摘要
目的
根际微生物协同植物修复重金属污染土壤具有较高的应用潜力。本研究旨在强化土壤钼污染修复的理论与技术,分析添加外源钼还原促生菌对紫花苜蓿生长和钼富集活性的影响,为植物-微生物联合修复钼污染土壤提供理论参考。
方法
采集钼尾矿区内优势植物,分离与筛选钼还原内生细菌;结合形态学特征和分子生物学手段对菌株进行鉴定;测定钼还原菌株的促生特性。通过外源添加钼还原促生菌,研究其对紫花苜蓿生物量、生理活性及钼富集量的影响。
结果
获得2株钼还原活性强的菌株M9和M13,结合形态特征、16S rRNA基因序列及gyrB基因序列分析结果,2株细菌(M9和M13)均被鉴定为普利茅斯沙雷氏菌(Serratia plymuthica)。促生特性分析表明,2株细菌均具有固氮、溶磷、解钾、产吲哚-3-乙酸(indole-3-acetic acid, IAA)、铁载体及1-氨基环丙烷-1-羧酸(1-amino cyclopropane-1-carboxylic acid, ACC)脱氨酶的能力。在钼胁迫条件下,外源添加M9、M13及M9+M13复配菌株后对紫花苜蓿的促生作用显著。与未接菌对照组相比,其株高、根长和鲜重均显著增加,同时紫花苜蓿中叶绿素含量显著提高,过氧化物酶(peroxidase, POD)活性增加,丙二醛(malondialdehyde, MDA)含量降低。此外,钼还原菌株M9和M13显著影响紫花苜蓿的钼富集量,接菌处理组紫花苜蓿地上部和地下部钼含量均显著低于未接菌处理组,其富集因子显著降低,表明接种钼还原菌株后减少了紫花苜蓿对土壤中钼的吸收和转运。
结论
钼还原菌株M9和M13具有显著的植物促生特性,能够促进紫花苜蓿在钼污染土壤中的生长,并降低其钼含量。本研究为揭示微生物强化植物钼修复的机制以及促进植物-微生物联合修复钼污染土壤的相关研究提供了参考。
钼(molybdenum, Mo)是动植物生长必需的营养元素,同时也是重要的战略资源,在钢铁、石油、化工及航天航空等行业被广泛应
用于重金属污染土壤修复的方法主要包括物理修复、化学修复和植物修复。物理和化学修复技术成本较高,且易改变土壤性质并对土壤微生物群落产生负面影响,甚至可能导致二次污
微生物与植物联合修复技术是目前治理土壤重金属污染物的有效手段之一,尤其是外源添加植物内生菌强化植物修复作用的方法应用广
本研究以钼还原内生菌和紫花苜蓿为研究对象,探究钼污染地区优势植物内生菌的钼还原能力和植物促生特性,以及外源添加钼还原促生内生菌后对紫花苜蓿生长量、钼富集能力及生理活性的影响。研究结果可为深入理解钼还原促生菌对紫花苜蓿生长和钼吸收的影响提供理论指导,并有助于促进紫花苜蓿-微生物联合修复钼污染土壤的相关研究,为未来构建植物-钼还原微生物修复体系提供微生物资源,对钼污染农田土壤生物修复技术的发展具有重要的研究价值和实际意义。
1 材料与方法
1.1 材料
1.1.1 植物材料
2022年采集河南省栾川县某钼尾矿区(钼浓度96.83 mg/kg)的优势植物高羊茅(Festuca elata)。采集植物全株,装入采样袋并做好标记,样品放入冰盒中带回实验室,保存于4 ℃冰箱中。供试盆栽植物紫花苜蓿(Medicago sativa)种子购自洛阳市新村花卉市场。
1.1.2 培养基
NB培养基 (g/L):牛肉膏3.0,蛋白胨10.0,氯化钠5.0,pH 7.0。
NA培养基 (g/L):牛肉膏3.0,蛋白胨10.0,氯化钠5.0,琼脂15.0,pH 7.0。
低磷酸盐 (low phosphate agar medium, LPM)培养
1.2 钼还原内生细菌的分离与筛选
采用表面消毒法分离耐钼内生细菌。具体步骤如下:取清洗干净的高羊茅根部组织5 g,用75%乙醇消毒30 s,5%次氯酸钠消毒3 min,无菌水漂洗5次后,用无菌滤纸吸干水分。将根部组织放入无菌研钵中,加入15 mL无菌水,充分研磨后静置15 min,取100 μL上清液涂布于LPM固体培养基上,30 ℃培养72 h,挑选蓝色菌落进行纯化培
1.3 钼还原内生细菌的鉴定
1.3.1 形态学鉴定
观察NA培养基上耐钼内生细菌菌株的菌落特征,并进行革兰氏染色,观察细菌的微观形态特征,具体方法参考文献[
1.3.2 分子生物学鉴定
采用细菌基因组DNA提取试剂盒(北京索莱宝生物技术有限公司)提取耐钼内生细菌菌株的基因组DNA,具体步骤参照试剂盒说明书。利用细菌通用引物27F (5′-AGAGTTTGATCCT GGCTCAG-3′)和1429R (5′-CGGCTACCTTGT TACGAC-3′)对16S rRNA基因序列进行扩增;利用引物UP-1 (5′-GAAGTCATCATGACCGTT CTGCAYGCNGGNGGNAARTTYGA-3′)和UP-2r (5′-AGCAGGGTACGGATGTGCGAGCCRTC NACRTCNGCRTCNGTCAT-3′)扩增促螺旋酶基因(gyrB)。具体扩增体系及程序参考文献[
1.4 钼还原内生细菌促生特性的分析
将保存的内生细菌菌株接种于NA培养基,30 ℃预培养12 h后进行固氮、溶磷、解钾、产吲哚-3-乙酸(indole-3-acetic acid, IAA)、产铁载体及1-氨基环丙烷-1-羧酸(1-amino cyclopropane-1-carboxylic acid, ACC)脱氨酶活性的测定。
固氮能力测定:将待测菌株接种于阿须贝无氮培养基(Ashby培养基
1.5 紫花苜蓿盆栽试验
1.5.1 供试盆土
采集洛阳市某村庄农耕田0-20 cm表层土作为供试土壤,去除土壤中的杂物,风干后磨碎,160 ℃消毒2 h。采用土壤:珍珠岩为7:3比例混合均匀,分装于塑料花盆中(直径17 cm,高16 cm),每盆分装1.5 kg。盆土pH值为7.2,总钼含量为0.22 mg/kg。将配制好的钼酸钠溶液加入供试土样中,与盆土混合均匀,使盆土中钼浓度(以M
1.5.2 盆栽试验
老化后的盆土浇入500 mL无菌水,播入消毒后的紫花苜蓿种子,每盆播种30颗种子。盆栽试验设置4个处理,分别为紫花苜蓿+无菌水、紫花苜蓿+M9、紫花苜蓿+M13、紫花苜蓿+M9+M13 (菌株按体积比1:1进行复配),每个处理分别设置3个钼浓度(0、500、800 mg/kg),盆栽试验共包含12个处理,每处理6个重复。种植方法为:紫花苜蓿播种当天每盆浇灌细菌菌液20 mL (菌液浓度为1
1.6 细菌对紫花苜蓿生长量和生理活性的影响
1.6.1 紫花苜蓿生物量的测定
收集各处理组紫花苜蓿植株,用自来水冲洗干净后,再用蒸馏水冲洗,用乙二胺四乙酸钠(EDTA-Na)溶液浸泡20 min以去除根系表面吸附的钼酸根离子,最后用纯净水冲洗干净,滤纸吸干水分。随机挑取各处理组紫花苜蓿10株,分别测量植株的株高、根长和鲜重。
1.6.2 紫花苜蓿生理活性指标的测定
紫花苜蓿收获前1天,采集相同叶龄的叶片测定各处理组紫花苜蓿植株中叶绿素含量、丙二醛(malondialdehyde, MDA)含量和过氧化物酶(peroxidase, POD)活性。叶绿素含量采用95%乙醇法测
1.7 紫花苜蓿钼含量及钼富集因子和转运系数的测定
1.7.1 土壤样品中钼含量的测定
按照五点取样法于10-15 cm土层处均匀取样,将盆土样品按不同浓度和不同处理分别混匀后作为后续测量样品,种植前与种植后的盆土取样方法一致。分别测定紫花苜蓿种植前和种植后土壤中有效态钼含量。土壤中有效态钼按照农业土壤中有效态的标准提取方法(NY/T 1121.9—2012
1.7.2 紫花苜蓿中钼含量的检测
将收集的各处理组紫花苜蓿根、茎、叶分开,全株与植物组织于105 ℃杀青30 min后,70 ℃烘干至恒重,烘干样品磨碎后过筛,用HNO3-HClO4法进行消解,消解液中钼含量采用ICP-MS测定,并计算紫花苜蓿钼富集因子(enrichment factor, BCF)和转运系数(transport coefficient, TA)。计算公式如(1)和(2)所示。
富集因子=Ap/As | (1) |
式中:Ap为植物中钼含量(mg/kg);As为土壤中剩余钼含量(mg/kg)。
转运系数=Au/Ad | (2) |
式中:Au植物地上部分钼含量(mg/kg);Ad为植物地下部分钼含量(mg/kg)。
1.8 数据处理
数据采用Excel 2016软件整理,采用SPSS 26.0进行单因素方差分析和Duncan多重比较,以分析差异显著性。
2 结果与分析
2.1 内生细菌的分离与钼还原能力分析
从高羊茅根部组织中分离获得12株具有钼还原能力的内生细菌菌株,分别命名为M1、M2、M3、M4、M5、M6、M9、M10、M11、M12、M13和M14,12株细菌分离物在LPM平板上均呈现深蓝色(

图1 部分钼还原内生细菌在LPM平板上的生长状态
Figure 1 Growth of some molybdate reducing bacterial isolates on LPM agar. A: M5; B: M6; C: M9; D: M11; E: M12; F: M13.
Strains | Absorbance at 865 nm |
---|---|
M1 | 0.42±0.02d |
M2 | 0.44±0.02d |
M3 | 0.34±0.02e |
M4 | 0.47±0.03c |
M5 | 0.29±0.02f |
M6 | 0.42±0.15d |
M9 | 2.54±0.15a |
M10 | 0.34±0.01e |
M11 | 0.35±0.02e |
M12 | 0.35±0.15e |
M13 | 1.64±0.01b |
M14 | 0.32±0.02e |
The data in the table are mean±SE (n=3). Different lowercase letters indicate that the same index is significantly different (P<0.05).

图2 菌株M9和M13培养72 h后的钼蓝扫描光谱
Figure 2 Scanning spectra of molybdenum blue of strains M9 and M13 after 72 h of incubation.
2.2 钼还原内生细菌的鉴定
菌株M9和M13在NA培养基上呈现乳白色,菌落圆形,边缘整齐,表面湿润。革兰氏染色结果显示,2株细菌均为革兰氏阴性菌,呈短杆状(

图3 钼还原菌株M9 (A)和M13 (B)的革兰氏染色
Figure 3 Gram stain of molybdate-reducing bacterial strains M9 (A) and M13 (B).

图4 基于16S rRNA基因序列(A)和gyrB基因序列(B)构建的钼还原细菌菌株M9和M13系统发育树
Figure 4 Phylogenetic tree based on the 16S rRNA gene (A) and gyrB gene sequences (B) of molybdate-reducing bacterial strains M9 and M13. Phylogenetic trees were constructed using the neighbor-joining method in MEGA 7.0 with bootstrap values based on 1 000 replications. Bacillus cereus and B. amyloliquefaciens were chosen as outgroups. Gene accession numbers of bacterial strains are indicated in parentheses. The scale bar represents the number of substitutions per base position.
2.3 钼还原内生细菌的促生特性分析
钼还原内生细菌菌株M9和M13的促生特性测定结果表明,2个菌株均能在固氮培养基中生长(

图5 钼还原菌株M9和M13的促生特性。A:固氮能力;B:解无机磷能力;C:解有机磷能力;D:解钾能力;E:产铁载体能力;F:ACC脱氨酶活性;G:产IAA能力。
Figure 5 Characterization of growth promoting properties of molybdate-reducing bacterial strains M9 and M13. A: Nitrogen fixation capacity; B: Inorganic phosphorus solubilization capacity; C: Organic phosphorus solubilization capacity; D: Potassium solubilization capacity; E: Siderophore production capacity; F: ACC deaminase activity; G: IAA production capacity.
2.4 钼还原菌株对紫花苜蓿的促生作用
通过测量不同处理条件下紫花苜蓿的株高、根长和鲜重,分析钼还原菌株M9和M13对紫花苜蓿的促生作用。如
Treat (M | Plant height (cm) | Root length (cm) | Fresh weight (g) |
---|---|---|---|
0 mg/kg+M9+M13 | 32.18±1.80a | 22.18±1.75a | 6.74±0.38a |
0 mg/kg+M13 | 29.36±1.48b | 19.68±1.71b | 5.12±0.21b |
0 mg/kg+M9 | 29.22±1.05bc | 19.59±1.38b | 4.80±0.25b |
0 mg/kg | 28.31±1.06bc | 17.52±0.59c | 3.52±0.32c |
500 mg/kg+M9+M13 | 28.09±1.08c | 17.22±0.85c | 3.30±0.33c |
500 mg/kg+M13 | 26.85±1.62d | 17.05±0.57c | 2.88±0.15c |
500 mg/kg+M9 | 26.63±2.52d | 16.94±0.70c | 2.58±0.16d |
500 mg/kg | 21.46±1.53e | 14.43±0.75d | 2.07±0.12e |
800 mg/kg+M9+M13 | 21.36±0.93e | 14.41±0.85d | 2.13±0.14e |
800 mg/kg+M13 | 20.94±0.95e | 14.14±0.97d | 1.98±0.28e |
800 mg/kg+M9 | 20.53±1.32e | 14.05±0.97d | 1.93±0.24e |
800 mg/kg | 17.61±0.77f | 12.85±0.62e | 1.49±0.19f |
The data in the table are mean±SE (n=3). Different lowercase letters indicate that the same index is significantly different (P<0.05).

图6 钼还原菌株对紫花苜蓿的促生效果。A:钼浓度0 mg/kg;B:钼浓度500 mg/kg;C:钼浓度800 mg/kg。
Figure 6 Effect of molybdate-reducing bacterial strains M9 and M13 on alfalfa growth promotion. A: Concentration of 0 mg/kg M
如
2.5 钼还原菌株对紫花苜蓿生理活性的影响
通过测定不同处理条件下紫花苜蓿的叶绿素含量、POD活性和MDA含量,分析钼还原菌株对紫花苜蓿叶绿素合成及抗氧化酶活性的影响。如

图7 钼还原菌株对紫花苜蓿生理活性的影响。A:叶绿素含量;B:POD活性;C:MDA含量。
Figure 7 Effect of molybdate-reducing bacterial strains M9 and M13 on the chlorophyll contents, the activities of POD and MDA of alfalfa. A: Chlorophyll contents; B: POD activity; C: MDA content. Different lowercase letters indicate that the same index is significantly different (P<0.05).
如
2.6 紫花苜蓿钼富集因子和转运系数
钼还原菌株与紫花苜蓿联合修复对土壤钼含量的影响如
Treat (M | Molybdenum accumulation (mg/kg) | Available molybdenum accumulation (mg/kg) |
---|---|---|
0 mg/kg+M9+M13 | 0.33±0.02c | 0.07±0.01d |
0 mg/kg+M13 | 0.71±0.04b | 0.28±0.02c |
0 mg/kg+M9 | 0.81±0.03b | 0.75±0.06b |
0 mg/kg | 1.73±0.05a | 1.65±0.06a |
500 mg/kg+M9+M13 | 188.61±0.94c | 43.31±0.51c |
500 mg/kg+M13 | 147.29±0.78d | 41.22±0.75d |
500 mg/kg+M9 | 209.44±0.59b | 47.70±0.69b |
500 mg/kg | 222.33±0.41a | 51.30± 0.48a |
800 mg/kg+M9+M13 | 221.42±0.78d | 63.40±0.37d |
800 mg/kg+M13 | 263.63±0.79c | 68.35±0.88c |
800 mg/kg+M9 | 369.54±0.70b | 78.19±0.35b |
800 mg/kg | 381.22±0.61a | 85.45±0.44a |
The data in the table are mean±SE error (n=3). Different lowercase letters indicate that the same index is significantly different (P<0.05).
钼还原菌株对紫花苜蓿地上部和地下部钼含量的影响如
Treat (M | Above-ground (mg/kg) | Below-ground (mg/kg) | Enrichment factor | Transport coefficient |
---|---|---|---|---|
0 mg/kg+M9+M13 | 15.77±0.13d | 15.86±0.34c | - | - |
0 mg/kg+M13 | 21.45±0.22b | 21.37±0.29b | - | - |
0 mg/kg+M9 | 12.63±0.15c | 14.72±0.42c | - | - |
0 mg/kg | 24.50±0.23a | 24.89±0.62a | - | - |
500 mg/kg+M9+M13 | 376.38±0.86b | 395.17±1.71c | 6.31 | 1.05 |
500 mg/kg+M13 | 377.67±2.45b | 460.85±1.08b | 7.47 | 1.22 |
500 mg/kg+M9 | 342.17±1.32c | 353.50±1.32d | 5.35 | 1.03 |
500 mg/kg | 461.63±1.34a | 489.78±2.34a | 8.47 | 1.06 |
800 mg/kg+M9+M13 | 625.47±0.87b | 674.51±1.45b | 4.22 | 1.08 |
800 mg/kg+M13 | 601.17±0.95c | 459.84±0.87d | 4.48 | 0.76 |
800 mg/kg+M9 | 533.86±1.36d | 516.08±1.58c | 3.32 | 0.97 |
800 mg/kg | 732.95±1.23a | 762.95±1.63a | 5.66 | 1.04 |
The data in the table are mean±SE error (n=3). Different lowercase letters indicate that the same index is significantly different (P<0.05).
钼还原菌株对紫花苜蓿钼富集因子和转运系数的影响如
3 讨论与结论
本研究从钼尾矿区优势植物高羊茅中筛选获得2株具有较强钼还原能力的菌株M9和M13。通过形态学特征及16S rRNA基因序列和gyrB基因序列的综合分析,鉴定其均为普利茅斯沙雷氏菌(Serratia plymuthica)。菌株M9和M13在865 nm处的钼蓝吸光度值分别为2.54±0.15和1.64±0.01,表明这2个菌株能够将钼酸钠(M
在植物-微生物协同修复系统中,内生菌强化植物修复机制主要通过2方面实现,一是直接或间接降低植物体内重金属胁迫强度;二是对植物的表型产生影响,提高植物本身对重金属的耐受
内生菌强化植物修复机制的另一方面主要体现在内生细菌能够促进植物光合作用、分泌铁载体、有机酸、表面活性剂、固氮酶、ACC脱氨酶和植物生长激素等物质,可以改善植物营养,促进植物生长,增加重金属胁迫条件下的植物生物量,从而提高植物修复的效
内生细菌强化植物修复机制除了通过直接促进植物生长外,还可通过诱导植物产生系统抗性,间接提高植物对土壤重金属的耐受
根据本研究结果及讨论,推测菌株M9和M13促进紫花苜蓿协同修复钼污染的机制主要包含2个方面:一是菌株自身可产生钼还原酶将土壤或植物体内的M
作者贡献声明
杨瑞先:研究设计、数据分析和论文撰写;刘萍:钼还原菌株的分离、筛选及论文修订;石犇:钼还原菌株的鉴定;王小庆:土壤中钼含量的测定;乔翠翠:盆栽试验、钼还原菌株促生特性测定;肖静尧:参与盆栽试验,负责紫花苜蓿地上部和地下部钼含量的测定;杨沛霖:参与论文数据分析;田文杰:研究设计和论文修订。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
李路, 胡承孝, 谭启玲, 孙学成. 植物对土壤钼污染的响应及其耐钼机制研究进展[J]. 农业环境科学学报, 2022, 41(4): 700-706. [百度学术]
LI L, HU CX, TAN QL, SUN XC. Responses and tolerance mechanisms of plants to molybdenum pollution in soil: a review[J]. Journal of Agro-Environment Science, 2022, 41(4): 700-706 (in Chinese). [百度学术]
GENG CN, GAO YJ, LI D, JIAN XP, HU QH. Contamination investigation and risk assessment of molybdenum on an industrial site in China[J]. Journal of Geochemical Exploration, 2014, 144: 273-281. [百度学术]
曲蛟, 袁星, 丛俏, 张宏伟. 钼矿区选矿场周边农田土壤重金属污染状况分析与评价[J]. 生态环境, 2008, 17(2): 677-681. [百度学术]
QU J, YUAN X, CONG Q, ZHANG HW. Analysis and assessment on the pollution condition of heavy metals in the soil in the farmland around the collection areas of molybdenum ore[J]. Ecology and Environment, 2008, 17(2): 677-681 (in Chinese). [百度学术]
贾婷, 贾洋洋, 余淑娟, 屈应明, 江志凌, 陈炎辉, 王果. 闽东某钼矿周边农田土壤钼和重金属的污染状况[J]. 中国环境监测, 2015, 31(1): 45-49. [百度学术]
JIA T, JIA YY, YU SJ, QU YM, JIANG ZL, CHEN YH, WANG G. Pollution of molybdenum and heavy metals of the soils and rice near a molybdenum mining site in eastern Fujian[J]. Environmental Monitoring in China, 2015, 31(1): 45-49 (in Chinese). [百度学术]
杨自军, 龙塔, 冉林武, 王婷, 白东英, 温文彦. 钼的生物学功能及其在动物生产中的作用[J]. 河南科技大学学报(农学版), 2004, 24(2): 40-43. [百度学术]
YANG ZJ, LONG T, RAN LW, WANG T, BAI DY, WEN WY. Molybdenum’s biological function and roles in animal production[J]. Journal of Henan University of Science and Technology (Agricultural Science), 2004, 24(2): 40-43 (in Chinese). [百度学术]
VYSKOCIL A, VIAU C. Assessment of molybdenum toxicity in humans[J]. Journal of Applied Toxicology, 1999, 19(3): 185-192. [百度学术]
ZHOU K, TANG MM, ZHANG W, CHEN YL, GUAN YS, HUANG R, DUAN JW, LIU ZB, JI XM, JIANG YT, HU YH, ZHANG XL, ZHOU JJ, CHEN MJ. Exposure to molybdate results in metabolic disorder: an integrated study of the urine elementome and serum metabolome in mice[J]. Toxics, 2024, 12(4): 288. [百度学术]
王兴利, 王晨野, 吴晓晨, 王晶博, 穆晓东, 杨晓姝, 胡小飞, 高静. 重金属污染土壤修复技术研究进展[J]. 化学与生物工程, 2019, 36(2): 1-7, 11. [百度学术]
WANG XL, WANG CY, WU XC, WANG JB, MU XD, YANG XS, HU XF, GAO J. Research progress in remediation technology of heavy metal contaminated soil[J]. Chemistry & Bioengineering, 2019, 36(2): 1-7, 11 (in Chinese). [百度学术]
杨滨娟, 黄国勤. 植物种植修复土壤重金属污染的模式、技术与效果综述[J]. 生态科学, 2022, 41(4): 251-256. [百度学术]
YANG BJ, HUANG GQ. Review on model, technology and effect of phytoremediation technology on remediation of heavy metal pollution[J]. Ecological Science, 2022, 41(4): 251-256 (in Chinese). [百度学术]
段桂兰, 崔慧灵, 杨雨萍, 扆幸运, 朱冬, 朱永官. 重金属污染土壤中生物间相互作用及其协同修复应用[J]. 生物工程学报, 2020, 36(3): 455-470. [百度学术]
DUAN GL, CUI HL, YANG YP, YI XY, ZHU D, ZHU YG. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils[J]. Chinese Journal of Biotechnology, 2020, 36(3): 455-470 (in Chinese). [百度学术]
段桂兰, 王利红, 陈玉, 孟祥燕, 董妍, 朱永官. 植物超富集砷机制研究的最新进展[J]. 环境科学学报, 2007, 27(5): 714-720. [百度学术]
DUAN GL, WANG LH, CHEN Y, MENG XY, DONG Y, ZHU YG. Recent developments in understanding the mechanisms of arsenic hyperaccumulation in plants[J]. Acta Scientiae Circumstantiae, 2007, 27(5): 714-720 (in Chinese). [百度学术]
柳晓东, 余天飞, 邓振山, 范晓虹, 张薇, 杨昱, 何颖, 艾加敏, 姜影影. Neorhizobium petrolearium OS53联合紫花苜蓿协同修复石油污染土壤研究[J]. 微生物学报, 2024, 64(3): 854-868. [百度学术]
LIU XD, YU TF, DENG ZS, FAN XH, ZHANG W, YANG Y, HE Y, AI JM, JIANG YY. Neorhizobium petrolearium OS53 combined with alfalfa (Medicago sativa L.) for remediation of petroleum-contaminated soil[J]. Acta Microbiologica Sinica, 2024, 64(3): 854-868 (in Chinese). [百度学术]
孔海明, 李开源, 高双红, 孙娈姿. 根瘤菌对紫花苜蓿生物修复镉污染功能的影响[J]. 草地学报, 2021, 29(12): 2763-2768. [百度学术]
KONG HM, LI KY, GAO SH, SUN LZ. Effects of Rhizobium on the cadmium bioremediation function of alfalfa[J]. Acta Agrestia Sinica, 2021, 29(12): 2763-2768 (in Chinese). [百度学术]
BASIT A, SHAH ST, ULLAH I, MUNTHA ST, MOHAMED H. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture[J]. Archives of Microbiology, 2021, 203(10): 5859-5885. [百度学术]
WANG L, LIN H, DONG YB, LI B, HE YH. Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation[J]. Chemosphere, 2020, 240: 124891. [百度学术]
万勇. 内生细菌在重金属植物修复中的作用机理及应用研究[D]. 长沙: 湖南大学博士学位论文, 2013. [百度学术]
WAN Y. Study on mechanism and application of endophytic bacteria in phytoremediation of heavy metals[D]. Changsha: Doctoral Dissertation of Hunan University, 2013 (in Chinese). [百度学术]
LI Y, WANG Q, WANG L, HE LY, SHENG XF. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for Sorghum sudanense biomass production and phytostabilization[J]. Ecotoxicology & Environmental Safety, 2016, 124: 163-168. [百度学术]
HALMI M, ZUHAINIS SW, YUSOF M, SHAHARUDDIN NA, HELMI W, SHUKOR Y, SYED M, AHMAD SA. Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14[J]. BioMed Research International, 2013, 2013: 384541. [百度学术]
DARHAM S, SYED-MUHAIMIN SN, SUBRAMANIAM K, ZULKHARNAIN A, SHAHARUDDIN NA, KHALIL KA, AHMAD SA. Optimisation of various physicochemical variables affecting molybdenum bioremediation using Antarctic bacterium, Arthrobacter sp. strain AQ5-05[J]. Water, 2021, 13(17): 2367. [百度学术]
YANG RX, YE WY, LIU P, LI J, LU MM, WANG ZH, SHAO DK. Endophytic Bacillus amyloliquefaciens Mdgb15 is a potential biocontrol agent against tree peony gray mold caused by Botrytis cinerea[J]. European Journal of Plant Pathology, 2024, 169(2): 431-445. [百度学术]
YANG RX, LIU P, YE WY, CHEN YQ, WEI DW, QIAO CC, ZHOU BY, XIAO JY. Biological control of root rot of strawberry by Bacillus amyloliquefaciens strains CMS5 and CMR12[J]. Journal of Fungi, 2024, 10(6): 410. [百度学术]
SRITONGON N, BOONLUE S, MONGKOLTHANARUK W, JOGLOY S, RIDDECH N. The combination of multiple plant growth promotion and hydrolytic enzyme producing rhizobacteria and their effect on Jerusalem artichoke growth improvement[J]. Scientific Reports, 2023, 13: 5917. [百度学术]
HAMDALI H, BOUIZGARNE B, HAFIDI M, LEBRIHI A, VIROLLE MJ, OUHDOUCH Y. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines[J]. Applied Soil Ecology, 2008, 38(1): 12-19. [百度学术]
冯晓英, 周桂雄, 吴庆珊, 方正, 王玉倩, 牛晓娟, 翁庆北. 5株解钾菌解钾能力和抗旱效应的比较[J]. 河南农业科学, 2020, 49(6): 59-63. [百度学术]
FENG XY, ZHOU GX, WU QS, FANG Z, WANG YQ, NIU XJ, WENG QB. Comparison of potassium solubilization ability and drought resistance of five potassium-solubilizing bacteria[J]. Journal of Henan Agricultural Sciences, 2020, 49(6): 59-63 (in Chinese). [百度学术]
ALEXANDER DB, ZUBERER DA. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria[J]. Biology and Fertility of Soils, 1991, 12: 39-45. [百度学术]
郭彦钊, 杜春辉, 于烽, 黄敏刚, 齐飞. 旱区盐生植物根际促生菌的分离鉴定及其干旱、盐胁迫下促生特性[J]. 微生物学报, 2023, 63(2): 610-622. [百度学术]
GUO YZ, DU CH, YU F, HUANG MG, QI F. Isolation and identification of growth-promoting bacteria in halophyte rhizosphere in arid region and their growth-promoting characteristics under drought and salt stresses[J]. Acta Microbiologica Sinica, 2023, 63(2): 610-622 (in Chinese). [百度学术]
BHATTACHARYYA C, BANERJEE S, ACHARYA U, MITRA A, MALLICK I, HALDAR A, HALDAR S, GHOSH A, GHOSH A. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India[J]. Scientific Reports, 2020, 10: 15536. [百度学术]
FENG Y, CUI X, SHAN H, SHI ZS, LI FH, WANG HW, ZHU M, ZHONG XM. Effects of solar radiation on photosynthetic physiology of barren stalk differentiation in maize[J]. Plant Science, 2021, 312: 111046. [百度学术]
王彩霞, 陈晓林, 李保华. 腐烂病菌侵染对苹果愈伤组织防御酶活性及丙二醛含量的影响[J]. 植物生理学报, 2014, 50(7): 909-916. [百度学术]
WANG CX, CHEN XL, LI BH. Effects of Valsa Mali var. Mali infection on defense enzymes activity and MDA content in apple callus[J]. Plant Physiology Journal, 2014, 50(7): 909-916 (in Chinese). [百度学术]
AMOR NB, HAMED K, DEBEZ A, GRIGNON C, ABDELLY C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity[J]. Plant Science, 2005, 168(4): 889-899. [百度学术]
中华人民共和国农业农村部. 中华人民共和国农业行业标准: 土壤检测第9部分: 土壤有效钼的测定: NY/T 1121.9—2012[S]. 北京: 中国农业出版社, 2013. [百度学术]
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Agricultural Industry Standards of the People’s Republic of China: Soil testing-Part 9: Method for determination of soil available molybdenum: NY/T 1121.9—2012[S]. Beijing: China Agricultural Press, 2013. [百度学术]
中华人民共和国生态环境部. 中华人民共和国国家环境保护标准: 水质金属总量的消解微波消解法: HJ678—2013[S]. 北京: 中国环境科学出版社, 2013. [百度学术]
Ministry of Ecology and Environment of the People’s Republic of China. National Environmental Protection Standards of the People’s Republic of China: Water quality-digestion of total metals-microwave assisted acid digestion method: HJ678—2013[S]. Beijing: China Environmental Science Press, 2013. [百度学术]
SHUKOR MY, RAHMAN MF, SHAMAAN NA, SYED MA. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr. Y13[J]. Journal of Basic Microbiology, 2009, 49(Suppl 1): S43-S54. [百度学术]
YAKASAI H, KARAMBA KI, YASID NA, HALMI M, RAHMAN M, AHMAD S, SHUKOR M. Response surface-based optimization of a novel molybdenum-reducing and cyanide-degrading Serratia sp. strain HMY1[J]. Desalination and Water Treatment, 2019, 145: 220-231. [百度学术]
HALMI MIE, ABDULLAH SRS, JOHARI WLW, ALI MSM, SHAHARUDDIN NA, KHALID A, SHUKOR MY. Modelling the kinetics of hexavalent molybdenum (M
YOU XY, WANG H, REN GY, LI JJ, DUAN X, ZHENG HJ, JIANG ZQ. Complete genome sequence of the molybdenum-resistant bacterium Bacillus subtilis strain LM4-2[J]. Standards in Genomic Sciences, 2015, 10: 127. [百度学术]
SAEED AM, SHATOURY EE, HADID R. Production of molybdenum blue by two novel molybdate-reducing bacteria belonging to the genus Raoultella isolated from Egypt and Iraq[J]. Journal of Applied Microbiology, 2019, 126(6): 1722-1728. [百度学术]
MASDOR N, SHUKOR MS, KHAN AA, HALMI MIE, ABDULLAH SRS, SHAMAAN NA, SHUKOR MYA. Isolation and characterization of a molybdenum-reducing and SDS-degrading Klebsiella oxytoca strain Aft-7 and its bioremediation application in the environment[J]. Biodiversitas, 2015, 16(2): 238-246. [百度学术]
马莹, 骆永明, 滕应, 李秀华. 内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报, 2013, 50(1): 195-202. [百度学术]
MA Y, LUO YM, TENG Y, LI XH. Effects of endophytic bacteria enhancing phytoremediation of heavy metal contaminated soils[J]. Acta Pedologica Sinica, 2013, 50(1): 195-202 (in Chinese). [百度学术]
SINGH N, MARWA N, MISHRA SK, MISHRA J, SINGH N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L.[J]. Ecotoxicology and Environmental Safety, 2016, 125: 25-34. [百度学术]
PETRICCIONE M, PATRE DD, FERRANTE P, PAPA S, BARTOLI G, FIORETTO A, SCORTICHINI M. Effects of Pseudomonas fluorescens seed bioinoculation on heavy metal accumulation for Mirabilis jalapa phytoextraction in smelter-contaminated soil[J]. Water, Air, & Soil Pollution, 2013, 224: 1645. [百度学术]
BABU AG, KIM JD, OH BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1[J]. Journal of Hazardous Materials, 2013, 250: 477-483. [百度学术]
张萌萌, 曹立东, 王仁卿, 孙瑞莲. 植物内生细菌修复重金属污染土壤作用机制研究进展[J]. 生物技术通报, 2018, 34(11): 42-49. [百度学术]
ZHANG MM, CAO LD, WANG RQ, SUN RL. Mechanism of endophytic bacteria remediating heavy metal-contaminated soil[J]. Biotechnology Bulletin, 2018, 34(11): 42-49 (in Chinese). [百度学术]
古添源, 余黄, 曾伟民, 吴学玲, 余润兰, 刘元东, 申丽, 李交昆. 功能内生菌强化超积累植物修复重金属污染土壤的研究进展[J]. 生命科学, 2018, 30(11): 1228-1235. [百度学术]
GU TY, YU H, ZENG WM, WU XL, YU RL, LIU YD, SHEN L, LI JK. Progress on the endophyte of hyperaccumulators and their beneficial role in heavy metal phytoremediation[J]. Chinese Bulletin of Life Sciences, 2018, 30(11): 1228-1235 (in Chinese). [百度学术]
XU JY, HAN YH, CHEN YS, ZHU LJ, MA LQ. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata[J]. Chemosphere, 2016, 144: 1233-1240. [百度学术]
JONG MS, REYNOLDS RJB, RICHTEROV K, MUSILOVA L, STAICU L, CHOCHOLATA I, CAPPA J, TAGHAVI S, LELIE D, FRANTIK T, DOLINOVA I, STREJCEK M, COCHRAN AT, LOVECKA P, PILON-SMITS E. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties[J]. Frontiers in Plant Science, 2015, 6: 113. [百度学术]
YAKASAI HM, RAHMAN MF, MANOGARAN M, YASID NA, SYED MA, SHAMAAN NA, SHUKOR MY. Microbiological reduction of molybdenum to molybdenum blue as a sustainable remediation tool for molybdenum: a comprehensive review[J]. International Journal of Environmental Research and Public Health, 2021, 18(11): 5731. [百度学术]
SUBRAMANIAN P, KIM K, KRISHNAMOORTHY R, SUNDARAM S, SA TM. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110[J]. Plant Growth Regulation, 2015, 76: 327-332. [百度学术]
MIRZAHOSSINI Z, SHABANI L, SABZALIAN MR, SHARIFI-TEHRANI M. ABC transporter and metallothionein expression affected by Ni and Epichloe endophyte infection in tall fescue[J]. Ecotoxicology and Environmental Safety, 2015, 120: 13-19. [百度学术]
ZHANG YF, HE LY, CHEN ZJ, WANG QY, QIAN M, SHENG XF. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus[J]. Chemosphere, 2011, 83(1): 57-62. [百度学术]
YUAN M, HE HD, XIAO L, ZHONG T, LIU H, LI SB, DENG PY, YE ZH, JING YX. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27[J]. Chemosphere, 2014, 103: 99-104. [百度学术]
JORQUERA MA, MARUYAMA F, OGRAM AV, NAVARRETE OU, LAGOS LM, INOSTROZA NG, ACUÑA JJ, RILLING JI, DE LA LUZ MORA M. Rhizobacterial community structures associated with native plants grown in Chilean extreme environments[J]. Microbial Ecology, 2016, 72(3): 633-646. [百度学术]
TIWARI S, SARANGI BK, THUL ST. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application[J]. Journal of Environmental Management, 2016, 180: 359-365. [百度学术]
YAN Z, ZHANG W, CHEN J, LI X. Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity[J]. Biologia Plantarum, 2015, 59(2): 373-381. [百度学术]
WAN Y, LUO SL, CHEN JL, XIAO X, CHEN L, ZENG GM, LIU CB, HE YJ. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J]. Chemosphere, 2012, 89(6): 743-750. [百度学术]
KOSOVÁ K, VÍTÁMVÁS P, PRÁŠIL IT. Wheat and barley dehydrins under cold, drought, and salinity-what can LEA-II proteins tell us about plant stress response?[J]. Frontiers in Plant Science, 2014, 5: 343. [百度学术]
王立, 安广楠, 马放, 吴洁婷, 张雪, 王敏. AMF对镉污染条件下水稻抗逆性及根际固定性的影响[J]. 农业环境科学学报, 2014, 33(10): 1882-1889. [百度学术]
WANG L, AN GN, MA F, WU JT, ZHANG X, WANG M. Effects of arbuscular mycorrhizal fungi on cadmium tolerance and rhizospheric fixation of rice[J]. Journal of Agro-Environment Science, 2014, 33(10): 1882-1889 (in Chinese). [百度学术]