摘要
目的
铁还原依赖的甲烷厌氧氧化(Fe-AOM)是厌氧环境中甲烷减排的重要途径,然而在缺氮条件下甲烷氧化微生物如何进行Fe-AOM仍不清楚。
方法
选取甲烷氧化培养物和水铁矿为研究对象,通过氮同位素示踪、三维荧光光谱分析、电化学分析和高通量测序等方法,探究缺氮条件下Fe-AOM的效率及其耦合生物固氮的可能性。
结果
在缺氮条件下,甲烷氧化培养物能够催化Fe-AOM,将水铁矿还原转化为菱铁矿等矿物。当添加甲烷时,甲烷氧化培养物的固氮酶活性
结论
因此推测在该Fe-AOM耦合生物固氮过程主要由Methanobacterium进行甲烷氧化,而Geobacter、Desulfovibrio等铁还原菌负责水铁矿的还原,Azoarcus则催化了生物固氮。此外,甲烷氧化细菌[甲基胞囊菌属(Methylocystis)]与铁还原菌和固氮菌之间呈现正相关关系,暗示其可能对该过程具有一定的贡献。这些结果为理解厌氧环境中铁依赖型甲烷氧化耦合固氮过程提供了新视角。
甲烷是一种重要的温室气体,其温室效应是二氧化碳的28-34
生物固氮(biological nitrogen fixation, BNF)是微生物利用固氮酶将氮气(N2)还原为氨(NH3)的过程,是生物可利用氮的重要来源。除了根瘤菌等传统的固氮微生物外,甲烷氧化菌也是进行BNF的一大类群。在厌氧环境中,AOM与BNF的耦合最早发现于S-DAMO过程。在该S-DAMO过程中,甲烷厌氧氧化古菌(ANME-2)和硫还原菌(SRB)共同驱动海洋沉积物的BNF,即S-DAMO与BNF的耦合发
目前Fe-AOM研究大多聚焦于氮充足条件下AOM介导的铁转化过程,而缺氮条件下Fe-AOM的效率及机制仍缺乏研究。铁氧化物是水稻土、湖泊沉积物等环境中重要的电子受体,基于铁氧化物的Fe-AOM为众多生物学过程提供能量,但该能量是否足以驱动生物固氮过程、解除缺氮限制仍不清楚。土壤低丰度氮素通常是甲烷氧化的限制因素之一。氮素的缺乏可能会导致AOM过程产生的能量向固氮反应转移,从而改变AOM菌的生长速率和AOM速
1 材料与方法
1.1 接种物和培养基
AOM活性菌群采集于甲烷微生物燃料电池(microbial fuel cell, MFC

图1 微生物燃料电池中AOM培养物的富集生长。A:富集AOM培养物的单室MFC装置示意图;B:AOM培养物在MFC中的生长曲线和产电效果。
Figure 1 The enrichment and growth of the AOM culture in a microbial fuel cell. A: Schematic diagram of a single-chamber MFC device used for enriching the AOM culture; B: The growth curve of AOM enrichment culture in MFC and its power generation.
1.2 甲烷氧化固氮试验
Fe-AOM固氮试验在厌氧瓶内进行,每个厌氧瓶含有60 mL培养基(与电解质溶液相同)和74 mL顶空。使用高纯氮气对厌氧瓶中的培养基吹扫45 min,以确保厌氧条件。采集20 mL AOM培养物,8 000 r/min离心10 min收集菌体,用厌氧培养基洗涤3次后,接入厌氧瓶内,然后用气密橡胶塞密封。试验设计了4个处理组,包括AFC、AF、AC和SFC (
Treatment group number | Experimental conditions |
---|---|
AFC | AOM culture+Ferrihydrite+CH4 |
AF | AOM culture+Ferrihydrite |
AC | AOM culture+CH4 |
SFC | Inactivated AOM culture+Ferrihydrite+CH4 |
1.3 分析方法
1.3.1 理化分析
采用菲啰嗪法测定亚铁浓度,采用靛酚蓝法测定氨氮浓度,均使用UV-2600分光光度计完
15N% excess=样
15N原子百分数 | (1) |
采用三维荧光光谱(安捷伦科技有限公司)分析溶解性有机物的成分和含量,乙炔还原法测量固氮生物体中的固氮酶活
1.3.2 电化学分析
利用循环伏安法(cyclic voltammetry, CV)和差分脉冲伏安法(differential pulse voltammetry, DPV)分析AOM培养物的电化学活
1.3.3 稳定性同位素核酸探针
利用稳定性同位素核酸探针技术(DNA-based stable isotope probing, DNA-SIP)结合高通量测序,追踪同化吸
1.3.4 微生物群落结构分析
为了分析微生物群落组成的变化,采用Fast DNA Spin Kit for Soil (MP Biomedicals公司)提取基因组DNA。分别使用细菌和古菌通用16S rRNA基因引物341b4F (5′-CTAYGGRRBG CWGCAG-3′)和806R (5′-GGACTACNNGGGTA TCTAAT-3′),nifH引物PolF (5′-TGCGAYCCS AARGCBGACTC-3′)和PolR (5′-ATSGCCATCA TYTCRCCGGA-3′),分别扩增16S rRNA基因和nifH基因,16S rRNA基因扩增产物在Illumina MiSeq平台(上海美吉生物医药科技有限公司)进行高通量测序。Illumina 测序得到的序列经序列质控和过滤、重叠拼接后用于微生物多样性分析。本研究测序获得的原始数据存储于NCBI的SRA数据库(https://www.ncbi.nlm.nih.gov/),生物项目编号为PRJNA1081667,链接为http://www.ncbi.nlm.nih.gov/bioproject/1183654。利用R (v4.1.0)程序包psych计算操作分类单元(operational taxonomic unit, OTU)之间的Spearman相关系数,相关系数矩阵(|R|>0.6且P<0.05)通过Gephi软件(v0.9.2)可视化微生物共存网络。
2 结果与讨论
2.1 AOM培养物介导的甲烷氧化和水铁矿还原
为了探究AOM培养物是否具备Fe-AOM功能,监测了各处理组中CH4浓度的变化以及培养体系中Fe(II)浓度变化。如

图2 甲烷厌氧氧化培养物的CH4消耗量(A)和3个连续周期的水铁矿还原效果(B-D)。箭头表示更换新鲜培养液,导致Fe(II)浓度从新的起点开始积累。
Figure 2 CH4 consumption by an anaerobic methane-oxidizing culture (A) and the ferrihydrite reduction (B-D) during three consecutive cycles. Arrows indicate the replacement of the culture medium with fresh medium, resulting in the accumulation of Fe(II) concentration from a new starting point.

图3 硫酸盐浓度变化
Figure 3 The sulfate concentration change.
采用XRD技术鉴定了实验结束时(第110天)水铁矿的还原产物结构。如

图4 水铁矿还原产物的XRD图谱。*:菱铁矿;+:磁铁矿;#:蓝铁矿。
Figure 4 The XRD spectra of the products from ferrihydrite reduction. *: Siderite; +: Magnetite; #: Vivianite.
2.2 Fe-AOM过程的固氮效果
第40天实验结束后,利用乙炔还原法检测了各处理组的乙烯和氨氮产量,以探讨AOM培养物在Fe-AOM过程中的固氮潜力。如

图5 AOM培养物的固氮酶活性,氨氮产量(A)
Figure 5 The nitrogenase activity and ammonium production (A) of the AOM culture as well as its
为了进一步验证AOM培养物在Fe-AOM过程中发挥的生物固氮功能,将样品顶空的普通N2置换为同位
2.3 AOM铁还原途径和甲烷代谢产物
AOM培养物的水铁矿还原速率与其氧化还原活性紧密相关。借助循环伏安法和微分脉冲伏安法测定了AOM培养物的氧化还原活性,并解析了AOM微生物的铁还原途径。结果如

图6 Fe-AOM过程中培养物/上清液的氧化还原活性。A:菌悬液CV;B:上清滤液CV;C:菌悬液DPV;D:培养物Eh。
Figure 6 Redox activity of the AOM culture/supernatant during Fe-AOM. A: CVs for the bacterial suspensions; B: The filtrated supernatants; C: DPVs of the bacterial suspensions; D: The Eh value of the AOM culture.
溶解性有机物三维荧光光谱的荧光信号通常可分为5个区域(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ),分别与酪氨酸蛋白类物质、色氨酸蛋白类物质、富里酸类物质、溶解性微生物代谢产物类物质和腐殖酸类物质相

图7 第110天AFC组(A)和AF组(B)上清液可溶性有机物含量
Figure 7 The contents of soluble organic matter in the supernatants from the AFC (A) and AF (B) treatment groups on day 110.

图8 基于16S rRNA基因测序的属水平微生物群落结构(A)和共现网络(B)。红色连线表示正相关,绿色连线表示负相关;相同颜色的节点表示属于同一纲,节点大小与连接线的数量成正比,即节点越大,表示它与其他微生物的相互作用越多。
Figure 8 Microbial community structure (A) and co-occurrence network (B) at the genus level based on 16S rRNA gene sequencing. Red lines indicate a positive correlation, green lines indicate a negative correlation; Nodes with the same color represent the same class; The size of the node is proportional to the number of connecting lines, that is, the larger the node, the more interactions it has with other microorganisms.
2.4 Fe-AOM耦合生物固氮机制分析
为了探究Fe-AOM耦合生物固氮的微生物作用机制,测定了AFC组和AF组在第110天时的微生物群落结构。如
为了明确固氮功能微生物的种类,将DNA-SIP实验中AF

图9 AF
Figure 9 Changes in the relative abundance of nifH gene with buoyancy density in AF
3 结论
(1) AOM培养物利用甲烷作为底物驱动了水铁矿还原与生物固氮的同步进行。水铁矿还原的产物包括菱铁矿、磁铁矿等。Fe-AOM过程显著提升了AOM培养物的固氮酶活性
(2) 在甲烷和水铁矿共存的条件下,AOM培养物产生了较多的水溶性蛋白类似物和微生物代谢产物,这可能有利于加强微生物之间的互营代谢;AOM培养物并未利用电子穿梭体,而是通过直接电子传递的方式进行水铁矿还原。Fe-AOM过程有效提升了AOM培养物的氧化还原活性。
(3) AOM培养物中以甲烷氧化古菌Methanobacterium、铁还原菌Geobacter和Desulfovibrio为优势菌。耦合机理分析表明,Methanobacterium、Geobacter和Desulfovibrio可能协同催化了Fe-AOM过程,其中后两者可能参与了水铁矿还原;而Azoarcus则利用Fe-AOM的代谢中间产物进行生物固氮。
作者贡献声明
李书安:实验操作、数据处理与分析、文稿写作及编辑;余林鹏:实验方案设计、监督指导、文稿审查及编辑;杨琳:实验操作、数据处理与分析;沈彦汐:数据处理与分析;周顺桂:实验方案设计、文稿审查。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
CAI YF, ZHENG Y, BODELIER PLE, CONRAD R, JIA ZJ. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7: 11728. [百度学术]
CHENG C, ZHANG J, HE Q, WU HM, CHEN Y, XIE HJ, PAVLOSTATHIS SG. Exploring simultaneous nitrous oxide and methane sink in wetland sediments under anoxic conditions[J]. Water Research, 2021, 194: 116958. [百度学术]
REEBURGH WS. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976, 28(3): 337-344. [百度学术]
RAGHOEBARSING AA, POL A, van de PAS-SCHOONEN KT, SMOLDERS AJP, ETTWIG KF, RIJPSTRA WI, SCHOUTEN S, DAMSTÉ JS, OP DEN CAMP HJ, JETTEN MSM, STROUS M. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921. [百度学术]
ETTWIG KF, BUTLER MK, le PASLIER D, PELLETIER E, MANGENOT S, KUYPERS MMM, SCHREIBER F, DUTILH BE, ZEDELIUS J, de BEER D, GLOERICH J, WESSELS HJCT, van ALEN T, LUESKEN F, WU ML, van de PAS-SCHOONEN KT, OP DEN CAMP HJM, JANSSEN-MEGENS EM, FRANCOIJS KJ, STUNNENBERG H, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. [百度学术]
SEGARRA KEA, COMERFORD C, SLAUGHTER J, JOYE SB. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments[J]. Geochimica et Cosmochimica Acta, 2013, 115: 15-30. [百度学术]
SCHELLER S, YU H, CHADWICK GL, MCGLYNN SE, ORPHAN VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274): 703-707. [百度学术]
CAI C, LEU AO, XIE GJ, GUO JH, FENG YX, ZHAO JX, TYSON GW, YUAN ZG, HU SH. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction[J]. The ISME Journal, 2018, 12(8): 1929-1939. [百度学术]
YANG HL, YU S, LU HL. Iron-coupled anaerobic oxidation of methane in marine sediments: a review[J]. Journal of Marine Science and Engineering, 2021, 9(8): 875. [百度学术]
SIVAN O, ANTLER G, TURCHYN AV, MARLOW JJ, ORPHAN VJ. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): E4139-E4147. [百度学术]
WERSIN P, HÖHENER P, GIOVANOLI R, STUMM W. Early diagenetic influences on iron transformations in a freshwater lake sediment[J]. Chemical Geology, 1991, 90(3/4): 233-252. [百度学术]
CROWE SA, KATSEV S, LESLIE K, STURM A, MAGEN C, NOMOSATRYO S, PACK MA, KESSLER JD, REEBURGH WS, ROBERTS JA, GONZÁLEZ L, DOUGLAS HAFFNER G, MUCCI A, SUNDBY B, FOWLE DA. The methane cycle in ferruginous Lake Matano[J]. Geobiology, 2011, 9(1): 61-78. [百度学术]
SIVAN O, ADLER M, PEARSON A, GELMAN F, BAR-OR I, JOHN SG, ECKERT W. Geochemical evidence for iron-mediated anaerobic oxidation of methane[J]. Limnology and Oceanography, 2011, 56(4): 1536-1544. [百度学术]
NORÐI KÀ, THAMDRUP B, SCHUBERT CJ. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment[J]. Limnology and Oceanography, 2013, 58(2): 546-554. [百度学术]
SLOMP CP, MORT HP, JILBERT T, REED DC, GUSTAFSSON BG, WOLTHERS M. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane[J]. PLoS One, 2013, 8(4): e62386. [百度学术]
EGGER M, RASIGRAF O, SAPART CJ, JILBERT T, JETTEN MSM, RÖCKMANN T, van der VEEN C, BÂNDĂ N, KARTAL B, ETTWIG KF, SLOMP CP. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277-283. [百度学术]
DEKAS AE, PORETSKY RS, ORPHAN VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia[J]. Science, 2009, 326(5951): 422-426. [百度学术]
DONG XY, ZHANG CW, PENG YY, ZHANG HX, SHI LD, WEI GS, HUBERT CRJ, WANG Y, GREENING C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments[J]. Nature Communications, 2022, 13(1): 4885. [百度学术]
LIU XH, LI P, WANG HL, HAN LL, YANG K, WANG YH, JIANG Z, CUI L, KAO SJ. Nitrogen fixation and diazotroph diversity in groundwater systems[J]. The ISME Journal, 2023, 17(11): 2023-2034. [百度学术]
YU LP, JIA R, LIU SQ, LI S, ZHONG SN, LIU GH, ZENG RJ, RENSING C, ZHOU SG. Ferrihydrite-mediated methanotrophic nitrogen fixation in paddy soil under hypoxia[J]. ISME Communications, 2024, 4(1): ycae030. [百度学术]
BODELIER PLE, LAANBROEK HJ. Nitrogen as a regulatory factor of methane oxidation in soils and sediments[J]. FEMS Microbiology Ecology, 2004, 47(3): 265-277. [百度学术]
YU LP, YANG ZJ, HE QX, ZENG RJ, BAI YN, ZHOU SG. Novel gas diffusion cloth bioanodes for high-performance methane-powered microbial fuel cells[J]. Environmental Science & Technology, 2019, 53(1): 530-538. [百度学术]
ETTWIG KF, van ALEN T, van de PAS-SCHOONEN KT, JETTEN MSM, STROUS M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied and Environmental Microbiology, 2009, 75(11): 3656-3662. [百度学术]
SOO VWC, MCANULTY MJ, TRIPATHI A, ZHU FY, ZHANG LM, HATZAKIS E, SMITH PB, AGRAWAL S, NAZEM-BOKAEE H, GOPALAKRISHNAN S, SALIS HM, FERRY JG, MARANAS CD, PATTERSON AD, WOOD TK. Reversing methanogenesis to capture methane for liquid biofuel precursors[J]. Microbial Cell Factories, 2016, 15: 11. [百度学术]
ZHOU SG, XU JL, YANG GQ, ZHUANG L. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances[J]. FEMS Microbiology Ecology, 2014, 88(1): 107-120. [百度学术]
MONTES-LUZ B, CONRADO AC, ELLINGSEN JK, MONTEIRO RA, de SOUZA EM, STACEY G. Acetylene reduction assay: a measure of nitrogenase activity in plants and bacteria[J]. Current Protocols, 2023, 3(5): e766. [百度学术]
SU JF, SHAO SC, HUANG TL, MA F, YANG SF, ZHOU ZM, ZHENG SC. Anaerobic nitrate-dependent iron(II) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2187-2193. [百度学术]
HUSTON WM, JENNINGS MP, MCEWAN AG. The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition[J]. Molecular Microbiology, 2002, 45(6): 1741-1750. [百度学术]
HE QX, YU LP, LI JB, HE D, CAI XX, ZHOU SG. Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction[J]. Science of the Total Environment, 2019, 688: 664-672. [百度学术]
FU L, LI SW, DING ZW, DING J, LU YZ, ZENG RJ. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II)[J]. Water Research, 2016, 88: 808-815. [百度学术]
GONZÁLEZ-FERNÁNDEZ C, GARCÍA-ENCINA PA. Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry[J]. Biomass and Bioenergy, 2009, 33(8): 1065-1069. [百度学术]
SHINODA R, BAO ZH, MINAMISAWA K. CH4 oxidation-dependent
JIA YT, QIAN DS, CHEN YC, HU YY. Intra/extracellular electron transfer for aerobic denitrification mediated by in situ biosynthesis palladium nanoparticles[J]. Water Research, 2021, 189: 116612. [百度学术]
CAI XX, HUANG LY, YANG GQ, YU Z, WEN JL, ZHOU SG. Transcriptomic, proteomic, and bioelectrochemical characterization of an exoelectrogen Geobacter soli grown with different electron acceptors[J]. Frontiers in Microbiology, 2018, 9: 1075. [百度学术]
KIKUCHI S, MAKITA H, KONNO U, SHIRAISHI F, IJIRI A, TAKAI K, MAEDA M, TAKAHASHI Y. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment[J]. Geobiology, 2016, 14(4): 374-389. [百度学术]
陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用[J]. 环境科学与技术, 2015, 38(5): 64-68, 73. [百度学术]
CHEN SY, LI Y, LI AM. Application of three-dimensional fluorescence spectroscopy in the study of dissolved organic matter[J]. Environmental Science & Technology, 2015, 38(5): 64-68, 73 (in Chinese). [百度学术]
HE R, MA RC, YAO XZ, WEI XM. Response of methanotrophic activity to extracellular polymeric substance production and its influencing factors[J]. Waste Management, 2017, 69: 289-297. [百度学术]
SCARINCI G, SOURJIK V. Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community[J]. The ISME Journal, 2023, 17(3): 371-381. [百度学术]
丁阿强, 李朝洋, 李微薇, 卢培利. 厌氧甲烷氧化微生物物质代谢与能量代谢研究进展[J]. 微生物学报, 2022, 62(5): 1669-1687. [百度学术]
DING AQ, LI CY, LI WW, LU PL. Advances in catabolism and energy metabolism of anaerobic methane-oxidizing microorganisms[J]. Acta Microbiologica Sinica, 2022, 62(5): 1669-1687 (in Chinese). [百度学术]
XIAO Y, ZHANG EH, ZHANG JD, DAI YF, YANG ZH, CHRISTENSEN HEM, ULSTRUP J, ZHAO F. Extracellular polymeric substances are transient media for microbial extracellular electron transfer[J]. Science Advances, 2017, 3(7): e1700623. [百度学术]
HE ZF, XU YT, ZHU YH, FENG JN, ZHANG DY, PAN XL. Long-term effects of soluble and insoluble ferric irons on anaerobic oxidation of methane in paddy soil[J]. Chemosphere, 2023, 317: 137901. [百度学术]
LI S, LI XM, LI FB. Fe(II) oxidation and nitrate reduction by a denitrifying bacterium, Pseudomonas stutzeri LS-2, isolated from paddy soil[J]. Journal of Soils and Sediments, 2018, 18(4): 1668-1678. [百度学术]
CAO Q, LI XZ, XIE ZJ, LI CN, HUANG SY, ZHU BJ, LI D, LIU XF. Compartmentation of microbial communities in structure and function for methane oxidation coupled to nitrification-denitrification[J]. Bioresource Technology, 2021, 341: 125761. [百度学术]
REINHOLD-HUREK B, HUREK T. Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: Identification, localization, and perspectives to study their function[J]. Critical Reviews in Plant Sciences, 1998, 17(1): 29-54. [百度学术]
JUNG MY, KIM SJ, KIM JG, HONG H, GWAK JH, PARK SJ, KIM YH, RHEE SK. Comparative genomic analysis of Geosporobacter ferrireducens and its versatility of anaerobic energy metabolism[J]. Journal of Microbiology, 2018, 56(5): 365-371. [百度学术]
JING XY, LIU X, ZHANG ZS, WANG X, RENSING C, ZHOU SG. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens[J]. Water Research, 2022, 208: 117860. [百度学术]