摘要
目的
比较不同种植地长梗绞股蓝根际和非根际土壤细菌多样性和群落组成差异,结合环境因子关联分析,揭示影响长梗绞股蓝土壤细菌群落的关键因子,为长梗绞股蓝的栽培引种提供参考,也为进一步探究不同产区长梗绞股蓝根际微生物与化学成分含量的关系奠定基础。
方法
基于高通量测序技术和土壤理化性质分析,比较不同种植地长梗绞股蓝土壤细菌群落多样性和组成差异,并揭示影响细菌群落的关键环境因子。
结果
共获得97 085个细菌扩增子序列变体(amplicon sequence variants, ASVs),长梗绞股蓝土壤细菌群落结构在不同种植地间具有显著差异(R=0.562,P=0.001),在根际和非根际土壤中无显著差异。变形菌门(Proteobacteria,27.40%-36.67%)和酸杆菌门(Acidobacteriota,15.60%-22.19%)为长梗绞股蓝土壤细菌中的优势菌门。土壤pH、有效磷(available phosphorus, AP)、速效钾(available potassium, AK)、有机质(soil organic matter, SOM)和碱解氮(alkali-hydrolyzable nitrogen, AN)是影响长梗绞股蓝土壤细菌群落结构的关键土壤环境因子。
结论
基于本研究的样本分析,不同产地长梗绞股蓝细菌群落多样性和组成差异显著且与土壤理化性质密切相关。本研究为长梗绞股蓝的引种栽培提供了一定的参考,也为进一步探究绞股蓝土壤微生物与次生代谢产物积累的关系奠定了基础。
长梗绞股蓝(Gynostemma longipes)为葫芦科绞股蓝属草质攀缘植
由于其药用价值,绞股蓝遭到过度采挖,导致野生资源显著减
绞股蓝属植物喜阴凉环境且对土壤肥力要求较高,其人工栽培主要采用传统农田种植模式。在栽培过程中,通常通过施加底肥,并在生长周期内进行多次追肥以满足其营养需求。然而,随着产业化种植规模的持续扩大,长期集约化栽培引发的土壤生态问题如连作障碍、根结线虫等也逐渐显现,制约了绞股蓝产业的发
秦巴山区作为长梗绞股蓝的优势产区,其地理环境和气候条件为长梗绞股蓝的生长提供了优越的自然条件,并形成了独特的土壤微生物组,探究优势产区长梗绞股蓝生长的土壤微生物因素,能够为绞股蓝的栽培引种提供新思路。陕西省安康市是绞股蓝的自然分布分化中心,又有“绞股蓝故乡”之称,其独特的区域小生态环境十分适宜绞股蓝的生长发育。平利县是中国开发最早、规模最大的绞股蓝人工栽培基地县,也是国家绞股蓝标准化示范区;镇坪县是陕西省中药材现代化科技示范县,与平利县共享种质资源,作为安康市绞股蓝产业的核心县,具有较大的绞股蓝种植规模。基于此,本研究以陕西省安康市平利县大贵、八道和镇坪县前进共3个不同种植区的二年生长梗绞股蓝为材料,采用高通量测序技术对其根际和非根际土壤细菌的群落结构组成进行分析,同时测定了非根际土的土壤理化指标,并结合环境因子关联分析,揭示影响长梗绞股蓝土壤细菌群落的关键土壤环境因子,以期为优化绞股蓝的栽培引种提供指导,也为进一步探究不同产区绞股蓝根际微生物与次生代谢产物积累的关系奠定基础。
1 材料与方法
1.1 长梗绞股蓝采样区域概况
陕西省安康市位于中国西北地区的南缘,地处秦岭以南、大巴山以北,主要土壤类型包括黄棕壤、黄褐土、棕壤、棕色石灰土等。安康市南临汉江,北靠秦巴山脉,属亚热带大陆性季风气候,四季分明,气候温暖湿润,年平均气温15 ℃左右,年降水量丰富,约为800-1 200 mm,是长梗绞股蓝的优势和主要种植区域之一。
1.2 土壤样品采集与处理
从陕西省安康市的3个长梗绞股蓝种植地:平利县大贵镇大贵村(DG)、广佛镇八道村(BD)和镇坪县牛头店镇前进村(QJ)采集种植的二年生长梗绞股蓝样品(金沙种源) (
Samples lable | Collecting sites | Longitude (E) | Latitude (N) | Altitude (m) | Collecting date |
---|---|---|---|---|---|
DG | Dagui village, Dagui Town, Pingli County, Ankang City, Shaanxi Province | 109°20′31′′ | 32°45′23′′ | 492.4 | 2023-11-28 |
QJ | Qianjin village, Niutoudian Town, Zhenping County, Ankang City, Shaanxi Province | 109°58′67′′ | 32°09′84′′ | 852.5 | 2023-11-27 |
BD | Badao Township, Guangfo Town, Pingli County, Ankang City, Shaanxi Province | 109°37′24′′ | 32°15′59′′ | 1 130.1 | 2023-11-27 |
DG: Soil samples from the DG cultivation site; QJ: Soil samples from the Dagui cultivation site; BD: Soil samples from the Badao cultivation site. The same as below.
1.3 土壤理化性质的测定和细菌群落的测定
1.3.1 土壤理化性质的测定
从各种植地随机选取3份共9个非根际土壤样品进行理化性质测定,检测的土壤理化指标包括6项:pH、有效磷(available phosphorus, AP)、速效钾(available potassium, AK)、干物质(dry matter, DM)、有机质(soil organic matter, SOM)和碱解氮(alkali-hydrolyzable nitrogen, AN)。其中:pH按照标准NY/T 1377—200
1.3.2 细菌群落结构的测定
对3个种植地的40个土壤样品(20个根际和20个非根际土壤样品)进行细菌多样性分析。高通量测序委托北京百迈客生物科技有限公司在Illumina NovaSeq平台上进行。采用双末端测序(paired-end)的方法,构建小片段文库对细菌16S rRNA基因进行测序。使用细菌通用引物338F (5′-ACTCCTACGGGAGGCAGCA-3′)和806R (5′-GGACTACHVGGGTWTCTAAT-3′),对细菌16S rRNA基因的V3-V4可变区进行扩增。序列经过拼接和过滤后,采用DADA2方法进行扩增子序列变体(amplicon sequence variants, ASV)聚类。基于ASVs聚类分析结果,以Silva 138为参考数据库对特征序列进行分类学注释,得到每个特征的分类学信息,用于后续群落结构分析。在属水平分类中,若序列无法匹配已知属,则保留其可确认的最高分类阶元(科或目),并标注为“Unclassified”的目/科名。
1.4 数据处理与统计分析
通过百迈客云数据分析平台对长梗绞股蓝土壤细菌多样性进行分析。使用Excel 2021和SPSS 25.0对理化指标数据和土壤微生物丰度数据进行统计整理,采用单因素方差分析(analysis of variance, ANOVA)和Kruskal-Wallis非参数检验方法进行显著性差异分析。细菌α多样性以ACE、Chao1、Shannon和Simpson指数表示,群落β多样性采用Bray-Curtis距离进行分析。
2 结果与分析
2.1 土壤理化性质
对3个不同种植地长梗绞股蓝非根际土壤的理化指标进行了测定。结果表明,土壤碱解氮和有效磷含量在3个种植地间不存在显著差异,而干物质、有机质、pH和速效钾含量则存在部分差异(
Samples lable | DM (g/100 g) | SOM (g/kg) | pH | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|
DG | 99.73±0.07a | 32.06±4.99ab | 5.83±0.07c | 137.01±41.88a | 67.52±26.65a | 154.74±45.67b |
QJ | 99.52±0.05ab | 27.21±1.77b | 6.06±0.13b | 149.28±10.65a | 100.14±4.90a | 370.70±47.59a |
BD | 99.26±0.31b | 44.79±3.73a | 7.21±0.07a | 245.33±21.56a | 56.17±18.81a | 176.91±26.85b |
Different lowercase letters in the same line indicated significant difference between different groups (P<0.05). AP: Available phosphorus; AK: Available potassium; DM: Dry matter; SOM: Soil organic matter; AN: Alkali-hydrolyzable nitrogen.
2.2 土壤细菌群落α多样性分析
在Illumina NovaSeq高通量测序平台上,对3个种植地长梗绞股蓝根际和非根际细菌群落进行测序,共获得2 988 688条clean reads和97 085个细菌ASVs,其中根际土壤共50 265个,非根际土壤共54 674个。3个种植地土壤样本中细菌样本文库的覆盖率达到99.8%以上,表明此次测序结果较为准确合理,稀释性曲线和香农指数曲线显示,测序深度基本覆盖了样品的细菌种类(

图1 长梗绞股蓝土壤样品微生物测试稀释性曲线(A)和香农指数曲线(B)
Figure 1 Rarefaction curves (A) and Shannon diversity curves (B).
α多样性能够反映样品的物种丰富度和多样性。对3个种植地长梗绞股蓝根际和非根际土壤样本进行α多样性指数分析,结果如
Sample ID | ASVs | Chao1 index | Shannon index | ACE index |
---|---|---|---|---|
DGRZ | 2 705.40±468.34b | 2 706.23±468.13b | 9.91±0.46b | 2 718.88±468.76b |
DGS | 2 877.70±242.77ab | 2 878.28±242.75ab | 10.06±0.20b | 2 890.30±243.20ab |
QJRZ | 3 467.00±414.21ab | 3 467.52±413.98ab | 10.40±0.23ab | 3 480.11±412.17ab |
QJS | 3 264.80±636.37ab | 3 265.49±636.10ab | 10.16±0.44ab | 3 278.14±635.67ab |
BDRZ | 3 402.20±144.01ab | 3 403.21±144.10ab | 10.51±0.26ab | 3 420.26±147.14ab |
BDS | 3 789.80±472.32a | 3 790.71±471.69a | 10.75±0.16a | 3 806.93±467.09a |
Different lowercase letters in the same line indicated significant difference between different groups (P<0.05). DGRZ: Rhizosphere soil from the Dagui cultivation site; DGS: Non-rhizosphere soil from the Dagui cultivation site; QJRZ: Rhizosphere soil from the Qianjin cultivation site; QJS: Non-rhizosphere soil from the Qianjin cultivation site; BDRZ: Rhizosphere soil from the Badao cultivation site; BDS: Non-rhizosphere soil from the Badao cultivation site.

图2 长梗绞股蓝土壤细菌共有和特有的ASV数目
Figure 2 The number of common and specific ASVs of soil bacteria in Gynostemma longipes.
2.3 土壤细菌群落结构组成
2.3.1 门水平下的土壤细菌群落结构组成
不同种植地长梗绞股蓝根际和非根际土壤细菌群落在门水平上的组成及丰度差异结果如

图3 门水平下不同土壤样品细菌群落结构组成。A:不同种植地根际土壤细菌群落组成;B:不同种植地非根际土壤细菌群落结构组成。
Figure 3 Bacterial composition at the phylum level in different soil samples. A: Bacterial composition in rhizosphere soil from different cultivation sites; B: Bacterial composition in non-rhizosphere soil from different cultivation sites.
2.3.2 属水平下的土壤细菌群落结构组成
不同种植地长梗绞股蓝土壤细菌群落在属水平上的组成及丰度差异结果如

图4 属水平下不同土壤样品细菌群落结构组成。A:不同种植地根际土壤细菌群落组成;B:不同种植地非根际土壤细菌群落结构组成。
Figure 4 Bacterial composition at the genus level in different soil samples. A: Bacterial composition in rhizosphere soil from different cultivation sites; B: Bacterial composition in non- rhizosphere soil from different cultivation sites.
2.4 土壤细菌群落结构组成比较
采用Bray-Curtis距离算法对不同种植地长梗绞股蓝根际和非根际土壤进行PCoA主成分分析。主成分1 (PCoA1)和主成分2 (PCoA2)的解释度分别为16.62%和8.88% (

图5 不同种植地土壤细菌群落的PCoA分析
Figure 5 Principal coordinate analysis (PCoA) of bacterial communities of the soil of Gynostemma longipes in different cultivation sites.
2.5 土壤细菌群落组成差异显著性分析
不同种植地长梗绞股蓝根际和非根际土壤细菌群落在进化分支图中的位置分布存在显著差异(

图6 不同土壤样品细菌群落组成差异显著性分析。A:进化分支图;B:LDA值分布柱状图。
Figure 6 Significance analysis of differences in bacterial communities among different soil samples. A: Evolutionary branch graph of linear discriminant analysis effect size (LEfSe) analysis of the rhizosphere and non-rhizosphere soil bacteria of Gynostemma longipes; B: Linear discriminant analysis (LDA) discriminant bar graph of the rhizosphere and non-rhizosphere soil bacteria of Gynostemma longipes.
2.6 细菌群落与土壤理化性质的相关性分析
为进一步探明影响长梗绞股蓝土壤细菌群落的主要环境因子,采用冗余分析(redundancy analysis, RDA)对长梗绞股蓝土壤理化因子和非根际土壤细菌属水平的主要物种进行关联分析。RDA1轴和RDA2轴分别占23.72%和14.46%的解释量。结果表明(

图7 长梗绞股蓝细菌群落(属水平)与土壤环境因子的冗余分析
Figure 7 Redundancy analysis (RDA) of soil bacteria (at the genus level) and soil environmental factors in non-rhizosphere soils of Gynostemma longipes.
3 讨论
3.1 不同种植地土壤细菌群落组成分析
研究表明,不同种植地长梗绞股蓝土壤细菌群落中变形菌门(Proteobacteria)和酸杆菌门(Acidobacteriota)是优势菌门,嗜邻聚杆菌目未知属(unclassified Vicinamibacterales)、出芽单胞菌科未知属(unclassified Gemmatimonadaceae)、鞘氨醇单胞菌属(Sphingomonas)为优势菌属,这与曹麟
长梗绞股蓝根际土壤中,鞘氨醇单胞菌属(Sphingomonas)为优势菌属。该属是一类有益的土壤细菌,广泛分布在植物根际。研究表明,接种鞘氨醇单胞菌属细菌能够显著提高正常和干旱条件下玉米的生物
3.2 土壤理化性质对细菌多样性和群落结构组成的影响
本研究检测的土壤理化因子对长梗绞股蓝土壤群落组成具有较大的影响。结果表明,长梗绞股蓝土壤理化因子AN与Nitrospira菌的丰度呈正相关。Nitrospira菌是一类重要的硝化细菌,在自然界的氮素循环中发挥重要作用,能够将氨氮(NH3)氧化成亚硝酸盐(NO
本研究对长梗绞股蓝优势产区的土壤理化因子和细菌群落结构进行了初步探究,为进一步探究不同产区长梗绞股蓝根际微生物与次生代谢产物积累的关系奠定了一定基础,也为优化绞股蓝的栽培引种及引入优势菌群提供了指导。然而,本研究也存在一定的不足和局限性,研究仅对土壤细菌群落和部分土壤理化性质进行了测定和关联分析,可能限制了与微生物群落结构相关性分析的全面性。下一步工作,我们将结合土壤真菌群落结构和绞股蓝有效成分分析,并通过微生物组功能研究进一步验证微生物群落、土壤功能和绞股蓝生长发育的关联性,为优化绞股蓝的栽培种植和解决绞股蓝栽培问题提供更可靠的理论依据。
4 结论
本研究结果表明,长梗绞股蓝土壤细菌多样性在根际与非根际间无显著差异,在不同种植地之间存在显著差异。长梗绞股蓝土壤中变形菌门(Proteobacteria)和酸杆菌门(Acidobacteriota)为优势菌门,嗜邻聚杆菌目未知属(unclassified Vicinamibacterales)、出芽单胞菌科未知属(unclassified Gemmatimonadaceae)、鞘氨醇单胞菌属(Sphingomonas)为优势菌属。土壤pH、有效磷(AP)、速效钾(AK)、有机质(SOM)和碱解氮(AN)均是影响长梗绞股蓝土壤微生物群落结构分布的关键土壤环境因子。这些研究结果为优化绞股蓝的栽培种植提供了参考,例如通过关注土壤有益微生物的群落结构变化来缓解连作障碍,改善土壤健康;在引种栽培中引入优势菌群或通过接种功能菌剂优化根际微生态,从而优化栽培引种;通过关键环境因子调控策略促进绞股蓝生长发育,间接提升绞股蓝的栽培品质和产量。本研究为进一步探究不同产区长梗绞股蓝根际微生物与次生代谢产物积累的关系奠定了基础,也为优化绞股蓝的栽培引种及引入优势菌群提供了一定的指导。
作者贡献声明
冷春燕:样品处理、论文撰写;尹一飞:协助样品处理和实验操作;侯梦妍:数据收集和处理;于晶:数据收集和处理;李绕静:文章修改;邢咏梅:数据核查并参与论文讨论;陈娟:研究构思和实验设计并修改讨论论文;郭宝林:实验材料采集、研究构思并参与论文讨论。
致谢
感谢曹阳博士协助样品采集。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
中国科学院中国植物志编辑委员会. 中国植物志-第三十八卷[M]. 北京: 科学出版社, 1986: 273. [百度学术]
Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China (Volume 38)[M]. Beijing: Science Press, 1986: 273 (in Chinese). [百度学术]
YE S, FENG L, ZHANG SY, LU YC, XIANG GS, NIAN B, WANG Q, ZHANG SY, SONG WL, YANG L, LIU XY, FENG BW, ZHANG GH, HAO B, YANG SC. Integrated metabolomic and transcriptomic analysis and identification of dammarenediol-II synthase involved in saponin biosynthesis in Gynostemma longipes[J]. Frontiers in Plant Science, 2022, 13: 852377. [百度学术]
李齐, 庞旭, 卢彭信, 张洁, 张军, 师东晓, 马百平. 长梗绞股蓝中的四个新达玛烷型三萜皂苷[J]. 药学学报, 2021, 56(6): 1670-1676. [百度学术]
LI Q, PANG X, LU PX, ZHANG J, ZHANG J, SHI DX, MA BP. Four new dammarane-type triterpenoid saponins from Gynostemma longipes C.Y.Wu[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1670-1676 (in Chinese). [百度学术]
文定梅, 李豆豆, 汪加魏, 孙荣喜, 郭宝林, 吴南生. 不同基质对长梗绞股蓝扦插生长特性的影响[J]. 北方园艺, 2023(22): 100-107. [百度学术]
WEN DM, LI DD, WANG JW, SUN RX, GUO BL, WU NS. Effects of different substrates on the growth characteristics of long stemmed Gynostemma longipes cutting[J]. Northern Horticulture, 2023(22): 100-107 (in Chinese). [百度学术]
庞敏. 药用植物绞股蓝种质资源研究[D]. 西安: 陕西师范大学硕士学位论文, 2006. [百度学术]
PANG M. Study on germplasm resources of medicinal plant Gynostemma pentaphyllum[D]. Xi’an: Master’s Thesis of Shaanxi Normal University, 2006 (in Chinese). [百度学术]
张蒙蒙, 郑伟, 张洁, 高琳, 刘雪峰, 罗定强, 郭宝林, 马百平. 药用绞股蓝主产区药材的定性分析[J]. 中国中药杂志, 2021, 46(4): 951-965. [百度学术]
ZHANG MM, ZHENG W, ZHANG J, GAO L, LIU XF, LUO DQ, GUO BL, MA BP. Qualitative analysis of Gynostemma longipes for medicinal usage[J]. China Journal of Chinese Materia Medica, 2021, 46(4): 951-965 (in Chinese). [百度学术]
黄璐琦, 张瑞贤. “道地药材”的生物学探讨[J]. 中国药学杂志, 1997, 32(9): 53-56. [百度学术]
HUANG LQ, ZHANG RX. Discussion on biology of “authentic medicinal materials” [J]. Chinese Pharmaceutical Journal, 1997, 32(9): 53-56 (in Chinese). [百度学术]
焦红红, 黄璐琦, 袁媛. “人参的优形”及其遗传与环境互作机制研究进展[J]. 中国中药杂志, 2023, 48(12): 3125-3131. [百度学术]
JIAO HH, HUANG LQ, YUAN Y. Excellent appearance of Dao-di Ginseng Radix et Rhizoma and interaction mechanism between genetic and environmental factors: a review[J]. China Journal of Chinese Materia Medica, 2023, 48(12): 3125-3131 (in Chinese). [百度学术]
LV JY, YANG SY, ZHOU W, LIU ZW, TAN JF, WEI M. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects[J]. Microbiological Research, 2024, 283: 127688. [百度学术]
SU JM, WANG YY, BAI M, PENG TH, LI HS, XU HJ, GUO GF, BAI HY, RONG N, SAHU SK, HE HJ, LIANG XX, JIN CZ, LIU W, STRUBE ML, GRAM L, LI YT, WANG ET, LIU H, WU H. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’[J]. Microbiome, 2023, 11(1): 61. [百度学术]
曹麟, 王宇龙, 卜俊文, 宋天骄, 刘玉涛, 韦小敏, 林雁冰. 微生物菌剂对绞股蓝药效成分及根际细菌群落的影响[J]. 微生物学报, 2024, 64(7): 2323-2336. [百度学术]
CAO L, WANG YL, BU JW, SONG TJ, LIU YT, WEI XM, LIN YB. Effects of microbial agents on the active constituents and rhizosphere bacterial community of Gynostemma pentaphyllum[J]. Acta Microbiologica Sinica, 2024, 64(7): 2323-2336 (in Chinese). [百度学术]
李瑜, 覃剑锋, 刘运华, 孙莹莹, 唐晓东. 一种绞股蓝根结线虫的研究初报[J]. 中国农学通报, 2022, 38(22): 110-114. [百度学术]
LI Y, QIN JF, LIU YH, SUN YY, TANG XD. A preliminary study on root knot nematode of Gynostemma pentaphyllum[J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 110-114 (in Chinese). [百度学术]
孔亚丽, 秦华, 朱春权, 田文昊, 朱晓芳, 虞轶俊, 张均华. 土壤微生物影响土壤健康的作用机制研究进展[J]. 土壤学报, 2024, 61(2): 331-347. [百度学术]
KONG YL, QIN H, ZHU CQ, TIAN WH, ZHU XF, YU YJ, ZHANG JH. Research progress on the mechanism by which soil microorganisms affect soil health[J]. Acta Pedologica Sinica, 2024, 61(2): 331-347 (in Chinese). [百度学术]
贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1): 98-108. [百度学术]
HE JZ, ZHANG LM. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 2013, 40(1): 98-108 (in Chinese). [百度学术]
WANG GW, JIN ZX, GEORGE TS, FENG G, ZHANG L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J]. The New Phytologist, 2023, 238(6): 2578-2593. [百度学术]
中华人民共和国农业部. 土壤pH的测定: NY/T 1377—2007[S]. 北京: 中国标准出版社, 2007. [百度学术]
Ministry of Agriculture of the People’s Republic of China. Determination of soil pH: NY/T 1377—2007[S]. Beijing: Standards Press of China, 2007 (in Chinese). [百度学术]
国家林业局. 森林土壤磷的测定: LY/T 1232—2015[S]. 北京: 中国标准出版社, 2015. [百度学术]
State Forestry Administration of the People’s Republic of China. Determination of phosphorus in forest soils: LY/T 1232—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese). [百度学术]
国家林业局. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社, 2015. [百度学术]
State Forestry Administration of the People’s Republic of China. Determination of potassium in forest soils: LY/T 1234—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese). [百度学术]
中华人民共和国生态环境部. 土壤 干物质和水分的测定 重量法: HJ 613—2011[S]. 北京: 中国标准出版社, 2011. [百度学术]
Ministry of Ecology and Environment of the People’s Republic of China. Determination of soil dry matter and moisture—Gravimetric method: HJ 613—2011[S]. Beijing: Standards Press of China, 2011 (in Chinese). [百度学术]
中华人民共和国农业部. 土壤检测 第6部分: 土壤有机质的测定: NY/T 1121.6—2006[S]. 北京: 中国标准出版社, 2006. [百度学术]
Ministry of Agriculture of the People’s Republic of China. Soil testing—Part 6: Determination of soil organic matter: NY/T 1121.6—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese). [百度学术]
国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015. [百度学术]
State Forestry Administration of the People’s Republic of China. Determination of nitrogen in forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese). [百度学术]
马学兰, 周连玉, 孙文娟, 王龙瑞, 刘钰, 马云. 青海不同区域农田作物土壤细菌多样性及群落结构分析[J]. 微生物学报, 2024, 64(4): 1142-1161. [百度学术]
MA XL, ZHOU LY, SUN WJ, WANG LR, LIU Y, MA Y. Comparison of soil bacterial diversity and community structure in different regions of Qinghai Province[J]. Acta Microbiologica Sinica, 2024, 64(4): 1142-1161 (in Chinese). [百度学术]
LIU J, GUL WAZIR Z, HOU GQ, WANG GZ, RONG FX, XU YZ, LIU K, LI MY, LIU AJ, LIU HL. The dependent correlation between soil multifunctionality and bacterial community across different farmland soils[J]. Frontiers in Microbiology, 2023, 14: 1144823. [百度学术]
路岳衡, 耿贵工, 王路昊, 乔枫. 青藏高原不同分布区独一味根际土壤理化性质和微生物群落特征[J/OL]. 草业科学, 2024: 1-20. (2024-09-06). https://kns.cnki.net/KCMS/detail/detail.aspx filename=CYKX20240905003&dbname=CJFD&dbcode=CJFQ. [百度学术]
LU YH, GENG GG, WANG LH, QIAO F. Physicochemical properties and microbial community characteristics of rhizosphere soil in different distribution areas of Lamiophlomis rotate on the Qinghai-Xizang Plateau[J/OL]. Pratacultural Science, 2024: 1-20. (2024-09-06). https://kns.cnki.net/KCMS/detail/detail.aspx filename=CYKX20240905003&dbname=CJFD&dbcode=CJFQ(in Chinese). [百度学术]
何柳, 曹敏敏, 鲁建兵, 郑翔, 刘胜龙, 姜姜. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报, 2022, 39(6): 1267-1277. [百度学术]
HE L, CAO MM, LU JB, ZHENG X, LIU SL, JIANG J. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1267-1277 (in Chinese). [百度学术]
KANG YJ, WU HT, ZHANG YF, WU Q, GUAN Q, LU KL, LIN YL. Differential distribution patterns and assembly processes of soil microbial communities under contrasting vegetation types at distinctive altitudes in the Changbai Mountain[J]. Frontiers in Microbiology, 2023, 14: 1152818. [百度学术]
WANG F, WEI YL, YAN TZ, WANG CC, CHAO YH, JIA MY, AN LZ, SHENG HM. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance[J]. Frontiers in Plant Science, 2022, 13: 1002772. [百度学术]
WANG F, JIA MY, LI K, CUI YF, AN LZ, SHENG HM. Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome[J]. Microbiological Research, 2024, 287: 127852. [百度学术]
CHOI TE, LIU QM, YANG JE, SUN SY, KIM SY, YI TH, IM WT. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity[J]. Journal of Microbiology, 2010, 48(6): 760-766. [百度学术]
马泽刚, 黄春花, 钟辉云, 吴秀丽, 周礼仕, 刘卓. HPLC法测定8个不同产地绞股蓝中4种人参皂苷类成分的含量[J]. 食品研究与开发, 2018, 39(13): 126-130. [百度学术]
MA ZG, HUANG CH, ZHONG HY, WU XL, ZHOU LS, LIU Z. Quantification of four ginsenoside in Gynostemma pentaphyllum (thunb) makino from eight different producing areas by HPLC[J]. Food Research and Development, 2018, 39(13): 126-130 (in Chinese). [百度学术]
臧淦荣, 向文, 王莉, 周宁. 绞股蓝中黄酮类成分HPLC指纹图谱研究[J]. 浙江中医杂志, 2022, 57(12): 920-923. [百度学术]
葛锦蓉, 张子仪, 张兴明, 覃桂, 李荣胜, 汪波. 绞股蓝资源分布、化学成分、检测方法及药理作用研究进展[J]. 中草药, 2025, 56(3): 1050-1063. [百度学术]
GE JR, ZHANG ZY, ZHANG XM, QIN G, LI RS, WANG B. Research progress on resource distribution, chemical composition, detection methods and pharmacological effects of Gynostemma pentaphyllum[J]. Chinese Traditional and Herbal Drugs, 2025, 56(3): 1050-1063 (in Chinese). [百度学术]
欧阳友香, 王斌, 张勇洪, 罗湘胤, 马兆成, 封海东. 不同栽培模式、加工方法对绞股蓝生产与总皂苷含量的影响研究[J]. 天津农业科学, 2023, 29(11): 19-23. [百度学术]
OUYANG YX, WANG B, ZHANG YH, LUO XY, MA ZC, FENG HD. Effects of different cultivation modes and processing methods on the production and total saponins content of Gynostemma pentaphyllum (thunb) makino[J]. Tianjin Agricultural Sciences, 2023, 29(11): 19-23 (in Chinese). [百度学术]
ZHOU DY, HOU MY, LENG CY, LI RJ, XING YM, CHEN J. Deciphering the root microbiome and its relationship with active compound accumulation in medicinal Dendrobium officinale (Orchidaceae) from different regions[J]. Industrial Crops and Products, 2025, 226: 120692. [百度学术]
BAI X, HU XJ, LIU JJ, YU ZH, JIN J, LIU XB, WANG GH. Canonical ammonia oxidizers and comammox clade A play active roles in nitrification in a black soil at different pH and ammonium concentrations[J]. Biology and Fertility of Soils, 2024, 60(4): 471-481. [百度学术]
HU HW, HE JZ. Comammox: a newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils and Sediments, 2017, 17(12): 2709-2717. [百度学术]
张小琴, 尹昌, 李政, 唐旭, 李艳, 吴春艳. 长期施肥对水稻土典型氨氧化菌和全程氨氧化菌种群活性和丰度的影响[J]. 中国农业科学, 2024, 57(14): 2803-2814. [百度学术]
ZHANG XQ, YIN C, LI Z, TANG X, LI Y, WU CY. Influences of long-term appling different fertilizers on the activities and abundances of canocial ammonia oxidizers and comammox in paddy soil[J]. Scientia Agricultura Sinica, 2024, 57(14): 2803-2814 (in Chinese). [百度学术]
WANG C, YU QY, JI NN, ZHENG Y, TAYLOR JW, GUO LD, GAO C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient[J]. Nature Communications, 2023, 14(1): 7437. [百度学术]
李焕茹, 朱莹, 田纪辉, 魏锴, 陈振华, 陈利军. 碳氮添加对草地土壤有机碳氮磷含量及相关酶活性的影响[J]. 应用生态学报, 2018, 29(8): 2470-2476. [百度学术]
LI HR, ZHU Y, TIAN JH, WEI K, CHEN ZH, CHEN LJ. Effects of carbon and nitrogen additions on soil organic C, N, P contents and their catalyzed enzyme activities in a grassland[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2470-2476 (in Chinese). [百度学术]
姚佳妮, 代金霞, 刘爽, 张钧杰, 胡明珠. 宁夏荒漠草原典型灌丛根际土壤细菌群落结构与功能[J]. 生态学报, 2024, 44(20): 9285-9299. [百度学术]
YAO JN, DAI JX, LIU S, ZHANG JJ, HU MZ. Analysis of bacterial community structure and function in rhizosphere soil of typical shrub in desert steppe of Ningxia[J]. Acta Ecologica Sinica, 2024, 44(20): 9285-9299 (in Chinese). [百度学术]
程伟. 土壤有效磷含量对土壤微生物量及代谢活性的影响[D]. 长春: 吉林农业大学硕士学位论文, 2013. [百度学术]
CHENG W. Effects of soil available phosphorus content on soil microbial biomass and metabolic activity[D]. Changchun: Master’s Thesis of Jilin Agricultural University, 2013 (in Chinese). [百度学术]
WU WC, WANG F, XIA AQ, ZHANG ZJ, WANG ZS, WANG K, DONG JF, LI T, WU YB, CHE RX, LI LF, NIU SL, HAO YB, WANG YF, CUI XY. Meta-analysis of the impacts of phosphorus addition on soil microbes[J]. Agriculture, Ecosystems & Environment, 2022, 340: 108180. [百度学术]
HUANG JS, HU B, QI KB, CHEN WJ, PANG XY, BAO WK, TIAN GL. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation[J]. European Journal of Soil Biology, 2016, 72: 35-41. [百度学术]
LI M, POMMIER T, YIN Y, WANG JN, GU SH, JOUSSET A, KEUSKAMP J, WANG HG, WEI Z, XU YC, SHEN QR, KOWALCHUK GA. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition[J]. The ISME Journal, 2022, 16(3): 868-875. [百度学术]
JANSSON JK, McCLURE R, EGBERT RG. Soil microbiome engineering for sustainability in a changing environment[J]. Nature Biotechnology, 2023, 41(12): 1716-1728. [百度学术]
焦嘉卉, 符晓, 张硕, 刘伟, 周姣姣, 吴旭艳, 林晓榕, 田雨露, 唐光辉, 李培琴. 不同林龄花椒根际土壤理化性质与微生物群落结构的分析[J]. 西北林学院学报, 2023, 38(4): 156-165. [百度学术]
JIAO JH, FU X, ZHANG S, LIU W, ZHOU JJ, WU XY, LIN XR, TIAN YL, TANG GH, LI PQ. Physiochemical properties and microorganism community structure of Zanthoxylum bungeanum rhizosphere soil at different ages[J]. Journal of Northwest Forestry University, 2023, 38(4): 156-165 (in Chinese). [百度学术]
肖茜文, 胡盎, 吴浩, 王建军. 高海拔地区农田和森林土壤稀有细菌群落结构差异及影响因素[J/OL]. 土壤学报, 2024. https://kns.cnki.net/KCMS/detail/detail.aspx filename=TRXB20240923001&dbname=CJFD&dbcode=CJFQ. [百度学术]
XIAO XW, HU A, WU H, WANG JJ. Differences in rare bacterial community compositions at high elevation regions and their influencing factors in farmland and forest soils[J/OL]. Acta Pedologica Sinica, 2024. https://kns.cnki.net/KCMS/detail/detail.aspx filename=TRXB20240923001&dbname=CJFD& dbcode=CJFQ(in Chinese). [百度学术]
YAN K, DONG YF, GONG YB, ZHU QL, WANG YP. Climatic and edaphic factors affecting soil bacterial community biodiversity in different forests of China[J]. Catena, 2021, 207: 105675. [百度学术]