES SJ, MARQUEZ J, DUNHAM CM. mRNA bound to the 30S subunit is a HigB toxin substrate[J]. RNA, 2016, 22(8): 1261-1270. [百度学术]
TEXIER P, BORDES P, NAGPAL J, SALA AJ, MANSOUR M, CIRINESI AM, XU XB, DOUGAN DA, GENEVAUX P. ClpXP-mediated degradation of the TAC antitoxin is neutralized by the SecB-like chaperone in Mycobacterium tuberculosis[J]. Journal of Molecular Biology, 2021, 433(5): 166815. [百度学术]
METS T, KURATA T, ERNITS K, JOHANSSON MJO, CRAIG SZ, EVORA GM, BUTTRESS JA, ODAI R, WALLANT KC, NAKAMOTO JA, SHYROKOVA L, EGOROV AA, DOERING CR, BRODIAZHENKO T, LAUB MT, TENSON T, STRAHL H, MARTENS C, HARMS A, GARCIA-PINO A, et al. Mechanism of phage sensing and restriction by toxin-antitoxin-chaperone systems[J]. Cell Host & Microbe, 2024, 32(7): 1059-1073.e8. [百度学术]
VASSALLO CN, DOERING CR, LITTLEHALE ML, TEODORO GIC, LAUB MT. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome[J]. Nature Microbiology, 2022, 7(10): 1568-1579. [百度学术]
ROUSSET F, DEPARDIEU F, MIELE S, DOWDING J, LAVAL AL, LIEBERMAN E, GARRY D, ROCHA EPC, BERNHEIM A, BIKARD D. Phages and their satellites encode hotspots of antiviral systems[J]. Cell Host & Microbe, 2022, 30(5): 740-753.e5. [百度学术]
ATANASIU C, SU TJ, STURROCK SS, DRYDEN DTF. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme[J]. Nucleic Acids Research, 2002, 30(18): 3936-3944. [百度学术]
HOPFNER KP, TAINER JA. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures[J]. Current Opinion in Structural Biology, 2003, 13(2): 249-255. [百度学术]
DEEP A, LIANG QS, ENUSTUN E, POGLIANO J, CORBETT KD. Architecture and activation mechanism of the bacterial PARIS defence system[J]. Nature, 2024, 634(8033): 432-439. [百度学术]
BURMAN N, BELUKHINA S, DEPARDIEU F, WILKINSON RA, SKUTEL M, SANTIAGO-FRANGOS A, GRAHAM AB, LIVENSKYI A, CHECHENINA A, MOROZOVA N, ZAHL T, HENRIQUES WS, BUYUKYORUK M, ROUILLON C, SAUDEMONT B, SHYROKOVA L, KURATA T, HAURYLIUK V, SEVERINOV K, GROSEILLE J, et al. A virally encoded tRNA neutralizes the PARIS antiviral defence system[J]. Nature, 2024, 634(8033): 424-431. [百度学术]
ZOU X, XIAO XH, MO ZR, GE YS, JIANG X, HUANG RL, LI MX, DENG ZX, CHEN S, WANG LR, LEE SY. Systematic strategies for developing phage resistant Escherichia coli strains[J]. Nature Communications, 2022, 13(1): 4491. [百度学术]