网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

油茶根际溶磷细菌对不同红壤质地磷组分及磷素转化的影响  PDF

  • 潘忠飞 1,2
  • 熊欢 1,2
  • 尹倩 1,2
  • 马容 1,2
  • 董文统 1
  • 邹锋 1,2
1. 中南林业科技大学,经济林培育与保护教育部重点实验室,湖南 长沙; 2. 中南林业科技大学,油茶育种湖南省普通高等学校重点实验室,湖南 长沙

最近更新:2025-04-30

DOI: 10.13343/j.cnki.wsxb.20240799

CSTR: 32112.14.j.AMS.20240799

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

目的

溶磷菌促进土壤不同磷素形态的相互转化是提高土壤有效磷的重要途径。然而,溶磷菌的溶磷能力发挥受土壤质地的影响。因此,研究溶磷菌在不同红壤质地梯度下磷素形态的变化特征,对土壤磷素的高效利用具有重要意义。

方法

采集湖南浏阳4个油茶主栽品种(‘华硕’ ‘华鑫’ ‘华金’和‘长林40号’)的根际土壤,采用平板涂布法、透明圈法、钼锑抗比色法及16S rRNA基因测序等方法,对根际土壤中的溶磷菌株进行分离、纯化、筛选与鉴定,获得一批高效溶磷菌株,并探究这些所得菌株在不同磷源(磷酸铁、磷酸铝、磷酸钙和植酸钙)下的溶磷特性。将溶磷菌接种至珍珠岩添加比例为0、20%和40%的红壤质地中(0%PR、20%PR和40%PR),明确不同红壤质地下磷形态的变化特征。

结果

共分离获得57株溶磷能力稳定的菌株,其中菌株CL37、HS5和CL36的溶磷能力表现较为突出。对这3个菌株进行16S rRNA基因测序鉴定,分别命名为泛菌属(Pantoea sp.) CL37、伯克霍尔德菌属(Burkholderia sp.) HS5和Burkholderia sp. CL36。3个菌株在不同磷源下的溶磷能力差异显著,其中对植酸钙和磷酸钙的增溶能力最强。在20%PR和40%PR红壤质地梯度中,有效磷含量(available phosphorus, AP)比对照组(CK)分别提高了8.90%-54.60%和1.90%-56.00%。溶磷菌接种提高了土壤铁磷(Fe-P)、树脂磷(Resin-P)、碳酸氢钠提取态无机磷(NaHCO3-Pi)和氢氧化钠提取态无机磷(NaOH-Pi)含量,并随着红壤质地梯度呈现先升高后降低的趋势;溶磷菌处理降低了稀盐酸提取态无机磷(HCl-Pi)和残留态磷(Residual-P)的含量,且HCl-Pi在20%PR红壤质地梯度中降幅比0%PR和40%PR的梯度更为明显。单接菌株HS5对土壤Fe-P、Resin-P、NaHCO3-Pi和NaOH-Pi含量的增加总体高于其他处理。相关性分析和随机森林分析表明,AP主要受到Resin-P、铝磷(Al-P)、NaOH-Pi、土壤酸性磷酸酶(soil acid phosphatase, ACP)、土壤脲酶(soil urease, Urease)、pH和氢氧化钠提取态有机磷(NaOH-Po)的影响。

结论

油茶根际溶磷菌在不同红壤质地下的溶磷途径不同,菌株HS5具有较强的磷素转化能力,且在20%PR红壤质地下更有利于促进磷素转化。

磷是植物生长发育所需的一种大量元素,植物主要通过根系吸收土壤中的可溶性磷或通过再分配来满足自身生长发育的需[

1]。植物能够直接吸收利用的游离态磷酸根离子容易被酸性红壤中的铁、铝等金属阳离子固定,且在土壤中的移动性较差,这进一步加剧了植物根系对磷酸根离子的截获与吸收难[2-3]。在农业生产中,外源施加磷肥仍是当前补充磷素的主要途径,以满足经济作物的生长需[4]。尽管磷肥可以在短期内缓解磷素胁迫,但其利用率仅为5%-25%,不仅增加了农业生产的成本,还引发了一系列生态环境问[5]。因此,有必要寻求一种能够促进土壤磷库中难溶态磷向有效态磷转化的生态友好型途径。

研究表明,溶磷菌(phosphate-solubilizing bacteria, PSB)能够矿化土壤中的有机磷,并溶解难溶态无机[

6]。目前,已从多种生态环境(森林、农田、草原、荒漠、盐碱地)及林木[如杉木(Cunninghamia lanceolata)、桉树(Eucalyptus)和马尾松(Pinus massoniana)等]的根际土壤中分离出溶磷菌[7-10]。盆栽试验表明,假单胞菌(Pseudomonas sp.) D2、泛菌(Pantoea vagans) RPB03及伯克霍尔德菌(Burkholderia sp.) ZP-4等溶磷菌株可以显著提高土壤有效养分含量,并加快磷素循环进[11-13]。然而,溶磷菌的溶磷性能受到多种环境因素的影响,如pH、土壤类型及养分特征[14-15]。其中,土壤质地是影响溶磷菌溶磷性能的关键因素之[16]

土壤质地是指不同大小矿物颗粒的组成比例,它影响了土壤的孔隙性及养分分布,进而影响外源菌株在土壤中的定殖与促生性[

17]。一般来说,黏土具有较小的孔隙性,限制了微生物的运动与扩散,并增强了微生物之间对空间与养分的竞[18];壤土具有良好的通气条件,并含有更多的有机[19],能够满足微生物的生长和繁殖需求;而矿物颗粒含量较高的砂土持水量低、养分缺乏,抑制了微生物的生[20]。在使用黏壤和砂壤土作为盆栽基质进行的溶磷菌接种试验中,发现腰果树(Anacardium occidentale L.)在砂壤条件下幼苗茎的氮磷养分浓度显著提高,而在黏壤条件下对幼苗的生长促进效果最[16]。由此可见,土壤质地可能影响溶磷菌的定殖与促生作用。

磷素的有效性依赖于不同磷素形态之间的相互转化,而磷素分级可以指示不同磷素形态对有效磷的贡[

21]。因此,采用合适的土壤磷素分级方法研究土壤中磷素形态的组成与转化特征,对于揭示土壤磷素有效性具有重要意义。目前,广泛采用的分级方法是Hedley磷分级法,该方法根据不同的化学试剂提取,将磷素分为不同形态的有机磷和无机[22]。其中,氢氧化钠提取态无机磷(NaOH-Pi)是由0.1 mol/L NaOH提取的被铁、铝金属离子固定的无机磷,二者是酸性红壤中无机磷的重要存在形式,被认为是土壤缓效性磷源,且对有效磷的贡献具有差[23-24]。然而,NaOH-Pi无法反映红壤中铁磷(Fe-P)和铝磷(Al-P)的数量关系。Chang[25]提出的无机磷分级方法能够指示酸性红壤中被铁、铝离子结合的磷素组成。因此,结合这2种磷素分级方法可以更好地反映溶磷菌在红壤中磷素转化的作用。

油茶(Camellia oleifera Abel.)是我国南方广泛种植的木本油料树种,具有较高的经济价值,主要分布于湖南、江西和广西等丘陵红壤山地。根据国家林业和草原局、国家发展和改革委员会、财政部联合印发的《加快油茶产业发展三年行动方案(2023-2025年)》,到2025年,全国油茶种植面积和产值将分别达到600万hm2和1 920亿元,在保障粮油安全及乡村振兴等方面发挥着重要作[

26]。土壤有效磷是制约红壤区油茶生长与产量的关键养分因[27],而根际溶磷菌的挖掘与利用可为提高油茶林地有效磷提供有效途径。然而,目前对于溶磷菌在不同土壤质地梯度下的溶磷效率及磷组分转化特征尚不清楚。因此,本研究从湖南省浏阳市的主栽油茶品种(‘华硕’ ‘华鑫’ ‘华金’和‘长林40号’)根际土壤中分离出高效溶磷菌株,分析不同菌株对4种难溶态磷源的增溶能力,探究接种溶磷菌对红壤有效养分、磷组分和酶活性变化的影响,并结合相关性分析、随机森林分析及冗余分析揭示各磷形态对有效磷的贡献,以期为油茶高效生物菌肥的研制提供菌种资源,并为提高红壤磷素利用效率提供理论依据。

1 材料与方法

1.1 根际土采集

油茶试验林位于湖南省浏阳市沙市镇和枨冲镇,属亚热带季风气候,平均海拔91 m,土壤类型为红壤。试验林地土壤和基质的养分特征见表1。2023年5-6月,采用三点取样法对12年生的‘长林40号’ ‘华金’ ‘华鑫’ ‘华硕’ 4个油茶品种的根际土壤进行取[

28]。采用“抖根法”收集5-20 cm土层的根际土壤,装入无菌自封袋,迅速放入冰盒中带回实验室,保存于4 ℃冰箱备用。

表1  不同油茶品种根际土壤及供试土壤养分特征
Table 1  Nutrient characteristics of different varieties of Camellia oleifera rhizosphere and test soil
Soil sourceSOC (g/kg)TP (mg/kg)

NO3--N

(mg/kg)

NH4+-N

(mg/kg)

AP (mg/kg)AK (mg/kg)
Camellia oleifera ‘Huashuo’ in Shashi town 19.73±5.06a 352.20±85.02b 1.27±0.29b 3.30±0.28b 37.36±0.35a 149.25±16.48b
Camellia oleifera ‘Huaxin’ in Shashi town 9.84±4.49c 368.73±138.27b 0.52±0.19b 4.09±1.08b 34.48±12.04a 110.17±10.91c
Camellia oleifera ‘Huajin’ in Shashi town 12.20±4.75bc 241.07±84.32b 1.47±0.38b 3.30±1.07b 34.72±12.80a 128.83±37.42bc
Camellia oleifera ‘Changlin No. 40’ in Chengchong town 16.36±3.09ab 340.87±25.24b 1.44±0.68b 4.43±1.48b 4.14±1.82b 108.00±14.79c
Central South University of Forestry and Technology 1.81±0.71d 545.20±138.69a 13.30±1.09a 8.31±0.50a 11.85±0.35a 200.33±3.51a

Different lowercase letters indicate significant differences in soil sources (P<0.05); The data in the table are mean±SD.

1.2 培养基

国际植物研究所磷酸盐生长培养基(national botanical research institute’s phosphate growth medium, NBRIP) (g/L):葡萄糖10.00,Ca3(PO4)2 5.00,MgSO4·7H2O 0.25,KCl 0.20,(NH4)2SO4 0.15,MgCl2·7H2O 0.20,琼脂20.00;液体培养基不加琼脂。

LB固体培养基(g/L):胰蛋白胨10.00,NaCl 10.00,酵母提取物5.00,琼脂20.00;液体培养基不加琼脂。

1.3 溶磷菌的分离与筛选

1.3.1 溶磷菌株的分离及初筛

采用涂布平板法分离溶磷菌。分别吸取0.1 mL的10-3、10-4、10-5土壤稀释液涂布于NBRIP固体培养基上,28 ℃恒温培养7 d,挑取具有明显溶磷圈的菌株进行划线纯化。采用点接法将溶磷菌株接于NBRIP固体培养基上,28 ℃恒温培养7 d,采用十字交叉法测定溶磷圈直径(D)和菌落直径(d),并计算溶磷系数SI=D/d[

29]

1.3.2 溶磷菌株的复筛

选取SI>2.5的菌株接种于LB液体培养基中富集,取菌液在8 000 r/min离心5 min后收集菌体,并用无菌水将其制成菌悬液,调节OD600值为0.6。按1%的接种量接种于75 mL的NBRIP液体培养基中,以接种无活性的菌悬液为对照,在28 ℃、180 r/min摇床中振荡培养5 d,培养液在8 000 r/min离心5 min后取上清液,使用钼锑抗比色法测定有效磷含[

30]

1.4 溶磷菌鉴定

将菌板送至北京擎科生物科技股份有限公司,委托其进行DNA提取、纯化及16S rRNA基因序列测定。登录NCBI (https://www.ncbi.nlm.nih.gov/)和EzBioCloud (https://www.EzBioCloud.net/)数据库,对菌株的16S rRNA基因序列进行比对,确定与其相似性较高的模式菌。利用MEGA 11.0软件中的邻接法(neighbor-joining method)构建系统发育树。

1.5 溶磷菌对不同难溶磷源的溶磷能力

以NBRIP液体培养基为基础,分别使用等量的磷酸铝(AlPO4)、磷酸铁(FePO4)和植酸钙(C6H6Ca6O24P6)代替。选取复筛后溶磷能力最强的3株菌株(HS5、CL36和CL37),调节菌悬液OD600值为0.6,按1%接种量接种至75 mL的NBRIP液体培养基中,在28 ℃、180 r/min摇床中振荡培养4 d。取10 mL菌液在8 000 r/min 离心5 min,收集上清液,采用钼锑抗比色法和pH计分别测定上清液中有效磷含量和pH值。

1.6 溶磷菌拮抗分析

将菌株在LB固体培养基上进行十字交叉划线,置于28 ℃恒温箱中培养2 d,观察交叉点菌株的生长状况。若生长良好,表明菌株无拮抗作[

31]

1.7 不同红壤质地接种溶磷菌试验

1.7.1 菌剂制备

将菌株HS5、CL36、CL37接种于LB液体培养基中,28 ℃、180 r/min摇床培养12 h,取菌液在8 000 r/min离心5 min,弃去上清液后,使用无菌水将菌悬液稀释至OD600值为0.6备用。

1.7.2 供试土壤来源及土壤质地梯度处理

采集中南林业科技大学林地20-60 cm深的红壤,使用可湿性多菌灵稀释500倍后对土壤进行消毒处理,风干后过2 mm筛。向土壤中加入体积分数为0、20%和40%的珍珠岩,模拟不同土壤质地梯[

32],分别记作0%PR、20%PR和40%PR。将土壤与珍珠岩按上述梯度比例混匀后分装于12 cm×14 cm (口径×高)的盆中备用。

1.7.3 试验设计

在0%PR、20%PR和40%PR红壤质地梯度下进行接菌处理,处理分别为HS5、CL36、CL37、HS5·CL36、HS5·CL37、CL36·CL37和HS5·CL36·CL37,并设置空白对照(CK),每处理15盆,每盆接种10 mL菌剂,混合菌剂由各菌株的菌悬液等量混匀,CK使用无菌水代替。菌剂处理40 d后采集土壤,自然风干,分别过10目和100目筛后用于测定土壤理化性质、磷组分及酶活性。

1.8 指标测定

1.8.1 土壤理化性质及酶活性测定

参考鲍士[

33]的方法测定土壤理化性 。土壤pH值(土水质量体积比1:2.5)使用pH计测定;有机碳(soil organic carbon, SOC)采用重铬酸钾氧化法测定;速效钾(available potassium, AK)采用火焰分光光度计测定;氨态氮(ammoniacal nitrogen, NH4+-N)和硝态氮(nitrate nitrogen, NO3--N)、有效磷(available phosphorus, AP)与全磷(total phosphorus, TP)使用全自动间断化学仪(Alliance公司)测定。

土壤酶活性测定。土壤酸性磷酸酶活性(soil acid phosphatase activity, ACP)和土壤脲酶活性(soil urease activity, Urease)分别采用磷酸苯二钠[

34]与苯酚-次氯酸钠比色[35]测定。

1.8.2 土壤磷分级

参考Chang[

25]的方法测定无机磷组分,包括0.5 mol/L氟化铵提取磷酸铝(Al-P)、0.1 mol/L氢氧化钠溶液浸提磷酸铁(Fe-P)、三酸混合液消煮提取闭蓄态磷(O-P)与0.5 mol/L H2SO4提取磷酸钙(Ca-P)。

参考Tiessen[

22]的方法测定Hedley磷分级,该体系分为无机磷和有机磷2个组分。无机磷组分包括阴离子交换树脂磷(Resin-P)、碳酸氢钠提取态无机磷(NaHCO3-Pi)、氢氧化钠提取态无机磷(NaOH-Pi)、稀盐酸提取态无机磷(HCl-Pi)、浓盐酸提取态无机磷(conHCl-Pi)。各级磷素形态均通过钼锑抗比色法测定。取适量NaHCO3和NaOH的土壤浸提液,经消煮后测得二者相应的总磷含量,由总磷减去相应的NaHCO3- Pi和NaOH-Pi得到碳酸氢钠提取态有机磷(NaHCO3-Po)和氢氧化钠提取态有机磷(NaOH-Po)。由于未检测到HCl-Po,因此忽略不计。

1.9 数据处理与分析

使用SPSS 25.0软件进行单因素方差分析(one-way ANOVA)和邓肯检验(Duncan’s test)分析不同接菌处理间的差异,显著性水平设定为P=0.05;利用Rstudio的“randomForest”包进行随机森林模型预测,通过增加均方误差(incremental means squared error, %IncMSE)评估变量的重要性;使用“rfPermute”包分析各变量对模型贡献的显著[

36];利用在线绘图平台ChiPlot (https://www.chiplot.online/)绘制相关性热图;运用Canoco 5软件对土壤磷组分与理化性质及酶活性进行冗余分析;采用Origin 2024软件进行可视化。

2 结果与分析

2.1 溶磷菌株的筛选

分别从‘华硕’ ‘华金’ ‘华鑫’和‘长林40号’ 4个油茶品种中分离出10、14、9和24株溶磷能力稳定的菌株。将这57株溶磷菌株在NBRIP固体培养基上培养7 d后,溶磷系数SI在1.27-3.80之间。其中,SI大于3.00的有9株;2.00<SI<3.00的有16株,菌株CL1的溶磷系数最大,为3.80 (图1A)。选择SI>2.50的12株溶磷菌株在NBRIP液体培养基中培养5 d,测定其培养液中的有效磷含量,结果表明(图1B):12株溶磷菌处理的培养液中有效磷含量均显著高于CK,除CL8外,其他菌株的培养液中有效磷含量均高于400.00 mg/L。溶磷能力最强的3个菌株分别为CL37 (578.04 mg/L)、HS5 (544.29 mg/L)和CL36 (535.97 mg/L)。

fig

图1  不同溶磷菌株的溶磷能力

Figure 1  Phosphorus solubilization ability of different PSB strains. A: Transparent circle of inorganic phosphorus dissolved by PSB strains; B: Available phosphorus in the culture medium. The data in the figure are mean±SD. Different lowercase letters indicate significant differences (P<0.05).

2.2 溶磷菌株的鉴定

通过EzBioCloud数据库,并利用邻接法对溶磷能力最强的3株溶磷菌株进行序列比对和系统发育树构建。结果如图2所示,菌株HS5和CL36与模式菌株吡咯伯克霍尔德氏菌(Burkholderia pyrrocinia) DSM 10685T的相似性分别为99.86%和99.81%,菌株CL37与Pantoea endophytica 596T的相似性为99.73%,表明菌株HS5和CL36属于伯克霍尔德菌属,菌株CL37属于泛菌属成员。菌株HS5、CL36和CL37的16S rRNA基因序列的登录号分别为PP439505.1、PP439507.1和PP439508.1。

fig

图2  三株溶磷菌基于16S rRNA基因序列构建的系统发育树

Figure 2  Phylogenetic tree of three PSB strains constructed based on 16S rRNA gene sequences. The serial numbers in parentheses are GenBank accession numbers; Bar 0.02 represents sequence divergence; The red circle represents the target strain.

2.3 溶磷菌对不同难溶态磷源的溶磷能力及pH变化

图3A所示,3株溶磷菌株对4种难溶态磷源的溶解与矿化能力总体表现为磷酸钙>植酸钙>磷酸铁>磷酸铝。其中,以磷酸铝和植酸钙为单一磷源时,菌株HS5处理的有效磷含量分别为61.47 mg/L和490.00 mg/L,显著高于CL36和CL37处理。3株溶磷菌处理后培养液的pH值由初始的6.5下降至5.0以下,菌株CL36和CL37在磷酸铁和植酸钙为磷源的培养液中pH显著低于HS5 (图3B)。

fig

图3  溶磷菌处理4 d后的有效磷含量与pH

Figure 3  Available phosphorous content and pH value of PSB treated for four days. A: Available phosphorus in culture medium; B: pH value in culture medium. The data in the figure are mean±SD. Different lowercase letters indicate significant differences (P<0.05).

2.4 外源溶磷菌对不同红壤质地化学特性的影响

外源溶磷菌接种显著影响了红壤中AP、AK和NH4+-N的含量(表2),并且这种影响在20%PR处理中最为显著,高于0%PR和40%PR处理。就AP而言,在0%PR红壤质地中,除CL36、HS5·CL36处理和40%PR的CL37处理外,其他处理的AP含量相比CK处理分别提高了3.26%-45.9%、8.90%-54.60%和1.90%-56.00%。在所有红壤质地梯度下,HS5处理的AK含量均显著高于CK处理,分别为174.33、168.67和164.33 mg/kg。外源溶磷菌接种降低了各红壤质地梯度中的pH值(表2),其中在20%PR和40%PR红壤质地中,菌株HS5处理的pH值显著低于其他处理。

表2  外源溶磷菌对不同红壤质地有效养分和pH的影响
Table 2  Effects of exogenous PSB on available nutrient and pH in red soil with different textures
Soil textureTreatmentsAP (mg/kg)AK (mg/kg)NH4+-N (mg/kg)NO3--N (mg/kg)pH
0%PR CL36 7.46±0.32d 164.33±1.15b 7.28±0.26cd 3.65±0.99cd 5.18±0.06ab
HS5 12.20±0.44a 174.33±6.51a 9.85±0.37a 4.30±1.49abcd 5.13±0.02abc
C37 8.73±0.31bc 154.67±5.51cd 8.32±0.33bc 6.26±0.41a 5.09±0.03bc
CL36·HS5 8.14±0.85cd 146.33±6.66d 7.69±0.14cd 3.24±0.15d 5.04±0.06d
HS5·CL37 8.64±0.41bc 159.67±5.51bc 7.45±0.63cd 5.91±1.50ab 5.09±0.03bc
CL36·CL37 9.09±0.49b 166.67±6.11ab 9.36±0.33ab 4.04±0.61bcd 5.08±0.02bc
HS5·CL36·CL37 8.78±0.32bc 154.67±2.08cd 6.84±1.77d 5.42±0.52abc 5.08±0.05bc
CK 8.36±0.41bc 146.33±2.08d 7.49±0.45cd 3.97±1.86bcd 5.22±0.11a
20%PR CL36 14.33±0.55a 159.67±7.23ab 8.43±0.05a 2.89±0.94bc 5.12±0.04a
HS5 13.47±1.19a 168.67±7.51a 8.64±0.93a 11.84±1.32a 4.31±0.10b
C37 12.25±0.60b 153.33±1.53bc 7.80±2.39ab 3.13±1.28bc 5.14±0.03a
CL36·HS5 10.10±0.51cd 149.33±4.51c 8.20±0.30a 4.53±1.62bc 5.16±0.10a
HS5·CL37 10.49±0.68c 161.67±8.08ab 8.08±0.26ab 7.65±1.07b 5.09±0.04a
CL36·CL37 10.22±0.30cd 159.33±4.04ab 6.87±0.12ab 3.15±0.36bc 5.23±0.40a
HS5·CL36·CL37 11.93±0.58b 153.33±2.08bc 7.57±1.50ab 2.72±0.28d 5.11±0.03a
CK 9.27±0.04d 147.33±2.08c 6.05±0.33c 4.75±0.51c 5.27±0.03a
40%PR CL36 7.45±0.22c 151.33±3.79b 7.27±0.59c 2.70±0.72cd 5.19±0.05c
HS5 11.41±0.41a 164.33±8.02a 12.29±0.67a 1.85±0.66d 4.98±0.05d
C37 7.17±0.49c 154.00±1.00b 8.18±0.24b 3.92±0.75c 5.27±0.08ab
CL36·HS5 7.98±0.43c 159.00±1.00bc 8.24±0.31b 3.26±1.51cd 5.29±0.03ab
HS5·CL37 9.35±0.21b 157.33±4.04bc 9.03±0.46b 5.81±1.24b 5.28±0.05ab
CL36·CL37 8.80±0.73b 157.67±3.51bc 8.48±0.33b 4.13±0.40bc 5.22±0.03bc
HS5·CL36·CL37 7.82±0.66c 159.00±5.29bc 8.77±0.63b 8.12±1.33a 5.23±0.01bc
CK 7.31±0.28c 154.33±3.21b 8.76±0.18b 3.06±0.62cd 5.32±0.02a

Different lowercase letters indicate significant differences among different treatments of PSB inoculation in the same red soil with different texture (P<0.05). The data in the table are mean±SD.

2.5 外源溶磷菌对不同红壤质地磷组分的影响

图4所示,与CK处理相比,外源溶磷菌接种显著影响了3个红壤质地梯度下的活性磷(Resin-P和NaHCO3-Pi)。其中,在0%PR和20%PR红壤质地中,所有处理均显著高于CK处理(P<0.05)。HS5、CL36·HS5、HS5·CL37和HS5·CL36·CL36均显著提升了3个红壤质地的NaHCO3-Pi含量(P<0.05);而NaHCO3-Po在3个红壤质地的变化不一致,但其在40%PR红壤质地中显著提升(P<0.05)。总体来看,Resin-P和NaHCO3-Pi在20%PR红壤质地中提升最明显,且以HS5处理效果优于其他处理。

fig

图4  外源溶磷菌对不同红壤质地磷组分的影响

Figure 4  Effect of exogenous PSB on inorganic phosphorus fractions in different red soil textures. A: Resin-P; B: NaHCO3-Pi; C: NaHCO3-Po; D: NaOH-Pi; E: NaOH-Po; F: HCl-Pi; G: conHCl-Pi; H: Residual-P. The data in the figure are mean±SD. Different lowercase letters indicate significant differences among different treatments of PSB inoculation in the same red soil with different texture (P<0.05).

外源溶磷接种提高了不同红壤质地梯度下NaOH-Pi的含量,并随着红壤质地梯度呈先升高后降低的趋势,且菌株HS5处理显著高于其他处理(P<0.05),而其他处理与CK处理相比无显著差异。溶磷菌接种降低了红壤中HCl-Pi和Residual-P含量,其中,在0%PR红壤质地中除HS5·CL36·CL37外,其余处理显著降低了HCl-Pi的含量(P<0.05)。HCl-Pi在0%PR和20%PR红壤质地梯度下HCl-Pi降低较为明显。不同红壤质地梯度下,以单接菌株CL36、HS5和CL37的HCl-Pi含量显著降低。Residual-P含量在20%PR和40%PR红壤质地中均呈下降趋势。

图5所示,3个红壤质地梯度下无机磷的存在形式为O-P>Fe-P>Al-P>Ca-P。溶磷菌接种后,3个红壤质地的Fe-P含量均高于CK处理,

fig

图5  外源溶磷菌对不同红壤质地无机磷组分的影响

Figure 5  Effect of exogenous PSB on inorganic phosphorus fractions in different red soil textures. A: Al-P; B: Fe-P; C: Ca-P; D: O-P. The data in the figure are mean±SD. Different lowercase letters indicate significant differences among different treatments of PSB inoculation in the same red soil with different texture (P<0.05).

分别提高了0.60%-15.10%、1.21%-24.50%和6.10%-28.80%,并随着红壤质地梯度表现为先升高后减低的趋势。在0%PR红壤质地梯度下,除CL36和CL36·CL37处理外,其余各红壤质地梯度下溶磷菌处理的O-P含量显著低于CK处理。然而,Al-P和Ca-P在3个红壤质地梯度的变化不同。

2.6 外源溶磷菌对不同红壤质地酶活性的影响

与CK处理相比,溶磷菌接种显著提高了土壤酶活性(图6)。在3个红壤质地梯度下酸性磷酸酶活性分别提高了35.10%-201.10%、21.0%-114.5%和6.90%-63.50%。在0%PR红壤质地中,HS5处理的酸性磷酸酶活性显著高于其他处理;在20%PR红壤质地中,HS5·CL37处理的酸性磷酸酶活性显著高于其他处理(图6A)。脲酶活性在0%PR红壤质地梯度下各接菌处理均显著高于CK处理,且该土壤质地梯度下的脲酶活性与其他2个红壤质地的脲酶活性存在显著差异(图6B)。

fig

图6  外源溶磷菌对不同土壤质地酶活性的影响

Figure 6  Effect of exogenous PSB on enzyme activity in different soil textures. A: Soil acid phosphatase; B: Soil urease. The data in the figures are mean±SD. Different lowercase letters indicate significant differences among different treatments of PSB inoculation in the same red soil texture (P<0.05).

2.7 土壤磷组分与土壤理化性质及酶活性的关系

相关性分析表明(图7A),在0%PR红壤质地中,土壤AP与Resin-P、Al-P、NaOH-Pi和ACP呈极显著正相关,NaHCO3-Po与Al-P呈显著负相关。在20%PR红壤质地中(图7B),AP与Resin-P、NaOH-Pi和Fe-P呈显著正相关;pH值与Resin-P、NaHCO3-Pi和NaOH-Pi呈显著负相关;Resin-P和NaOH-Pi与HCl-Pi呈显著负相关。在40%PR红壤质地中(图7C),AP与Al-P、NaHCO3-Pi、NaOH-Pi、NaOH-Po和Fe-P呈极显著正相关;Resin-P与ACP呈极显著正相关,与HCl-Pi和conHCl-Pi呈显著负相关;NaOH-Pi与Residual-P呈极显著负相关。

fig

图7  土壤磷组分与理化性质和酶活性的相关性分析

Figure 7  Correlation analysis between soil phosphorus fractions, physicochemical properties, and enzyme activity. A: 0%PR; B: 20%PR; C: 40%PR. **: P<0.01; *: P<0.05.

随机森林分析表明(表3),在0%PR红壤质地中,影响AP的主要因素为Al-P、NaOH-Pi、Resin-P和ACP。在20%PR红壤质地中,影响AP的主要因素为NaOH-Pi、Resin-P和土壤pH值。在40%PR红壤质地中,影响AP的主要因素为NaOH-Pi、NaOH-Po和Al-P。

表3  溶磷菌接种下不同红壤质地梯度中影响有效磷的随机森林分析
Table 3  Random forest analysis of the effects of PSB inoculation on available phosphorus in the same red soil with different texture
Indices%IncMSE
0%PR20%PR40%PR
Resin-P 8.65** 13.01** 1.54
NaHCO3-Pi 3.09 1.43 3.90
NaHCO3-Po 5.19 1.66 0.75
NaOH-Pi 7.99* 14.81** 10.18**
NaOH-Po 2.55 -0.82 9.41**
conHCl-Pi -0.16 4.87 4.60
HCl-Pi -2.64 1.79 -1.82
Resdual-P -0.77 1.41 6.48*
Al-P 8.19* 1.37 9.97**
Fe-P 4.34 4.67 2.63
O-P 1.93 3.29 5.46
Ca-P 1.91 -3.83 2.23
AK 5.10 4.51 -0.87
NH4+-N 6.06* 4.80 5.97
NO3--N -2.58 5.68* 1.69
pH 5.50 6.41* 5.20
Uresea 0.31 6.03* 9.27*
ACP 7.16* -0.22 0.10
R2 72.06% 57.52% 72.70%

**: P<0.01; *: P<0.05.

冗余分析表明(图8),在0%PR红壤质地中,影响磷素形态的关键因子为ACP和Urease (图8A)。在20%PR红壤质地中,影响磷素形态的关键因子为ACP、Uresea和土壤pH值(图8B)。在40%PR红壤质地中,影响磷素形态的关键因子为Urease、NH4+-N、NO3--N和土壤pH值(图8C)。

fig

图8  土壤磷组分与理化性质及酶活性的冗余分析

Figure 8  Redundancy analysis of soil phosphorus fractions, physicochemical properties, and enzyme activity. A: 0%PR; B: 20%PR; C: 40%PR.

油茶根际溶磷菌在不同红壤质地下的溶磷途径存在差异(图9),在0%PR红壤质地中,溶磷途径主要为酶解(ACP、Urease);而在20%PR和40%PR红壤质地中,溶磷途径为酶解与酸解的结合。

fig

图9  外源溶磷菌促进有效磷形成的模式图

Figure 9  Pattern diagram of exogenous PSB promoting soil available phosphorus formation. A: 0%PR; B: 20%PR; C: 40%PR.

3 讨论

3.1 油茶根际高效溶磷菌的溶磷特性

不同磷源条件下,溶磷菌的溶磷能力存在差[

37]。本研究表明,菌株HS5、CL36与CL37分别隶属于伯克霍尔德菌属和泛菌属(图2),它们均具有溶解磷酸铝、磷酸铁、磷酸钙和矿化植酸钙的能力,其中对磷酸钙和植酸钙的溶解能力最强(图3A),这与Li[38]的研究结果类似。究其原因,可能与磷源的组成结构和存在形式有关。磷酸铁和磷酸铝的结构较为稳定,导致溶磷菌对其增溶能力较[39-40];而植酸钙作为有机磷的形式存在,溶磷菌可能通过多种途径进行矿[41]。伯克霍尔德菌属和泛菌属的溶磷菌株能够溶解多种难溶态磷,具有较强的溶磷能[42-43]。例如,伯克霍尔德菌WJ27可以溶解磷酸铁和磷酸铝等无机[44]。Li[43]发现,成团泛菌(Pantoea agglomerans) ZB具有高效溶解磷酸钙和磷酸铁的能力。本研究获得的泛菌CL37和伯克霍尔德菌HS5、CL36能够溶解3种无机磷并矿化植酸钙,表明这些菌株具有一定的溶磷优势。

3.2 土壤质地影响外源溶磷菌活化养分

蔺宝珺[

45]研究表明,外源溶磷菌接种能够显著提高土壤有效养分。本研究发现,AP含量随着红壤质地梯度呈先上升后下降的变化趋势,但AK和NH4+无明显变化趋势(表2)。在20%PR红壤质地中,良好的通气条件和养分空间分布为溶磷菌利用水肥气热提供了有利条件,使其快速占据生态位并发挥溶磷作[46];在0%PR红壤质地中,土壤容重和含水量较高,限制了溶磷菌的活性;而在40%PR红壤质地中,淋溶作用导致养分损失,进而制约了溶磷菌的生长、繁殖和功能发[17,47]。AK和NH4+-N的增加可能与菌株兼具解钾和固氮能力有关,但这些功能可能并非溶磷菌的主要特性,因此其受土壤质地梯度的影响较小。此外,本研究发现单接菌株HS5在3个红壤质地有效养分的提升效果总体优于其他处理(表2),这表明菌株HS5在土壤中可能具有更强的环境适应能力,从而能够迅速定殖和扩繁。此外,外源溶磷菌可能通过分泌有机代谢物调节土壤功能微生物群的多样性和丰度,进而促进土壤有机物矿化,提高土壤有效养[48],这一机制有待进一步研究。

3.3 土壤质地影响外源溶磷菌促进磷素循环

外源溶磷菌能够加速土壤中稳定态磷向中等活性和活性磷的转[

49]。本研究发现,外源溶磷菌接种提高了土壤中活性和中等活性磷(Resin-P、NaHCO3-Pi和NaOH-Pi)的含量,降低了稳定态和残留态磷(HCl-Pi、O-P和Residual-P)的含量,这些变化在20%PR红壤质地中总体表现最明显(图4),相关性分析也表明,稳定态和残留态磷与中等活性及活性磷之间存在显著的相关性(图7),说明溶磷菌接种促进了土壤磷素的转化,但这一过程在一定程度上受土壤质地的影响,并且在20%PR红壤质地中更能满足外源溶磷菌生长中繁殖的需[50],进而促进低效磷素形态向中等活性和活性磷的转化。随着溶磷菌在土壤中的定殖数量增加和空间分布扩张,其通过释放有机酸和磷酸酶等物质促进磷素的释放,且在该土壤质地中具有较高的微生物多样[17],从而加快了磷素的转化。值得注意的是,在3个红壤质地梯度中,Resin-P、NaHCO3-Pi、NaOH-Pi和HCl-Pi的含量变化总体上以单接菌株HS5处理最为显著(图4),这表明HS5相较其他溶磷菌株或菌株组合可能具有更强的磷素转化能力。一方面,接菌试验所用土壤的有机碳含量较低(表1),难以维持微生物的生长需[51],而菌株HS5在高效矿化和溶解多种磷源的过程中需要利用大量的碳源,从而加快了有机碳的矿化,为自身提供了充足的碳源,保证了菌株生长和繁殖;另一方面,在养分限制条件下,无拮抗菌株组合可能存在养分过度消耗或改变生存策略以维持低耗能(S1),从而降低了磷素的转化效[52]。本研究还发现溶磷菌接种显著提高了土壤中Fe-P的含量,并随着土壤质地梯度呈现先升高后降低的趋势,且以菌株HS5的提升效果最为显著(图5),这与Shi[53]在采煤沉陷区接种溶磷菌对土壤无机磷形态变化(Fe-P)的研究结果类似,但与Cui[54]的研究结果相反。这可能与菌株的功能属性有关,后者使用的链霉菌(Streptomyces sp.) CoT10主要通过铁载体分泌发挥作用,铁载体加速了Fe3+的释放和寄主对磷素的吸收利用,从而降低了Fe-P的含[55]。本研究中溶磷菌所转化的有效磷素仅被土壤微生物利用,为了维持土壤磷素的动态平衡,通过提高潜在有效磷素的积累来增加AP的供应来源。

土壤磷素形态与生物和环境因子的相互作用,使磷素的形态始终处于动态变化中。因此,与AP相关性越强的磷素形态,其对AP的贡献越[

56]。本研究发现,在3个红壤质地中,与AP相关性较强的磷素形态主要是Resin-P、Al-P、NaOH-Pi和NaOH-Po (图7),随机森林分析也支持了这一结果(表3),这与Zhang[57]接种芽孢杆菌(Bacillus sp.) P6对堆肥中磷素形态转化的研究结果相似,说明溶磷菌接种使Resin-P、Al-P、NaOH-Pi和NaOH-Po在提高AP有效性方面发挥了关键作用。然而,不同红壤质地中各磷素的形态与AP的相关系数排序存在差异(表3),表明不同红壤质地下AP的转化来源不同(图9)。这是由于不同红壤质地所含的底物及理化性质存在差异,导致溶磷菌在不同红壤质地中对磷素形态的利用方式不同。此外,冗余分析表明,显著影响土壤磷组分的关键因子是ACP、Urease、pH和NO3--N (图8),且不同红壤质地下的驱动因子不同,这说明外源溶磷菌在不同红壤质地中促进磷素转化的途径存在差异。Mohamed[58]研究表明,溶磷菌的溶磷途径主要通过酶解和酸解,并揭示了土壤pH值是驱动土壤磷素循环的关键因子。在0%PR红壤质地中,磷组分主要受到土壤酶活性(ACP、Urease)的影响(图8A),这表明在土壤容重较高的土壤质地中,溶磷菌的溶磷策略可能是通过提高酶活性来矿化土壤有机[59];而在其他2个红壤质地梯度中具有良好的流动性,使H+向土体四周迁移,土壤微环境的酸碱度达到平衡状态,降低了土壤pH对外源溶磷菌及微生物群落的影[60],从而通过分泌有机酸、增强硝化作用降低土壤pH以及释放胞外酶2种途径加快有机磷和无机磷向AP的转化(图8图9)[57]。溶磷菌接种降低土壤pH值是由其分泌有机酸引起的,而溶磷菌在土壤中分泌有机酸的种类及其与磷素转化的关系有待进一步研究。

4 结论

本研究获得的3株油茶根际高效溶磷菌株(CL37、CL36和HS5)均具有利用多种难溶性磷源的能力,且在不同红壤质地下的溶磷途径存在差异。其中,溶磷菌HS5在红壤中表现出较强的磷素利用潜力,尤其在20%PR红壤质地中更有利于促进磷素的转化。本研究为生物菌肥的研制提供了优良的菌种资源,并为油茶生态栽培的田间应用奠定了理论基础。

作者贡献声明

潘忠飞:样品采集、试验设计与实施、数据采集、文稿撰写及修订;熊欢:文稿构思、审阅与修订;尹倩:样品采集、试验实施、数据采集;马容:样品及数据采集;董文统:样品采集;邹锋:方案设计、文稿构思与指导、文稿审阅及修订。

利益冲突

公开声明

参考文献

1

KHAN F, SIDDIQUE AB, SHABALA S, ZHOU MX, ZHAO CC. Phosphorus plays key roles in regulating plants' physiological responses to abiotic stresses[J]. Plants, 2023, 12(15): 2861. [百度学术] 

2

王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1): 260-268. [百度学术] 

WANG YZ, CHEN X, SHI Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260-268 (in Chinese). [百度学术] 

3

HUANG J, ZHOU LH, LIU SJ, HAN TF, HAYATU NG, LI DC, ZHANG SX, WANG BR, ZHANG HM. Vertical distribution of phosphorus fractions and the environmental critical phosphorus level in acidic red soil under long-term fertilizer and lime application in Southern China[J]. Journal of Plant Nutrition and Soil Science, 2021, 184(5): 585-595. [百度学术] 

4

江敬安, 陈丽, 沈兵, 束维正, 陈勇, 张卫峰. 中国肥料产业体系现状及发展趋势[J]. 现代化工, 2023, 43(6): 47-52. [百度学术] 

JIANG JA, CHEN L, SHEN B, SHU WZ, CHEN Y, ZHANG WF. Present situation and development trend of China’s fertilizer industry system[J]. Modern Chemical Industry, 2023, 43(6): 47-52 (in Chinese). [百度学术] 

5

ROBERTS TL, JOHNSTON AE. Phosphorus use efficiency and management in agriculture[J]. Resources, Conservation and Recycling, 2015, 105: 275-281. [百度学术] 

6

LIU ZW, WU ZS, TIAN F, LIU XC, LI T, HE YH, LI BB, ZHANG ZY, YU B. Phosphate-solubilizing microorganisms regulate the release and transformation of phosphorus in biochar-based slow-release fertilizer[J]. Science of the Total Environment, 2023, 869: 161622. [百度学术] 

7

徐欢, 俞新玲, 林勇明, 吴承祯, 谢安强, 陈灿, 李键, 洪滔. 桉树根际土壤解磷细菌的分离、筛选及其解磷效果[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 529-535. [百度学术] 

XU H, YU XL, LIN YM, WU CZ, XIE AQ, CHEN C, LI J, HONG T. Isolation, screening of phosphate solubilizing capacity of phosphate solubilizing bacteria in Eucalyptus species[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 529-535 (in Chinese). [百度学术] 

8

ZHAO GY, WEI YH, CHEN JQ, DONG YH, HOU LY, JIAO RZ. Screening, identification and growth-promotion products of multifunctional bacteria in a Chinese fir plantation[J]. Forests, 2021, 12(2): 120. [百度学术] 

9

韦宜慧, 陈嘉琪, 赵光宇, 董玉红, 厚凌宇, 焦如珍. 杉木林土壤和苗木内生溶磷细菌的筛选及其溶磷特性[J]. 林业科学, 2020, 56(12): 1-9. [百度学术] 

WEI YH, CHEN JQ, ZHAO GY, DONG YH, HOU LY, JIAO RZ. Screening of phosphate solubilizing bacteria from soil and endogenous environment of Chinese fir seedlings and their characterization of phosphate solubilization[J]. Scientia Silvae Sinicae, 2020, 56(12): 1-9 (in Chinese). [百度学术] 

10

徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. [百度学术] 

XU HY, LÜ J, YU C. Growth promoting of Pinus massoniana seedlings regulated by rhizosphere phosphate-solubilizing Paraburkholderia spp.[J]. Biotechnology Bulletin, 2023, 39(6): 274-285 (in Chinese). [百度学术] 

11

CHAKRABORTY D, SINGH M, MANDAL N, RANJAN T, CHANCHAL AK, BEHERA SK. Changes in phosphorus fractions upon inoculation of Pseudomonas sp. and nano phosphorus application in wheat rhizosphere[J]. Communications in Soil Science and Plant Analysis, 2023, 54(22): 3076-3088. [百度学术] 

12

刘萍, 夏江宝. 滨海盐碱地根际溶磷细菌磷素转化特征[J]. 生态学报, 2021, 41(11): 4531-4540. [百度学术] 

LIU P, XIA JB. Properties of rhizosphere phosphate-solubilizing bacteria in coastal saline and alkaline land[J]. Acta Ecologica Sinica, 2021, 41(11): 4531-4540 (in Chinese). [百度学术] 

13

LIU YH, BAI SH, WANG DJ, ZHANG L, HU DN, WEN J, ZHANG WY, ZHANG MY. Relationships among phosphatase activities, functional genes and soil properties following amendment with the bacterium Burkholderia sp. ZP-4[J]. Land Degradation and Development, 2022, 33(17): 3427-3437. [百度学术] 

14

LONG H, WASAKI J. Effects of phosphate-solubilizing bacteria on soil phosphorus fractions and supply to maize seedlings grown in lateritic red earths and cinnamon soils[J]. Microbes and Environments, 2023, 38(2): ME22075. [百度学术] 

15

赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. [百度学术] 

ZHAO GX, YANG HT, SHAO XB, CUI ZH, LIU HG, ZHANG J. Phosphate-solubilizing properties and optimization of cultivation conditions of Penicillium rubens: a highly efficient phosphate solubilizer[J]. Biotechnology Bulletin, 2023, 39(9): 71-83 (in Chinese). [百度学术] 

16

RODRIGUES-CABRAL JS, ASSIS KCD, GUIMARAES-SILVA F, LUIZ-SOUCHIE E, CARBONE-CARNEIRO MA. Seedlings of cashew trees of the Brazilian Cerrado inoculated with arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms[J]. Agrociencia, 2012, 46(8): 809-821. [百度学术] 

17

汪军, 潘江禹, 毛超, 戴青冬, 刘一贤, 张建华, 郭立佳, 黄俊生. 土壤物理因素和栽培方式对淡紫拟青霉E7在香蕉根际定殖和促生作用的影响[J]. 果树学报, 2013, 30(2): 274-280. [百度学术] 

WANG J, PAN JY, MAO C, DAI QD, LIU YX, ZHANG JH, GUO LJ, HUANG JS. Effect of soil physical factors and cultivation methods on colonization and growth promotion-effect of Paecilomyces lilacinus E7 in banana rhizosphere[J]. Journal of Fruit Science, 2013, 30(2): 274-280 (in Chinese). [百度学术] 

18

EBRAHIMI AN, OR D. Microbial dispersal in unsaturated porous media: characteristics of motile bacterial cell motions in unsaturated angular pore networks[J]. Water Resources Research, 2014, 50(9): 7406-7429. [百度学术] 

19

黄庄, 黑杰, 刘旭阳, 金强, 黄佳芳, 林少颖, 候宁, 谢杨阳, 王维奇, 王纯. 互花米草入侵对滨海湿地不同质地土壤碳氮磷及其生态化学计量比的影响[J]. 土壤, 2023, 55(2): 340-347. [百度学术] 

HUANG Z, HEI J, LIU XY, JIN Q, HUANG JF, LIN SY, HOU N, XIE YY, WANG WQ, WANG C. Effects of Spartina alterniflora invasion on soil carbon, nitrogen and phosphorus and their ecological stoichiometric ratios in coastal wetlands of different textures[J]. Soils, 2023, 55(2): 340-347 (in Chinese). [百度学术] 

20

甘国渝, 陈佛文, 邹家龙, 何洁, 陈伟, 高旭园, 李继福. 长期不同养分缺乏对冬油菜土壤微生物群落组成及多样性的影响[J]. 中国土壤与肥料, 2022(4): 37-46. [百度学术] 

GAN GY, CHEN FW, ZOU JL, HE J, CHEN W, GAO XY, LI JF. Effects of long-term different nutrient deficiency on the composition and diversity of soil microbial community in winter oilseed rape[J]. Soil and Fertilizer Sciences in China, 2022(4): 37-46 (in Chinese). [百度学术] 

21

TIECHER T, GOMES MV, AMBROSINI VG, AMORIM MB, BAYER C. Assessing linkage between soil phosphorus forms in contrasting tillage systems by path analysis[J]. Soil and Tillage Research, 2018, 175: 276-280. [百度学术] 

22

TIESSEN HMOIR JO. Characterization of Available P by Sequential Extraction[M]. Soil Sampling and Methods of Analysis, Boca Raton: CRC Press, 1993. [百度学术] 

23

王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113-1126. [百度学术] 

WANG XX, ZHANG M, ZHANG XY, WEI P, CHAI RS, ZHANG CC, ZHANG LL, LUO LC, GAO HJ. Effects of different varieties of phosphate fertilizer application on soil phosphorus transformation and phosphorus uptake and utilization of winter wheat[J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126 (in Chinese). [百度学术] 

24

ZHOU XY, XU MG, WANG BR, CAI ZJ, GILLES C. Changes of soil phosphorus fractionation according to pH in red soils of China: an incubation experiment[J]. Communications in Soil Science and Plant Analysis, 2018, 49(7): 791-802. [百度学术] 

25

CHANG SC, JACKSON ML. Fractionation of soil phosphorus[J]. Soil Science, 1957, 84(2): 133-144. [百度学术] 

26

陈永忠. 我国油茶科技进展与未来核心技术[J]. 中南林业科技大学学报, 2023, 43(7): 1-22. [百度学术] 

CHEN YZ. Scientific and technological progress and future core technologies of oil tea Camellia in China[J]. Journal of Central South University of Forestry & Technology, 2023, 43(7): 1-22 (in Chinese). [百度学术] 

27

YUAN J, HUANG LY, ZHOU NF, WANG H, NIU GH. Fractionation of inorganic phosphorus and aluminum in red acidic soil and the growth of Camellia oleifera[J]. HortScience, 2017, 52(9): 1293-1297. [百度学术] 

28

高丹蕾, 吴璐瑶, 孟凡志, 袁涛. 引种栽培条件下大花黄牡丹根际微生物多样性及群落结构[J]. 东北农业大学学报, 2022, 53(3): 19-29. [百度学术] 

GAO DL, WU LY, MENG FZ, YUAN T. Rhizosphere microbial diversity and community structure of Paeonia ludlowi in introduction area[J]. Journal of Northeast Agricultural University, 2022, 53(3): 19-29 (in Chinese). [百度学术] 

29

AHMAD A, MOIN SF, LIAQAT I, SALEEM S, MUHAMMAD F, MUJAHID T, ZAFAR U. Isolation, solubilization of inorganic phosphate, and production of organic acids by individual and co-inoculated microorganisms[J]. Geomicrobiology Journal, 2023, 40(1): 111-121. [百度学术] 

30

KUNDU BS, NEHRA K, YADAV R, TOMAR M. Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana[J]. Indian Journal of Microbiology, 2009, 49(2): 120-127. [百度学术] 

31

苟志辉. 油茶根际功能菌株的组合优化及菌肥研究[D]. 长沙: 中南林业科技大学硕士学位论文, 2010. [百度学术] 

GOU ZH. Combination optimization of functional strains in rhizosphere of Camellia oleifera and study on bacterial fertilizer[D]. Changsha: Master’s Thesis of Central South University of Forestry and Technology, 2010 (in Chinese). [百度学术] 

32

RÜGER L, FENG K, CHEN Y, SUN RB, SUN B, DENG Y, VETTERLEIN D, BONKOWSKI M. Responses of root architecture and the rhizosphere microbiome assembly of maize (Zea mays L.) to a soil texture gradient[J]. Soil Biology and Biochemistry, 2023, 181: 109026. [百度学术] 

33

鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [百度学术] 

BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd Edition. Beijing: China Agriculture Press, 2000 (in Chinese). [百度学术] 

34

YANG YG, GENG YQ, ZHOU HJ, ZHAO GL, WANG L. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest[J]. Pedobiologia, 2017, 61: 51-60. [百度学术] 

35

SHAH TI, RAI AP, A AM. Relationship of phosphorus fractions with soil properties in moth bean growing acid soils of north western Indian Himalayas[J]. Communications in Soil Science and Plant Analysis, 2019, 50(9): 1192-1198. [百度学术] 

36

尚秋彤, 黄瑞林, 倪浩为, 隋跃宇, 孙波, 梁玉婷. 黑土真菌群落互作及其与梯度有机质碳分子结构的关系[J]. 环境科学, 2020, 41(9): 4305-4313. [百度学术] 

SHANG QT, HUANG RL, NI HW, SUI YY, SUN B, LIANG YT. Interactions of fungi community and relationship with the carbon structure in arable mollisols with gradient organic matter content[J]. Environmental Science, 2020, 41(9): 4305-4313 (in Chinese). [百度学术] 

37

ALIYAT FZ, MALDANI M, EL GUILLI M, NASSIRI L, IBIJBIJEN J. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: calcium, iron, and aluminum phosphates[J]. Microorganisms, 2022, 10(5): 980. [百度学术] 

38

LI N, SHENG KY, ZHENG QY, HU DN, ZHANG L, WANG JW, ZHANG WY. Inoculation with phosphate-solubilizing bacteria alters microbial community and activates soil phosphorus supply to promote maize growth[J]. Land Degradation and Development, 2023, 34(3): 777-788. [百度学术] 

39

杨慧, 范丙全, 龚明波, 李全霞. 一株新的溶磷草生欧文氏菌的分离、鉴定及其溶磷效果的初步研究[J]. 微生物学报, 2008, 48(1): 51-56. [百度学术] 

YANG H, FAN BQ, GONG MB, LI QX. Isolation and identification of a novel phosphate-dissolving strain P21[J]. Acta Microbiologica Sinica, 2008, 48(1): 51-56 (in Chinese). [百度学术] 

40

史发超, 殷中伟, 江红梅, 范丙全. 一株溶磷真菌筛选鉴定及其溶磷促生效果[J]. 微生物学报, 2014, 54(11): 1333-1343. [百度学术] 

SHI FC, YIN ZW, JIANG HM, FAN BQ. Screening, identification of P-dissolving fungus P83 strain and its effects on phosphate solubilization and plant growth promotion[J]. Acta Microbiologica Sinica, 2014, 54(11): 1333-1343 (in Chinese). [百度学术] 

41

江盈, 邹锋, 黄建, 戴伟红, 左荣花, 田诗义, 熊欢. 六个外生菌根真菌菌株在不同难溶性磷源下的溶磷特性[J]. 菌物学报, 2023, 42(6): 1311-1329. [百度学术] 

JIANG Y, ZOU F, HUANG J, DAI WH, ZUO RH, TIAN SY, XIONG H. Phosphorus dissolving characteristics of six ectomycorrhizal fungal strains under different insoluble phosphorus sources[J]. Mycosystema, 2023, 42(6): 1311-1329 (in Chinese). [百度学术] 

42

陈容彬, 左振宇, 黄博慧, 李凌凌, 梅宇航. 一株伯克霍尔德菌的筛选鉴定及溶磷性能优化[J]. 应用生态学报, 2022, 33(6): 1669-1678. [百度学术] 

CHEN RB, ZUO ZY, HUANG BH, LI LL, MEI YH. Screening and identification of a Burkholderia strain and optimization of its phosphate solubilizing capacity[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1669-1678 (in Chinese). [百度学术] 

43

LI LL, CHEN RB, ZUO ZY, LV ZS, YANG ZH, MAO W, LIU YN, ZHOU YX, HUANG JQ, SONG ZB. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB[J]. World Journal of Microbiology and Biotechnology, 2020, 36(2): 1-14. [百度学术] 

44

吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用[J]. 应用生态学报, 2020, 31(9): 2923-2934. [百度学术] 

LÜ J, YU C. Screening and identification of an efficient phosphate-solubilizing Burkholderia sp. and its growth-promoting effect on Pinus massoniana seedling[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2923-2934 (in Chinese). [百度学术] 

45

蔺宝珺, 杨文权, 赵帅, 柴港宁, 鱼杨华, 武燕茹, 韩显忠, 李希来, 寇建村. 高寒草甸植物根际溶磷菌的筛选鉴定及其溶磷与促生效果[J]. 草地学报, 2022, 30(11): 3132-3139. [百度学术] 

LIN BJ, YANG WQ, ZHAO S, CHAI GN, YU YH, WU YR, HAN XZ, LI XL, KOU JC. Screening and identification of phosphate-solubilizing bacteria in plant rhizosphere of alpine meadow and their effects on phosphate-solubilizing and plant growth promotion[J]. Acta Agrestia Sinica, 2022, 30(11): 3132-3139 (in Chinese). [百度学术] 

46

WANG XJ, WU H, DAI CH, WANG XY, WANG LJ, XU JM, LU ZM. Microbial interactions enhanced environmental fitness and expanded ecological niches under dibutyl phthalate and cadmium co-contamination[J]. Environmental Pollution, 2022, 306: 119362. [百度学术] 

47

马秀艳, 蒋磊, 宋艳宇, 孙丽, 宋长春, 侯爱新, 高晋丽, 杜宇. 温度和水分变化对冻土区泥炭地土壤氮循环功能基因丰度的影响[J]. 生态学报, 2021, 41(17): 6707-6717. [百度学术] 

MA XY, JIANG L, SONG YY, SUN L, SONG CC, HOU AX, GAO JL, DU Y. Effects of temperature and moisture changes on functional gene abundance of soil nitrogen cycle in permafrost peatland[J]. Acta Ecologica Sinica, 2021, 41(17): 6707-6717 (in Chinese). [百度学术] 

48

马莹, 程莹莹, 石孝均, 陈新平, 骆永明. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用[J]. 微生物学报, 2023, 63(12): 4502-4521. [百度学术] 

MA Y, CHENG YY, SHI XJ, CHEN XP, LUO YM. Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers[J]. Acta Microbiologica Sinica, 2023, 63(12): 4502-4521 (in Chinese). [百度学术] 

49

LIU YH, HOSSEINI BAI S, WANG JW, HU DN, WU RH, ZHANG WY, ZHANG MY. Strain Klebsiella ZP-2 inoculation activating soil nutrient supply and altering soil phosphorus cycling[J]. Journal of Soils and Sediments, 2022, 22(8): 2146-2157. [百度学术] 

50

王素芳, 王占武, 李洪涛, 张翠绵. 土壤因子对链霉菌S506定殖和促生功能的影响[J]. 中国生态农业学报, 2009, 17(2): 335-338. [百度学术] 

WANG SF, WANG ZW, LI HT, ZHANG CM. Effect of soil on colonization and growth promotion-function of Streptomyces sp. S506[J]. Chinese Journal of Eco-Agriculture, 2009, 17(2): 335-338 (in Chinese). [百度学术] 

51

陈新月, 姚晓东, 曾文静, 王娓. 北方农牧交错带草地土壤微生物量碳空间格局及驱动因素[J]. 北京大学学报(自然科学版), 2021, 57(2): 250-260. [百度学术] 

CHEN XY, YAO XD, ZENG WJ, WANG W. Spatial pattern and driving factors of soil microbial biomass carbon in grassland in northern agro-pastoral transition zone[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 250-260 (in Chinese). [百度学术] 

52

任庆敏. 不同基因型颗石藻Emilinia huxleyi对低pH及缺铁的差异响应及机制研究[D]. 北京: 中国科学院大学硕士学位论文, 2021. [百度学术] 

REN QM. Study on the differential response and mechanism of different genotypes of coccolith Emilinia huxleyi to low pH and iron deficiency[D]. Beijing: Master’s Thesis of University of Chinese Academy of Sciences, 2021 (in Chinese). [百度学术] 

53

SHI XK, MA JJ, LIU LJ. Effects of phosphate-solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi[J]. Journal of Plant Interactions, 2017, 12(1): 137-142. [百度学术] 

54

CUI KP, XU T, CHEN JW, YANG HY, LIU XM, ZHUO R, PENG YH, TANG W, WANG R, CHEN LS, ZHANG X, ZHANG Z, HE ZL, WANG XN, LIU CX, CHEN YZ, ZHU YH. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation[J]. Journal of Cleaner Production, 2022, 367: 133110. [百度学术] 

55

DELAPORTE-QUINTANA P, LOVAISA NC, RAPISARDA VA, PEDRAZA RO. The plant growth promoting bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production[J]. Plant Growth Regulation, 2020, 91(2): 185-199. [百度学术] 

56

孔旭, 陈玉萌, 赵志远, 蒋皓, 冯天宇, 王楷, 张嫒, 郑伟, 翟丙年. 生草覆盖下有机无机肥配施对苹果园土壤磷形态分布的影响[J]. 水土保持学报, 2023, 37(2): 336-342. [百度学术] 

KONG X, CHEN YM, ZHAO ZY, JIANG H, FENG TY, WANG K, ZHANG Y, ZHENG W, ZHAI BN. Effects of combined application of organic and inorganic fertilizers on soil phosphorus distribution in apple orchard under grass[J]. Journal of Soil and Water Conservation, 2023, 37(2): 336-342 (in Chinese). [百度学术] 

57

ZHANG XJ, ZHAN YB, ZHANG H, WANG RH, TAO XL, ZHANG LP, ZUO YL, ZHANG L, WEI YQ, LI J. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting[J]. Bioresource Technology, 2021, 340: 125714. [百度学术] 

58

MOHAMED TA, WU JQ, ZHAO Y, ELGIZAWY N, EL KHOLY M, YANG HY, ZHENG GR, MU DC, WEI ZM. Insights into enzyme activity and phosphorus conversion during kitchen waste composting utilizing phosphorus-solubilizing bacterial inoculation[J]. Bioresource Technology, 2022, 362: 127823. [百度学术] 

59

王世强, 胡长玉, 程东华, 廖万有, 李娜, 陈玲, 房江育. 调节茶园土壤pH对其土著微生物区系及生理群的影响[J]. 土壤, 2011, 43(1): 76-80. [百度学术] 

WANG SQ, HU CY, CHENG DH, LIAO WY, LI N, CHEN L, FANG JY. Effects of adjusting pH of tea plantation soil on indigenous microbial fauna and physiological group[J]. Soils, 2011, 43(1): 76-80 (in Chinese). [百度学术] 

60

吴超, 曲东, 刘浩. 初始pH值对碱性和酸性水稻土微生物铁还原过程的影响[J]. 生态学报, 2014, 34(4): 933-942. [百度学术] 

WU C, QU D, LIU H. Effect of initial pH value on microbial Fe (Ⅲ) reduction in alkaline and acidic paddy soils[J]. Acta Ecologica Sinica, 2014, 34(4): 933-942 (in Chinese). [百度学术]