摘要
目的
揭示三峡水库消落区典型优势植物苍耳(Xanthium sibiricum)根际微生物群落结构特征,阐明其与土壤质量的关系。
方法
在三峡库区腹心所在地云阳县典型消落区采集不同水淹胁迫强度下的苍耳根际土壤,随后进行高通量测序、微生物多样性分析、群落结构解析和冗余分析。
结果
在水淹胁迫强(XaRLL)和低(XaRHL)区域中,变形菌门(Proteobacteria)是苍耳根际细菌群落中共同的最优势细菌门,最优势的真菌门则分别为子囊菌门(Ascomycota)和担子菌门(Basidiomycota)。无论是细菌还是真菌,线性判别分析(linear discriminant analysis effect size, LEfSe)结果显示,XaRLL的关键生物标志物总是多于XaRHL。功能预测分析发现,与有氧呼吸相关的PWY-3781是XaRLL和XaRHL二者共同富集的优势代谢途径。整体而言,苍耳根际微生物群落对土壤的理化性质和酶活的变化反应强烈。
结论
本研究为理解水库消落区植物与其根际微生物的关系,以及它们对强烈水淹胁迫逆境的适应性提供了理论基础。
苍耳(Xanthium sibiricum)属于一年生草本植物,隶属于菊科苍耳属。苍耳在我国分布广泛,常见于路边、草地和坡地,是三峡水库消落区的优势植物之
植物根际是微生物群落富集区域,是大量土壤微生物与植物互作最为紧密的区域,含有大约1
本研究以重庆市三峡库区腹心所在地云阳县典型消落区作为研究对象,将消落区划分为水淹胁迫强区和低区,并从中采集根际土壤,分析土壤养分及理化性质、5种土壤酶活对三峡水库消落区苍耳的根际细菌群落和真菌群落组成的影响;对比分析水淹胁迫强与低区根际微生物群落组成、α多样性、关键生物标志物及代谢途径的差异;进一步通过冗余分析,揭示各种环境因子与苍耳根际细菌和真菌群落之间的关系。本研究旨在为理解极度敏感脆弱的三峡水库消落区生态系统中植物-微生物的互作及植被恢复提供理论基础。
1 材料与方法
1.1 苍耳根际土壤采集
云阳县地处重庆市东北部、三峡库区腹心,年均气温、年降水量和年均日照时数分别为18.7 ℃、1 145 mm和1 528 h。在云阳县消落带,典型的优势植物为苍耳。根际土壤样品采自于重庆市云阳县桔园村附近消落区(30.947°N,108.692°E)。布设的采样区域位于165 m以上及以下,分别对应水淹胁迫强度低和高的区域。由于该区域的苍耳普遍比较幼小,因此对于这两类区域的采样点均在15个以上。将采集的根际土壤按照水淹胁迫强度分装成12份,即用于根际土壤理化性质分析的样品6份和用于根际土壤微生物高通量测序分析的样品6份。对于取自水淹胁迫强区域的苍耳根际土壤(XaRLL),3份样品分别标记为XaRLL-1、XaRLL-2和XaRLL-3;对于取自水淹胁迫低区域的苍耳根际土壤(XaRHL),3份样品分别标记为XaRHL-1、XaRHL-2和XaRHL-3。
1.2 苍耳土壤理化性质和酶活测定
将采集的苍耳根际土壤样品在实验室阴凉处摊开晾干,共测定9个理化性质指标(电导率、pH、有效磷、有效钾、铵态氮、碱解氮、硝态氮、全氮、土壤有机碳)和5个土壤酶活(过氧化氢酶、脲酶、碱性磷酸酶、脱氢酶与蔗糖酶)。土壤pH和有机质的测定参考NY/T 1121.2—2006标
1.3 苍耳根际微生物基因组提取及高通量测序
利用CTAB方法提取DNA,从而获取苍耳根际土壤微生物基因组,检测DNA纯度与浓度。使用特异性引物341F (5′-CCTAYGGGRBGCASCAG-3′)和806R (5′-GGACTACNNGGGTATCTAAT-3′)扩增16S rRNA基因V3-V4可变区;同时采用特异性引物ITS1F (5′-CTTGGTCATTTAGA GGAAGTAA-3′)和ITS2R (5′-GCTGCGTTCTT CATCGATGC-3′)扩增ITS区。PCR反应体系:Husio
2 结果与讨论
2.1 苍耳根际土壤理化性质与酶活分析
通过理化性质分析(
Sample | pH | Soil organic matter (g/kg) ** | Total N (g/kg) ** | Alkaline hydrolyzable N (g/kg) ** | Available P (mg/kg) ** | AmmoniumN (mg/kg) ** | Nitrate N (mg/kg) ** | Available K (mg/kg) * | Conductivity (μs/cm) ** |
---|---|---|---|---|---|---|---|---|---|
XaRHL | 8.82±0.01 | 22.24±0.25 | 1.03±0.02 | 41.53±1.20 | 10.34±0.15 | 4.60±0.39 | 4.66±0.10 | 233.80±2.86 | 127.73±0.55 |
XaRLL | 8.75±0.03 | 15.43±0.48 | 1.38±0.03 | 64.99±2.40 | 22.31±0.54 | 6.84±0.52 | 18.95±0.32 | 246.78±3.02 | 88.53±0.31 |
*: P<0.05; **: P<0.01.
Sample | Urease ((μg/g)/24 h) ** | Catalase ((μmol/g)/h) ** | Alkaline phosphatase ((mg/g)/24 h) ** | Dehydrogenase ((μL/g)/6 h) * | Sucrase ((mg/g)/24 h) ** |
---|---|---|---|---|---|
XaRHL | 185.65±12.32 | 2 288.08±12.89 | 0.84±0.03 | 0.006 2±0.000 1 | 8.68±0.49 |
XaRLL | 1 641.12±66.64 | 2 661.86±28.92 | 1.65±0.03 | 0.007 5±0.000 3 | 13.77±0.18 |
*: P<0.05; **: P<0.01.
2.2 苍耳根际微生物群落组成
在处于水淹胁迫强(XaRLL)和低(XaRHL)的苍耳根际细菌群落中,变形菌门(Proteobacteria)在门水平上相对丰度均是最高的,分别占据55.4%和39.4% (

图1 苍耳根际细菌在门(A)、目(B)和属(C)水平上的组成
Figure 1 Bacteria composition at the phylum (A), order (B) and genus (C) levels in the rhizospheric soils of Xanthium sibiricum. The relative abundance values of various microorganisms in XaRLL are the average of XaRLL-1, XaRLL-2, and XaRLL-3; The relative abundance values of various microorganisms in XaRHL are the average of XaRHL-1, XaRHL-2, and XaRHL-3.
在XaRLL和XaRHL真菌群落中,苍耳根际土壤中最优势的菌门不同(

图2 苍耳根际真菌在门(A)、目(B)和属(C)水平上的组成
Figure 2 Fungi composition at the phylum (A), order (B) and genus (C) levels in the rhizospheric soils of Xanthium sibiricum. The relative abundance values of various microorganisms in XaRLL are the average of XaRLL-1, XaRLL-2, and XaRLL-3; The relative abundance values of various microorganisms in XaRHL are the average of XaRHL-1, XaRHL-2, and XaRHL-3.
LEfSe分析是一种区分不同样品间微生物差异的常用方

图3 苍耳根际细菌群落(A)和真菌群落(B)的LEfSe分析(LDA score≥4.0)
Figure 3 LEfSe analyses of bacterial (A) and fungal (B) communities in the rhizospheric soils of Xanthium sibiricum (LDA score≥4.0).
2.3 苍耳根际微生物的α多样性与代谢功能
本研究采用了5个指标参数来表征苍耳根际微生物的α多样性(
Sample | Microbe | Chao1 | Faith_pd | Observed_features | Shannon | Simpson |
---|---|---|---|---|---|---|
XaRHL | Bacteria | 2 998.87±186.76 | 161.84±10.59 | 2 977.33±185.71 | 10.15±0.21 | 0.996 0±0.00 |
Fungi | 579.00±197.61 | 87.37±21.86 | 579.00±197.61 | 4.58±1.06 | 0.850 0±0.08 | |
XaRLL | Bacteria | 3 014.49±315.97 | 172.50±19.66 | 2 991.33±313.29 | 10.46±0.08 | 0.998 0±0.00 |
Fungi | 763.67±76.88 | 109.66±9.31 | 763.67±76.88 | 6.25±0.96 | 0.923 0±0.08 |

图4 苍耳根际细菌(A)和真菌(B)共有和独有的OTUs数量
Figure 4 Shared and unique bacteria (A) and fungal (B) OTUs numbers in the rhizospheric soils of Xanthium sibiricum.
通过PICRUSt

图5 苍耳根际细菌群落(A)和真菌群落(B)的代谢途径分析
Figure 5 Analyses of metabolic pathways for bacterial (A) and fungal (B) communities in the rhizospheric soils of Xanthium sibiricum. The relative abundance values of various metabolic pathways in XaRLL are the average of XaRLL-1, XaRLL-2, and XaRLL-3; The relative abundance values of various metabolic pathways in XaRHL are the average of XaRHL-1, XaRHL-2, and XaRHL-3.
苍耳根际真菌群落的情况与细菌群落整体趋势相似(
此外,本研究还分析了XaRLL和XaRHL真菌群落的代谢功能(
2.4 苍耳根际微生物群落变化的环境驱动因子
植物根际微生物群落结构受多种环境因子的共同影

图6 苍耳根际细菌群落(A)和真菌群落(B)的冗余分析
Figure 6 Redundancy analyses for bacteria (A) and fungal (B) communities in the rhizospheric soils of Xanthium sibiricum. AVL_P, EC, AVL_K, AVL_N, SOC, Total N, TAN, and NO3-N refer to available phosphorus, conductivity, available potassium, alkaline hydrolyzable nitrogen, soil organic carbon, total nitrogen, ammonium nitrogen, and nitrate nitrogen, respectively; C_act, U_act, AP_act, D_act, S_act refer to catalase activity, urease activity, alkaline phosphatase activity, dehydrogenase activity, and sucrase activity, respectively.
3 结论
本研究选取了重庆市云阳县典型三峡水库消落区作为研究区域,针对该区域常见优势植物——苍耳的根际土壤微生物进,行了高通量测序分析。研究结果显示,在水淹胁迫强的XaRLL中,细菌和真菌的α多样性均高于水淹胁迫低的XaRHL。微生物群落的韦恩图分析及关键生物标志物识别结果也间接表明,XaRLL中微生物多样性略高于XaRHL。在细菌群落中,Proteobacteria是最为优势的菌门,且XaRLL中Proteobacteria的相对丰度高于XaRHL;而在真菌群落中,最为优势的菌门则有所不同,分别为Ascomycota和Basidiomycota。此外,这2个真菌菌门的相对丰度总和在XaRLL和XaRHL中是相近的。三峡水库消落区苍耳根际微生物群落易受其环境因子的影响,冗余分析结果显示,第一主轴和第二主轴分别解释了细菌群落和真菌群落变化中的66.40%和72.40%。本研究成果有望为理解水库消落区极端生境下优势植物如何通过组装根际微生物群落结构来适应逆境环境提供理论基础。
作者贡献声明
周兰芳:研究方案设计、采样、样品分析、数据处理、作图、论文撰写;吴胜军:研究方案设计、数据处理、论文指导与修改;马茂华:数据分析、论文指导与修改;邹航:初稿的审阅与修订;黄金夏:采样、样品分析、数据处理;杨军:采样、样品分析、数据处理。
利益冲突
公开声明
参考文献
孙小祥, 易雪梅, 黄远洋, 陈姗姗, 马茂华, 吴胜军. 三峡库区消落带四种主要植物叶片功能性状分异特征[J]. 三峡生态环境监测, 2021, 6(4): 1-10. [百度学术]
SUN XX, YI XM, HUANG YY, CHEN SS, MA MH, WU SJ. Variation features of plant leaf functional traits for four main species in the hydro-fluctuation zone of Three Gorges Reservoir[J]. Ecology and Environmental Monitoring of Three Gorges, 2021, 6(4): 1-10 (in Chinese). [百度学术]
张乐满, 兰波, 张东升, 刘英杰, 张丽红, 许文锋, 段晨辉, 敦静怡, 刘正学. 三峡水库涪陵-奉节段消落带优势草本植物生态位与种间联结性研究[J]. 生态学报, 2022, 42(8): 3228-3240. [百度学术]
ZHANG LM, LAN B, ZHANG DS, LIU YJ, ZHANG LH, XU WF, DUAN CH, DUN JY, LIU ZX. Niche and interspecific association of dominant herbaceous plants in the water-level-fluctuating zone of Fuling-Fengjie section of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2022, 42(8): 3228-3240 (in Chinese). [百度学术]
饶洁, 唐强, 冯韫, 韦杰, 贺秀斌. 三峡水库消落带生境特征与植被恢复模式[J]. 水土保持学报, 2024, 38(1): 310-318. [百度学术]
RAO J, TANG Q, FENG Y, WEI J, HE XB. Habitat condition and vegetation restoration patterns in the water level fluctuation zone of the Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2024, 38(1): 310-318 (in Chinese). [百度学术]
禹妍彤, 鲍玉海, 吕佼容, 谢航宇, 张浩哲, 贺秀斌. 三峡水库消落带不同水位高程土壤碳氮磷生态化学计量学特征[J]. 长江流域资源与环境, 2023, 32(12): 2558-2567. [百度学术]
YU YT, BAO YH, LV JR, XIE HY, ZHANG HZ, HE XB. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus at different elevations in water level fluctuation zone of Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2023, 32(12): 2558-2567 (in Chinese). [百度学术]
曾文, 李强, 马毅楠, 马荣, 张晓霞, 李世贵, 魏海雷, 谷医林. 北京草莓种植区土壤微生物群落结构解析[J]. 生物资源, 2024, 46(1): 1-10. [百度学术]
ZENG W, LI Q, MA YN, MA R, ZHANG XX, LI SG, WEI HL, GU YL. Analysis of soil microbial community structure in strawberry planting areas in Beijing[J]. Biotic Resources, 2024, 46(1): 1-10 (in Chinese). [百度学术]
刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248. [百度学术]
LIU JW, LI XZ, YAO MJ. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2): 231-248 (in Chinese). [百度学术]
ZUO JJ, ZU MT, LIU L, SONG XM, YUAN YD. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium[J]. BMC Plant Biology, 2021, 21(1): 127. [百度学术]
SOHN SI, AHN JH, PANDIAN S, OH YJ, SHIN EK, KANG HJ, CHO WS, CHO YS, SHIN KS. Dynamics of bacterial community structure in the rhizosphere and root nodule of soybean: impacts of growth stages and varieties[J]. International Journal of Molecular Sciences, 2021, 22(11): 5577. [百度学术]
CASTRILLO G, TEIXEIRA PJPL, PAREDES SH, LAW TF, de LORENZO L, FELTCHER ME, FINKEL OM, BREAKFIELD NW, MIECZKOWSKI P, JONES CD, PAZ-ARES J, DANGL JL. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518. [百度学术]
FITZPATRICK CR, COPELAND J, WANG PW, GUTTMAN DS, KOTANEN PM, JOHNSON MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1157-E1165. [百度学术]
XU TS, JIANG WL, QIN DD, LIU TG, ZHANG JM, CHEN WQ, GAO L. Characterization of the microbial communities in wheat tissues and rhizosphere soil caused by dwarf bunt of wheat[J]. Scientific Reports, 2021, 11(1): 5773. [百度学术]
LI J, LUO ZQ, ZHANG CH, QU XJ, CHEN M, SONG T, YUAN J. Seasonal variation in the rhizosphere and non-rhizosphere microbial community structures and functions of Camellia yuhsienensis hu[J]. Microorganisms, 2020, 8(9): 1385. [百度学术]
谭雪, 董智, 张丽苗, 袁中勋, 李昌晓. 三峡库区消落带3种人工种植植物土壤理化性质、酶活性及细菌多样性季节变化特征[J]. 重庆师范大学学报(自然科学版), 2023, 40(4): 59-69. [百度学术]
TAN X, DONG Z, ZHANG LM, YUAN ZX, LI CX. Seasonal dynamics of soil physicochemical properties, enzyme activity and bacterial diversity of three re-vegetation species in the riparian zone of the Three Gorges Reservoir area[J]. Journal of Chongqing Normal University (Natural Science), 2023, 40(4): 59-69 (in Chinese). [百度学术]
XU DL, YU XW, YANG JB, ZHAO XP, BAO YY. High-throughput sequencing reveals the diversity and community structure in rhizosphere soils of three endangered plants in western Ordos, China[J]. Current Microbiology, 2020, 77(10): 2713-2723. [百度学术]
SHEN QQ, YANG JY, SU DF, LI ZY, XIAO W, WANG YX, CUI XL. Comparative analysis of fungal diversity in rhizospheric soil from wild and reintroduced Magnolia sinica estimated via high-throughput sequencing[J]. Plants, 2020, 9(5): 600. [百度学术]
葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. [百度学术]
GE YL, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 141-148 (in Chinese). [百度学术]
SONG Q, SONG XS, DENG X, LUO JY, WANG JK, MIN K, SONG RQ. Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings[J]. Scandinavian Journal of Forest Research, 2021, 36(4): 249-262. [百度学术]
中华人民共和国农业部. 土壤检测 第2部分: 土壤pH的测定: NY/T 1121.2—2006[S]. 北京: 中国农业出版社, 2006. [百度学术]
Ministry of Agriculture of the People’s Republic of China. Soil testing Part 2: Method for determination of soil pH: NY/T 1121.2—2006[S]. Beijing: China Agriculture Press, 2006 (in Chinese). [百度学术]
国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015. [百度学术]
State Forestry Administration of the People’s Republic of China. Nitrogen determination methods of forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese). [百度学术]
国家林业局. 森林土壤水解性氮的测定: LY/T 1229—1999[S]. 1999. [百度学术]
National Forestry Administration. Determination of hydrolyzable nitrogen in forest soil: LY/T 1229—1999[S]. 2019 (in Chinese). [百度学术]
中华人民共和国农业部. 土壤检测 第7部分: 土壤有效磷的测定: NY/T 1121.7—2014[S]. 北京: 中国农业出版社, 2006. [百度学术]
Ministry of Agriculture of the People’s Republic of China. Soil testing Part 7: Method for determination of available phosphorus in soil: NY/T 1121.7—2014[S]. Beijing: China Agriculture Press, 2006 (in Chinese). [百度学术]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [百度学术]
BAO SD. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000 (in Chinese). [百度学术]
中华人民共和国环境保护部. 土壤 电导率的测定 电极法: HJ 802—2016[S]. 北京: 中国环境科学出版社, 2016. [百度学术]
Ministry of Environmental Protection of the People’s Republic of China. Soil quality—Determination of conductivity- Electrode method: HJ 802—2016[S]. Beijing: China Environmental Science Press, 2016 (in Chinese). [百度学术]
周兰芳, 吴胜军, 马茂华. 白鹤滩水库消落带优势植物银胶菊根际微生物群落组成、多样性及潜在代谢功能分析[J]. 昆明理工大学学报(自然科学版), 2023, 48(6): 112-122. [百度学术]
ZHOU LF, WU SJ, MA MH. Composition, diversity, and potential metabolic function analysis of rhizosphere microbial community of the dominant plant Parthenium hysterophorus L. in the water-level-fluctuation zone of Baihetan Reservoir[J]. Journal of Kunming University of Science and Technology (Natural Science), 2023, 48(6): 112-122 (in Chinese). [百度学术]
DOUGLAS GM, MAFFEI VJ, ZANEVELD JR, YURGEL SN, BROWN JR, TAYLOR CM, HUTTENHOWER C, LANGILLE MGI. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688. [百度学术]
CASPI R, BILLINGTON R, KESELER IM, KOTHARI A, KRUMMENACKER M, MIDFORD PE, ONG WK, PALEY S, SUBHRAVETI P, KARP PD. The MetaCyc database of metabolic pathways and enzymes: a 2019 update[J]. Nucleic Acids Research, 2020, 48(D1): D445-D453. [百度学术]
GUPTA RS. The phylogeny of proteobacteria: relationships to other eubacterial Phyla and eukaryotes[J]. FEMS Microbiology Reviews, 2000, 24(4): 367-402. [百度学术]
LUNDBERG DS, LEBEIS SL, PAREDES SH, YOURSTONE S, GEHRING J, MALFATTI S, TREMBLAY J, ENGELBREKTSON A, KUNIN V, del RIO TG, EDGAR RC, EICKHORST T, LEY RE, HUGENHOLTZ P, TRINGE SG, DANGL JL. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7409): 86-90. [百度学术]
HUANG YH. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing[J]. Journal of Integrative Agriculture, 2018, 17(2): 359-367. [百度学术]
SONG Z, ZHANG RH, FU WD, ZHANG T, YAN J, ZHANG GL. High-throughput sequencing reveals bacterial community composition in the rhizosphere of the invasive plant Flaveria bidentis[J]. Weed Research, 2017, 57(3): 204-211. [百度学术]
LING N, WANG TT, KUZYAKOV Y. Rhizosphere bacteriome structure and functions[J]. Nature Communications, 2022, 13(1): 836. [百度学术]
MANICI LM, CAPUTO F, de SABATA D, FORNASIER F. The enzyme patterns of Ascomycota and Basidiomycota fungi reveal their different functions in soil[J]. Applied Soil Ecology, 2024, 196: 105323. [百度学术]
GQOZO MP, BILL M, SIYOUM N, LABUSCHAGNE N, KORSTEN L. Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa[J]. Applied Soil Ecology, 2020, 151: 103543. [百度学术]
TAN Y, CUI YS, LI HY, KUANG AX, LI XR, WEI YL, JI XL. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 2017, 194: 10-19. [百度学术]
FRANKE-WHITTLE IH, MANICI LM, INSAM H, STRES B. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards[J]. Plant and Soil, 2015, 395(1): 317-333. [百度学术]
HUANG K, JIANG QP, LIU LH, ZHANG ST, LIU CL, CHEN HT, DING W, ZHANG YQ. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes[J]. AMB Express, 2020, 10(1): 72. [百度学术]
LEI HY, LIU AK, HOU QW, ZHAO QS, GUO J, WANG ZJ. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping[J]. BMC Microbiology, 2020, 20(1): 272. [百度学术]
NAN J, CHAO LM, MA XD, XU DL, MO L, ZHANG XD, ZHAO XP, BAO YY. Microbial diversity in the rhizosphere soils of three Stipa species from the eastern Inner Mongolian grasslands[J]. Global Ecology and Conservation, 2020, 22: e00992. [百度学术]
LIU JP, TANG YJ, BAO JS, WANG HK, PENG FR, TAN PP, CHU GL, LIU S. A stronger rhizosphere impact on the fungal communities compared to the bacterial communities in pecan plantations[J]. Frontiers in Microbiology, 2022, 13: 899801. [百度学术]
郭芝芝, 苏振华, 邸琰茗, 郭逍宇. 北运河京津冀段河道浮游微生物群落多样性变化分析[J]. 环境科学, 2022, 43(2): 803-812. [百度学术]
GUO ZZ, SU ZH, DI YM, GUO XY. Analysis on diversity of plankton microbial community in the Beijing-Tianjin-Hebei section of the north canal river[J]. Environmental Science, 2022, 43(2): 803-812 (in Chinese). [百度学术]
CHAO A, CHIU C. Species Richness: Estimation and Comparison[M]. Hoboken: John Wiley & Sons, Ltd., 2016 [百度学术]
FAITH DP, RICHARDS ZT. Climate change impacts on the tree of life: changes in phylogenetic diversity illustrated for Acropora corals[J]. Biology, 2012, 1(3): 906-932. [百度学术]
李鹏洋, 安启睿, 王新皓, 孙思宇, 李肖乾, 郑娜. 辽河四平段流域河流沉积物微生物群落多样性和结构分析[J]. 环境科学, 2022, 43(5): 2586-2594. [百度学术]
LI PY, AN QR, WANG XH, SUN SY, LI XQ, ZHENG N. Analysis on diversity and structure of microbial community in river sediment of Siping section of Liaohe River[J]. Environmental Science, 2022, 43(5): 2586-2594 (in Chinese). [百度学术]
ZHOU LF, WU SJ, MA MH. First insights into diversity and potential metabolic pathways of bacterial and fungal communities in the rhizosphere of Argemonemexicana L. (Papaveraceae) from the water-level-fluctuation zone of Wudongde Reservoir of the Upper Yangtze River, China[J]. Biodiversity Data Journal, 2023, 11: e101950. [百度学术]
LIU Q, CHANG FQ, XIE P, ZHANG Y, DUAN LZ, LI HY, ZHANG XN, ZHANG Y, LI DL, ZHANG HC. Microbiota assembly patterns and diversity of nine plateau lakes in Yunnan, Southwestern China[J]. Chemosphere, 2023, 314: 137700. [百度学术]
ANTÓNIO CBS, OBIEZE C, JACINTO J, MAQUIA ISA, MASSAD T, RAMALHO JC, RIBEIRO NS, MÁGUAS C, MARQUES I, RIBEIRO-BARROS AI. Linking bacterial rhizosphere communities of two pioneer species, Brachystegia boehmii and B. spiciformis, to the ecological processes of miombo woodlands[J]. Forests, 2022, 13(11): 1840. [百度学术]
WAN WJ, TAN JD, WANG Y, QIN Y, HE HM, WU HQ, ZUO WL, HE DL. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function[J]. Science of the Total Environment, 2020, 700: 134418. [百度学术]
LIU AL, LI YX, WANG QQ, ZHANG XR, XIONG J, LI Y, LEI YH, SUN YF. Analysis of microbial diversity and community structure of rhizosphere soil of Cistanche salsa from different host plants[J]. Frontiers in Microbiology, 2022, 13: 971228. [百度学术]
CHEN DQ, SUN WH, XIANG S, ZOU SQ. High-throughput sequencing analysis of the composition and diversity of the bacterial community in Cinnamomum camphora soil[J]. Microorganisms, 2021, 10(1): 72. [百度学术]
LÓPEZ-LOZANO NE, ECHEVERRÍA MOLINAR A, ORTIZ DURÁN EA, HERNÁNDEZ ROSALES M, SOUZA V. Bacterial diversity and interaction networks of Agave lechuguilla rhizosphere differ significantly from bulk soil in the oligotrophic basin of cuatro cienegas[J]. Frontiers in Plant Science, 2020, 11: 1028. [百度学术]
SHI HN, YANG JL, LI Q, PINCHU CE, SONG ZH, YANG HL, LUO Y, LIU CL, FAN W. Diversity and correlation analysis of different root exudates on the regulation of microbial structure and function in soil planted with Panax notoginseng[J]. Frontiers in Microbiology, 2023, 14: 1282689. [百度学术]
LI YY, DANG HL, LV XH, WANG ZK, PU XZ, ZHUANG L. High-throughput sequencing reveals rhizosphere fungal community composition and diversity at different growth stages of Populus euphratica in the lower reaches of the Tarim River[J]. PeerJ, 2022, 10: e13552. [百度学术]
LI Y, NIE C, LIU YH, DU W, HE P. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland[J]. Science of the Total Environment, 2019, 654: 264-274. [百度学术]