摘要
目的
研究排水对滨海盐碱地土壤性质和微生物群落特征的影响。
方法
以江苏南通滨海盐碱地排水洗盐前后的土壤为研究对象,通过一系列土壤物化性质表征和高通量测序方法,对土壤酸碱度、氮磷钾营养元素、生物酶活性以及土壤微生物群落结构进行分析,并采用生物信息学分析方法,剖析微生物群落结构特征与土壤物化性质的关联性以及可能的厌氧代谢过程。
结果
排水洗盐明显降低了土壤的pH和电导率(electrical conductivity, EC),但也一定程度上造成了土壤中营养成分的流失。洗盐后土壤中蔗糖酶、过氧化物酶活性以及真菌的物种丰富度和物种多样性有所升高,但细菌和古菌的物种丰富度和物种多样性降低。相关分析表明微生物群落结构与土壤电导率和钾元素含量呈显著正相关性,与土壤过氧化氢酶活性和土壤蔗糖酶活性呈显著负相关性。冗余分析和功能预测发现,真菌和古菌与电导率(EC)显著相关,而古菌可能通过对盐度的适应改变其群落结构。
结论
排水洗盐降低了土壤中的盐度和pH,对土壤性质和微生物群落结构造成了影响。
盐碱土是陆地表面生态脆弱区域,其高盐度和碱度不仅造成了资源的破坏和农业生产的巨大损失,还对生物圈和生态环境构成威
为了缓解土壤盐碱化问题带来的压力,研究者们对滨海地区土壤盐碱化提出了一系列改良措施,常见的方法包括水利工程、生物、物理和化学等方
研究发现,不同改良方法对盐碱土的土壤性质和微生物群落会产生不同程度的影响。谭海霞
研究表明,水利工程改良也会对盐碱地性质和土壤微生物群落结构造成影响。章二子
本研究通过比较排水洗盐处理对盐碱土的土壤性质和土壤微生物群落的影响,初步探究土壤微生物和土壤酶活对盐碱土淋洗的响应情况。通过对盐碱土中微生物群落结构、多样性及其功能变化的分析,为阐明排水洗盐法改良盐碱土的机理提供依据,有助于优化滨海盐碱地的改良方案,提高土地利用效率,为解决沿海地区土地资源紧张和农业可持续发展问题提供科学支撑。
1 材料与方法
1.1 研究区域概况和盐碱土壤样品采集
研究所用的盐碱土样品于2024年5月上旬取自江苏省南通市如东县苴镇外向型农业经济开发区掘苴盐碱地改良基地。该基地位于长三角平原地貌区,以滨海平原地貌为主,地势较为平坦,由西向东微微倾斜,属北亚热带海洋性季风气候区。其土壤类型主要为滨海潮滩盐土,耕地作物以水稻、小麦为主。土壤样品中,3个取自排水洗盐处理前的地块(样品编号为G1、G2和G3,南北方向隔40 m,其中G2坐标为121°11′06″E,32°29′19″N),另外3个样品来自排水洗盐法处理过后的地块(样品编号为D1、D2和D3,南北方向间隔相隔40 m,其中D2坐标为121°10′55″E,32°29′22″N)。其具体实施为通过水泵向试验田加淡水,水量为1×1
1.2 土壤样品物化性质表征
土壤样品自然风干后,去除大的石块,破碎筛分至测试要求,然后参照鲍士旦《土壤农化分析(第3版)
1.3 土壤样品中微生物群落结构研究
新鲜土壤样品采用 E.Z.N.A
1.4 数据统计分析
采用美吉生物云平台进行微生物的α多样性、主坐标轴分析(principal co-ordinates analysis, PCoA)和冗余分析(redundancy analysis, RDA)分析。其中,基于Bray-Curtis距离算法的PCoA分析用于评估细菌、真菌和古菌群落。计算环境因素与微生物多样性之间的Spearman秩相关系数。对土壤和微生物群落的物理和化学特性进行了RDA分析。采用Pearson系数进行双变量相关(双尾)分析,分析土壤样品中不同环境因子的相关性。统计分析在SPSS 27.0上进行,P值小于0.05认为具有统计学意义。
2 结果与讨论
2.1 土壤样本理化性质的分析
土壤样本的电导率、pH、有机质、碱解氮、有效磷、速效钾、全氮、全磷、全钾含量如
Samples | D1 | D2 | D3 | G1 | G2 | G3 |
---|---|---|---|---|---|---|
pH | 6.94±0.33 | 7.54±0.06 | 7.01±0.16 | 7.34±0.28 | 7.25±0.09 | 7.23±0.27 |
EC (mS/cm) | 1.77±0.32 | 1.77±0.41 | 2.33±0.23 | 4.07±0.66 | 5.34±0.52 | 4.40±0.36 |
SOM (g/kg) | 4.82±0.90 | 3.54±0.59 | 1.31±0.71 | 5.17±0.83 | 5.15±0.44 | 4.13±0.21 |
AN (mg/kg) | 25.06±3.25 | 18.76±2.77 | 20.51±1.98 | 10.71±4.10 | 19.46±3.27 | 18.06±2.06 |
AP (mg/kg) | 2.48±0.54 | 0.07±0.03 | 3.24±0.81 | 1.57±0.67 | 3.61±1.44 | 0.63±0.19 |
AK (mg/kg) | 274.11±7.41 | 258.37±7.87 | 266.24±8.54 | 380.20±10.95 | 368.80±5.70 | 374.50±3.22 |
TN (mg/kg) | 295.00±33.00 | 229.00±21.00 | 262.00±18.50 | 267.00±21.50 | 310.00±26.00 | 288.50±17.50 |
TP (mg/kg) | 474.79±2.90 | 480.58±12.70 | 477.69±8.40 | 595.37±35.80 | 523.71±20.50 | 559.53±15.30 |
TK (mg/kg) | 14 738.89±64.87 | 14 415.12±161.89 | 14 577.01±157.71 | 17 323.76±230.63 | 17 164.74±79.55 | 17 244.25±92.74 |
土壤中检测的酶主要包括水解酶和氧化还原酶。蔗糖酶(S_SC)、脲酶(S_UE)和碱性磷酸酶(S_AKP)是典型的水解酶,而过氧化氢酶(S_CAT)是典型的氧化酶。土壤中酶活性数据如

图1 土壤脲酶(A)、蔗糖酶(B)、碱性磷酸酶(C)、过氧化氢酶(D)酶活性
Figure 1 Soil urease (A), sucrase (B), alkaline phosphatase (C), catalase (D) enzyme activity.
2.2 土壤中细菌、真菌和古菌的微生物群落多样性
从6个土壤样品中共获得337 048条细菌序列、319 838条真菌序列和364 665条古菌序列。细菌的平均序列长度为418 bp,真菌的平均序列长度为249 bp,古菌的平均序列长度为429 bp。微生物α多样性指数如
Alpha diversity index | D1 | D2 | D3 | G1 | G2 | G3 | |
---|---|---|---|---|---|---|---|
ACE | Bacteria | 3 330.722 | 3 360.643 | 3 467.862 | 3 535.680 | 3 880.089 | 3 809.095 |
Fungi | 92.000 | 92.000 | 91.000 | 48.000 | 54.000 | 58.000 | |
Archaea | 495.548 | 579.312 | 470.543 | 705.840 | 684.972 | 616.852 | |
Chao | Bacteria | 3 238.370 | 3 281.806 | 3 340.379 | 3 463.608 | 3 758.662 | 3 703.198 |
Fungi | 92.000 | 92.000 | 91.000 | 48.000 | 54.000 | 58.000 | |
Archaea | 484.165 | 568.049 | 461.447 | 693.821 | 668.852 | 599.266 | |
Shannon | Bacteria | 6.404 | 6.447 | 6.531 | 6.652 | 6.828 | 6.735 |
Fungi | 3.127 | 3.162 | 2.384 | 2.319 | 2.564 | 2.750 | |
Archaea | 3.288 | 3.312 | 3.243 | 3.628 | 3.815 | 3.416 | |
Simpson | Bacteria | 0.006 | 0.008 | 0.005 | 0.004 | 0.003 | 0.003 |
Fungi | 0.072 | 0.077 | 0.206 | 0.183 | 0.132 | 0.139 | |
Archaea | 0.124 | 0.131 | 0.131 | 0.100 | 0.065 | 0.090 |
刘冰冰
从细菌门水平(

图2 细菌(A)、真菌(B)和古菌(C)门水平物种组成
Figure 2 Species composition at the phylum level of bacteria (A), fungi (B), and archaea (C).
从
六个样品的古菌门(
排水洗盐使微生物群落结构发生明显变化。在细菌优势菌群中放线菌门(Actinomycetota)可能逐渐取代耐盐菌群;在真菌优势群中,子囊菌门(Ascomycota)成为绝对优势菌。研究表明放线菌门(Actinomycetota)微生物具有利用复杂碳化合物的能力,而子囊菌门(Ascomycota)对胁迫环境具有很强的适应性,能降解有机物,是土壤有机质的主要分解
属水平的细菌、真菌和古菌群落如

图3 细菌(A)、真菌(B)、古菌(C)属水平物种组成
Figure 3 Species composition of bacteria (A), fungi (B), and archaea (C) at genus level.
六个样品的真菌属差异较大。从整体来看,在占比前10的真菌属中,洗盐后未分类壶菌门(unclassified_p_Chytridiomycota)、unclassified_k_Fungi和枝孢菌属(Cladosporium)的丰度降低,而柄孢壳菌属(Podospora)、木霉属(Trichoderma)、链格孢属(Alternaria)和篮状菌属(Talaromyces)的丰度均增加。
对于古菌,6个样品的优势菌属均为未分类纲热原体纲(unclassified_c_Thermoplasmata)、unclassified_f_norank_o_Marine_Group_Ⅱ、亚硝化古菌属(Nitrosarchaeum)、待定亚硝化侏儒菌属(Candidatus_Nitrosopumilus)和无等级深古菌(norank_f_norank_o_norank_c_Bathyarchaeia)。其中,未分类热原体纲(unclassified_c_Thermoplasmata)和亚硝化古菌属(Nitrosarchaeum)在排水洗盐后丰度增加,而其他三者的丰度降低。待定亚硝化侏儒菌属(Candidatus_Nitrosopumilus)具有专性盐需
为了评估不同样本中微生物群落的差异,基于OTU水平的Bray-Curtis距离进行PCoA排序(

图4 细菌(A)、真菌(B)、古菌(C) OTU水平PCoA分析
Figure 4 PCoA analysis of OTU level of bacteria (A), fungi (B), and archaea (C).
2.3 土壤环境变量与微生物多样性的相关性分析
为进一步分析环境变量与微生物种群之间的相关性,将
pH | EC | AN | AP | AK | TN | TP | TK | SOM | S_AKP | S_CAT | S_UE | S_SC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1.000 | ||||||||||||
EC | 0.184 | 1.000 | |||||||||||
AN | -0.598 | -0.476 | 1.000 | ||||||||||
AP | -0.663 | 0.225 | 0.326 | 1.000 | |||||||||
AK | 0.209 | 0.931** | -0.628 | 0.018 | 1.000 | ||||||||
TN | -0.545 | 0.604 | 0.272 | 0.603 | 0.533 | 1.000 | |||||||
TP | 0.332 | 0.730 | -0.846* | -0.223 | 0.911* | 0.210 | 1.000 | ||||||
TK | 0.318 | 0.940** | -0.619 | 0.023 | 1.000** | 0.536 | 0.902* | 1.000 | |||||
SOM | 0.232 | 0.487 | -0.241 | -0.085 | 0.614 | 0.496 | 0.521 | 0.611 | 1.000 | ||||
S_AKP | 0.663 | -0.225 | -0.326 | -1.000** | -0.018 | -0.603 | 0.223 | -0.023 | 0.085 | 1.000 | |||
S_CAT | -0.193 | -0.936** | 0.681 | -0.076 | -0.987** | -0.481 | -0.915* | -0.986** | -0.496 | 0.076 | 1.000 | ||
S_UE | -0.287 | 0.438 | 0.042 | 0.042 | 0.380 | 0.371 | 0.246 | 0.385 | -0.291 | -0.042 | -0.416 | 1.000 | |
S_SC | -0.386 | -0.921** | 0.572 | 0.135 | -0.908* | -0.369 | -0.789 | -0.916* | -0.388 | -0.135 | 0.907* | -0.561 | 1.000 |
**: P<0.01 indicates significant correlation; *: P<0.05 indicates general correlation.
根据变量间的相关关系,选择5种相关性较为密切的环境因子,将其数据导入美吉生物云平台进行环境因子关联分析,结果如


图5 细菌(A)、真菌(B)和古菌(C)在属水平对环境因子的相关性热图
Figure 5 Correlation heat map of bacteria (A), fungi (B), and archaea (C) to environmental factors at the genus level. *: P≤0.05; **: P≤0.01; ***: P≤0.001. The abscissa represents the environmental factors of the soil, and the ordinate represents the abundance information of the microbial community. Green means negative correlation, red means positive correlation. The deeper the color, the higher the correlation.
真菌与环境因子的相关性热图如
古菌与环境因子的相关性热图(
分别对5个环境参数(电导率、速效钾、全钾、土壤蔗糖酶和土壤过氧化氢酶)和微生物群落进行RDA分析,结果如

图6 细菌(A)、真菌(B)和古菌(C)在门水平对理化性质的RDA分析
Figure 6 RDA analysis of physicochemical properties of bacteria (A), fungi (B), and archaea (C) at the phylum level.
结合2.1节和2.2节的分析,排水洗盐后土壤蔗糖酶活性升高,土壤有机质含量降低,细菌中的放线菌门和真菌中的子囊菌门含量升高。这2类微生物与有机质的分解密切相关,说明放线菌门和子囊菌门的丰度升高,其分泌的蔗糖酶加速了土壤中有机物的分解转化,从而降低了部分土壤有机质含量,与曹升
上述分析表明,古菌群落结构与电导率、钾含量、土壤过氧化氢酶活性均显著相关。即使非嗜盐古菌在一定生长条件下,细胞内也能检测到高浓度的钾离
盐度会直接影响古菌群

图7 古菌群落的FAPROTAX功能预测热图
Figure 7 Heatmap of FAPROTAX function prediction of archaeal community. The abscissa is the sample name, and the ordinate is the functional abundance information; The higher the abundance, the redder the color block.
3 结论
排水洗盐是一种常见的盐碱地水利工程改良方法。本文比较研究了排水洗盐对滨海盐碱地土壤样品的理化性质和微生物群落结构的影响,并将不同土壤的微生物群落结构与土壤性质进行了相关性分析,得到以下结论。
(1) 排水洗盐降低了盐碱土壤的电导率、pH值、氮磷钾含量以及细菌和古菌的物种丰富度和物种多样性。然而,洗盐后土壤中蔗糖酶、过氧化物酶活性和真菌的物种丰富度和物种多样性在一定程度上有所升高。
(2) 通过各理化性质的相关性分析、环境因子相关性热图和冗余分析可知,电导率与钾元素含量呈显著正相关性,与土壤过氧化氢酶活性和土壤蔗糖酶活性呈显著负相关性。总磷含量与碱解氮含量呈负相关,与钾含量呈正相关;有效磷含量与土壤碱性磷酸酶活性呈完全负相关。借助功能预测发现,真菌和古菌与电导率显著关联,而古菌可能通过对盐度的适应来改变群落结构。同时,排水洗盐可能间接影响了N、S、C元素的形态。
综上所述,本研究在阐明盐碱土环境中微生物群落结构和功能方面,以及揭示排水洗盐对盐碱地土壤性质和微生物群落影响机制方面取得了一定进展。此外,本研究还为理解微生物在应对土壤改良技术时的响应机理提供了重要依据,并加深了对极端环境中微生物生存策略及其在土壤生物地球化学循环中作用的认知。
然而,本研究也发现排水洗盐存在不足之处。例如,虽然淋洗土壤对降低盐碱有积极作用,但也导致土壤中营养成分一定程度的流失。因此,在未来的研究中,可以进一步探索以下方向:首先,深入研究排水洗盐与其他改良措施的协同作用机制。通过结合不同的改良措施(如添加有机物质、施加无机肥料等),可以更全面地评估盐碱地土壤改良的效果,并优化改良策略。其次,开展长期监测研究,以揭示排水洗盐后土壤性质和微生物群落的动态变化。通过长期跟踪观察可以更准确地了解排水洗盐对土壤生态系统的影响,并预测其长期效果。
作者贡献声明
程瑜:样品采集,实验安排、调查,初稿撰写;白婷:数据分析,图片绘制,初稿撰写;胡建:数据管理、调查;杨晋炜:数据处理;刘强:数据收集;葛云:数据处理;肖昕:论文修改;周志林:论文修改;何环:论文思想、框架指导,撰写与修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
杜滢鑫, 谢宝明, 蔡洪生, 唐璐, 郭长虹. 大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性[J]. 生态学报, 2016, 36(3): 740-747. [百度学术]
DU YX, XIE BM, CAI HS, TANG L, GUO CH. Structural and functional diversity of rhizosphere microbial community of nine plant species in the Daqing saline-alkali soil region[J]. Acta Ecologica Sinica, 2016, 36(3): 740-747 (in Chinese). [百度学术]
COBAN O, de DEYN GB, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): abe0725. [百度学术]
CHOUDHARY M, JAT HS, MUKHOPADHYAY R, KAKRALIYA M, POONIA T, PHOGAT A, DIXIT B, KUMAR R, ARORA S, YADAV RK, KRISHNAMURTHY SL, SHARMA PC. Functional diversity and behavioral changes of microbial communities under salt affected soils[J]. Applied Soil Ecology, 2023, 190: 105017. [百度学术]
陈瑞蕊, 张建伟, 董洋, 林先贵, 冯有智. 盐度对滨海土壤细菌多样性和群落构建过程的影响[J]. 应用生态学报, 2021, 32(5): 1816-1824. [百度学术]
CHEN RR, ZHANG JW, DONG Y, LIN XG, FENG YZ. Effects of salinity on soil bacterial diversity and assembly processes in coastal soils[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1816-1824 (in Chinese). [百度学术]
ASKRI B, KHODMI S, BOUHLILA R. Impact of subsurface drainage system on waterlogged and saline soils in a Saharan palm grove[J]. Catena, 2022, 212: 106070. [百度学术]
林耀奔, 杨建辉, 叶艳妹. 盐碱地不同土地利用方式下土壤细菌群落结构多样性差异分析[J]. 环境科学学报, 2019, 39(4): 1266-1273. [百度学术]
LIN YB, YANG JH, YE YM. Analysis on diversity of soil bacterial community under different land use patterns in saline-alkali land[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1266-1273 (in Chinese). [百度学术]
赵英, 王丽, 赵惠丽, 陈小兵. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 2022, 38(3): 67-74. [百度学术]
ZHAO Y, WANG L, ZHAO HL, CHEN XB. Research status and prospects of saline-alkali land amelioration in the coastal region of China[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 67-74 (in Chinese). [百度学术]
LI J. Research status of different improvement measures for saline-alkali land[J]. E3S Web of Conferences, 2022, 338: 01038. [百度学术]
孙卿. 盐碱土壤改良措施与效益分析[J]. 农业与技术, 2022, 42(15): 78-81. [百度学术]
SUN Q. Improvement measures and benefit analysis of saline-alkali soil[J]. Agriculture and Technology, 2022, 42(15): 78-81 (in Chinese). [百度学术]
CHEN WW, LIU Z. Research progress on improvement of saline alkali soil[J]. Frontiers in Science and Engineering, 2023, 3(3): 36-42. [百度学术]
谭海霞, 彭红丽, 葛振宇, 王连龙, 徐延平, 李丽艳. 盐碱土壤修复菌剂对耐盐蒲公英根际土壤微生物群落多样性的影响[J]. 农业生物技术学报, 2023, 31(1): 156-164. [百度学术]
TAN HX, PENG HL, GE ZY, WANG LL, XU YP, LI LY. Effects of salt-alkali soil remediation agents on microbial community diversity in salt-tolerant dandelion (Taraxacum mongolicum) rhizosphere soil[J]. Journal of Agricultural Biotechnology, 2023, 31(1): 156-164 (in Chinese). [百度学术]
张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062. [百度学术]
ZHANG JL, WANG GL, WU B, JIA CL, ZHANG JH, ZHOU Y, MA B. The effects of alfalfa-Triticale rotation on soil bacterial and fungal community diversity and co-occurrence network in coastal saline-alkaline soil[J]. Ecology and Environmental Sciences, 2024, 33(7): 1048-1062 (in Chinese). [百度学术]
李硕, 吴振超, 康杰, 葛菁萍. 土壤微生物群落组装策略在改良盐碱化土壤中的应用研究[J]. 黑龙江大学自然科学学报, 2024, 41(5): 505-512. [百度学术]
LI S, WU ZC, KANG J, GE JP. Application of soil microbial community assembly strategy in improving saline-alkali soil [J]. Journal of Natural Science of Heilongjiang University, 2024, 41(5): 505-512 (in Chinese). [百度学术]
LIU RN, LIANG BJ, ZHAO HL, ZHAO Y. Impacts of various amendments on the microbial communities and soil organic carbon of coastal saline-alkali soil in the Yellow River Delta[J]. Frontiers in Microbiology, 2023, 14: 1239855. [百度学术]
HUANG ZC, BIAN FY, WANG ZG, ZHU JR, ZHANG XP, WANG J, GAI X, ZHONG ZK. Microorganisms facilitated the saline-alkali soil remediation by biochar: soil properties, microbial communities, and plant responses[J]. Land Degradation & Development, 2024, 35(11): 3567-3578. [百度学术]
章二子, 陈竞楠, 黄艳, 田颖, 金秋, 侯毛毛. 不同暗管间距与生物有机肥施用对盐碱地N2O排放的影响研究[J]. 节水灌溉, 2025(2): 15-20, 27. [百度学术]
ZHANG EZ, CHEN JN, HUANG Y, TIAN Y, JIN Q, HOU MM. Effects of different subsurface pipe spacing and bio-organic fertilizer application on N2O emissions from saline-alkali land[J]. Water-Saving Irrigation, 2025(2): 15-20, 27 (in Chinese). [百度学术]
田雨雨, 李东伟, 曲子良, 荆锐, 赵青青, 周新国. 生物炭协同暗管排水对滨海盐碱土壤微生物群落的影响[J]. 灌溉排水学报, 2024, 43(4): 82-89. [百度学术]
TIAN YY, LI DW, QU ZL, JING R, ZHAO QQ, ZHOU XG. Effect of biochar amendment and subsurface drainage on microbial communities in saline coastal soils[J]. Journal of Irrigation and Drainage, 2024, 43(4): 82-89 (in Chinese). [百度学术]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000, 30-297. [百度学术]
BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd edition. Beijing: China Agriculture Press, 2000, 30-297 (in Chinese). [百度学术]
国家林业局. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社, 2016. [百度学术]
State Forestry Administration of the People’s Republic of China. Potassium determination methods of forest soils: LY/T 1234—2015[S]. Beijing: Standards Press of China, 2016 (in Chinese). [百度学术]
ZHANG WT, MO QY, HUANG ZX, SABAR MA, MEDUNIĆ G, IVOŠEVIĆ T, HE H, URYNOWICZ M, LIU FJ, GUO HG, HAIDER R, ALI MI, JAMAL A. Contaminants from a former Croatian coal sludge dictate the structure of microbiota in the estuarine (Raša Bay) sediment and soil[J]. Frontiers in Microbiology, 2023, 14: 1126612. [百度学术]
YANG DH, TANG L, CUI Y, CHEN JX, LIU L, GUO CH. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities[J]. Ecotoxicology, 2022, 31(9): 1356-1368. [百度学术]
解雪峰, 徐梓晴, 田再洋, 卜心国, 徐飞, 梁晶, 濮励杰. 不同改良物质添加对滨海盐碱地土壤重金属及酶活性的影响[J]. 环境科学, 2023, 44(10): 5649-5656. [百度学术]
XIE XF, XU ZQ, TIAN ZY, BU XG, XU F, LIANG J, PU LJ. Effects of supplementation of different amendments on soil heavy metals and enzyme activities in coastal saline land[J]. Environmental Science, 2023, 44(10): 5649-5656 (in Chinese). [百度学术]
SHI SH, TIAN L, NASIR F, BAHADUR A, BATOOL A, LUO SS, YANG F, WANG ZC, TIAN CJ. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils[J]. Applied Soil Ecology, 2019, 135: 16-24. [百度学术]
康贻军, 胡健, 杨小兰, 沈敏, 薛菲. 盐碱地土壤微生物对不同改良方法的响应[J]. 微生物学杂志, 2008, 28(5): 102-105. [百度学术]
KANG YJ, HU J, YANG XL, SHEN M, XUE F. Responses of saline-alkali soil microorganisms to different ameliorative methods[J]. Journal of Microbiology, 2008, 28(5): 102-105 (in Chinese). [百度学术]
刘冰冰, 唐蜀昆, 明红, 何松涛, 聂国兴, 关统伟, 张利莉, 李文均. 新疆罗布泊地区可培养嗜盐古菌多样性及其功能酶筛选[J]. 微生物学报, 2011, 51(9): 1222-1231. [百度学术]
LIU BB, TANG SK, MING H, HE ST, NIE GX, GUAN TW, ZHANG LL, LI WJ. Biodiversity and functional enzymes of cultured halophilic archaeon in Lop Nur region[J]. Acta Microbiologica Sinica, 2011, 51(9): 1222-1231 (in Chinese). [百度学术]
戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. [百度学术]
DAI LX, XU Y, ZHANG GC, SHI XL, QIN FF, DING H, ZHANG ZM. Response of rhizosphere bacterial community diversity to salt stress in peanut[J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592 (in Chinese). [百度学术]
郑志玉, 郭晓雯, 闵伟. 不同灌溉水盐度下土壤真菌群落对生物炭施用的响应[J]. 环境科学, 2024, 45(1): 520-529. [百度学术]
ZHENG ZY, GUO XW, MIN W. Response of soil fungal community to biochar application under different irrigation water salinity[J]. Environmental Science, 2024, 45(1): 520-529 (in Chinese). [百度学术]
ZHANG L, TANG C, YANG JS, YAO RJ, WANG XP, XIE WP, GE AH. Salinity-dependent potential soil fungal decomposers under straw amendment[J]. Science of the Total Environment, 2023, 891: 164569. [百度学术]
颜培, 杜远达, 姜爱霞, 郭笃发. 黄河三角洲土壤真菌群落结构及互作网络对盐度的响应[J]. 分子植物育种, 2021, 19(11): 3818-3828. [百度学术]
YAN P, DU YD, JIANG AX, GUO DF. Response of soil fungal community structures and interaction networks to salinity in the Yellow River Delta[J]. Molecular Plant Breeding, 2021, 19(11): 3818-3828 (in Chinese). [百度学术]
周振玲. 耐盐性不同水稻品种对盐胁迫响应的机制与调控[D]. 扬州: 扬州大学博士学位论文, 2023. [百度学术]
ZHOU ZL. Mechanism and regulation of response of rice varieties with different salt tolerance to salt stress[D]. Yangzhou: Doctoral Dissertation of Yangzhou University, 2023 (in Chinese). [百度学术]
石春芳. 沼渣对盐碱化土壤微生物群落结构与功能的影响[D]. 呼和浩特: 内蒙古大学博士学位论文, 2018. [百度学术]
SHI CF. Effect of biogas residue on microbial community structure and function in saline-alkali soil[D]. Hohhot: Doctoral Dissertation of Inner Mongolia University, 2018 (in Chinese). [百度学术]
JI LD, XU X, ZHANG FJ, SI HL, LI L, MAO GL. The preliminary research on shifts in maize rhizosphere soil microbial communities and symbiotic networks under different fertilizer sources[J]. Agronomy, 2023, 13(8): 2111. [百度学术]
张静, 王清, 李晓茹, 孙铁, 戚倩颖. 利用硫氧化细菌改良盐碱土[J]. 吉林大学学报(地球科学版), 2009, 39(1): 147-151. [百度学术]
ZHANG J, WANG Q, LI XR, SUN T, QI QY. Research on improving the saline-sodic soil by sulfur-oxidizing bacteria[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(1): 147-151 (in Chinese). [百度学术]
COOPER ZS, RAPP JZ, SHOEMAKER AMD, ANDERSON RE, ZHONG ZP, DEMING JW. Evolutionary divergence of Marinobacter strains in cryopeg brines as revealed by pangenomics[J]. Frontiers in Microbiology, 2022, 13: 879116. [百度学术]
PARK YL, CHOI TR, HAN YH, SONG HS, PARK JY, BHATIA SK, GURAV R, CHOI KY, KIM YG, YANG YH. Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing[J]. Journal of Biotechnology, 2020, 322: 21-28. [百度学术]
JANVIER M, GRIMONT PA. The genus Methylophaga, a new line of descent within phylogenetic branch gamma of Proteobacteria[J]. Research in Microbiology, 1995, 146(7): 543-550. [百度学术]
舒志万, 王智博, 陶宇杰, 王嵘, 沈国平, 邢江娃, 朱德锐. 盐单胞菌假定蛋白基因的功能预测与克隆表达及耐盐相关性[J/OL]. 生物学杂志, 2023, 40(6): 12-18. [百度学术]
SHU ZW, WANG ZB, TAO YJ, WANG R, SHEN GP, XING JW, ZHU DR. Functional prediction, cloning and expression of hypothetical protein gene of Halomonas and its correlation with salt tolerance[J/OL]. China Industrial Economics, 2023, 40(6): 12-18 (in Chinese). [百度学术]
ZUO GY. Kinetics and microbial ecology of two salt-tolerant perchlorate-reducing enrichment cultures[D]. United States –Texas: University of Houston, 2008. [百度学术]
QIN W, MARTENS-HABBENA W, KOBELT J, STAHL D. Candidatus Nitrosopumilus[M]. 2016: 1-9. [百度学术]
陈闻, 吴海平, 王晶, 张玲. 舟山海岛地区土壤盐分与电导率的关系[J]. 浙江农业科学, 2016, 57(9): 1555-1557. [百度学术]
CHEN W, WU HP, WANG J, ZHANG L. Relationship between soil salinity and electrical conductivity in Zhoushan island area[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(9): 1555-1557 (in Chinese). [百度学术]
朱虹颖, 靳振江, 张晓文, 秦广法, 陈伟坚, 熊建华. 岩溶区与非岩溶区稻田土壤磷含量与碱性磷酸酶活性比较[J]. 农业资源与环境学报, 2024, 41(5): 1083-1090. [百度学术]
ZHU HY, JIN ZJ, ZHANG XW, QIN GF, CHEN WJ, XIONG JH. Comparison of soil phosphorus content and alkaline phosphatase activity in paddy fields in Karst and non-karst areas[J]. Journal of Agricultural Resources and Environment, 2024, 41(5): 1083-1090 (in Chinese). [百度学术]
郭晓雯, 刘佳炜, 郑志玉, 闵伟. 全生育期咸水滴灌对土壤盐分累积和棉花生长的影响[J]. 干旱区研究, 2022, 39(6): 1952-1965. [百度学术]
GUO XW, LIU JW, ZHENG ZY, MIN W. Effects of saline water drip irrigation on soil salt accumulation and cotton growth during the whole growth period[J]. Arid Zone Research, 2022, 39(6): 1952-1965 (in Chinese). [百度学术]
PHILIPPOT L, CHENU C, KAPPLER A, RILLIG MC, FIERER N. The interplay between microbial communities and soil properties[J]. Nature Reviews Microbiology, 2024, 22(4): 226-239. [百度学术]
GUO SY, GARETH JONES EB, CHIANG MWL, PANG KL. Salinity and temperature affect growth rate of Alphamyces chaetifer and Gorgonomyces haynaldii (Chytridiomycota) isolated from coastal habitats of Taiwan, China[J]. Botanica Marina, 2023, 66(4): 345-352. [百度学术]
GARETH JONES EB, RAMAKRISHNA S, VIKINESWARY S, DAS D, BAHKALI AH, GUO SY, PANG KL. How do fungi survive in the sea and respond to climate change?[J]. Journal of Fungi, 2022, 8(3): 291. [百度学术]
BROTMAN Y, LANDAU U, CUADROS-INOSTROZA Á, TOHGE T, FERNIE AR, CHET I, VITERBO A, WILLMITZER L. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J]. PLoS Pathogens, 2013, 9(3): e1003221. [百度学术]
MASTOURI F, BJÖRKMAN T, HARMAN GE. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J]. Phytopathology, 2010, 100(11): 1213-1221. [百度学术]
CONTRERAS-CORNEJO HA, MACÍAS-RODRÍGUEZ L, ALFARO-CUEVAS R, LÓPEZ-BUCIO J. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates[J]. Molecular Plant-Microbe Interactions, 2014, 27(6): 503-514. [百度学术]
BAKER BA, GUTIÉRREZ-PRECIADO A, del RÍO ÁR, McCARTHY CGP, LÓPEZ-GARCÍA P, HUERTA-CEPAS J, SUSKO E, ROGER AJ, EME L, MOREIRA D. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments[J]. Nature Microbiology, 2024, 9(4): 964-975. [百度学术]
ECHEVESTE MEDRANO MJ, LEU AO, PABST M, LIN YM, McILROY SJ, TYSON GW, van EDE J, SÁNCHEZ-ANDREA I, JETTEN MSM, JANSEN R, WELTE CU. Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress[J]. The ISME Journal, 2024, 18(1): wrae137. [百度学术]
刘冰冰, 王双雨, 申亚淇, 赵栩, 程爽, 王来友, 郭书贤, 李文均. 乌勇布拉克盐湖嗜盐古菌絮凝效果筛选及活性检测[J]. 微生物学报, 2022, 62(11): 4095-4107. [百度学术]
LIU BB, WANG SY, SHEN YQ, ZHAO X, CHENG S, WANG LY, GUO SX, LI WJ. Flocculation effect and activity of halophilic archaea isolated from Uyong Brac salt lake[J]. Acta Microbiologica Sinica, 2022, 62(11): 4095-4107 (in Chinese). [百度学术]
曹升, 潘菲, 林根根, 张燕林, 周垂帆, 刘博. 不同林龄杉木林土壤细菌群落结构与土壤酶活性变化研究[J]. 生态学报, 2021, 41(5): 1846-1856. [百度学术]
CAO S, PAN F, LIN GG, ZHANG YL, ZHOU CF, LIU B. Changes of soil bacterial structure and soil enzyme activity in Chinese fir forest of different ages[J]. Acta Ecologica Sinica, 2021, 41(5): 1846-1856 (in Chinese). [百度学术]
MARTIN DD, CIULLA RA, ROBERTS MF. Osmoadaptation in archaea[J]. Applied and Environmental Microbiology, 1999, 65(5): 1815-1825. [百度学术]
SHPORER M, CIVAN MM. Pulsed nuclear magnetic resonance study of 39K within halobacteria[J]. The Journal of Membrane Biology, 1977, 33(3/4): 385-400. [百度学术]
JENSEN MW, MATLOCK SA, REINHEIMER CH, LAWLOR CJ, REINHEIMER TA, GORRELL A. Potassium stress growth characteristics and energetics in the haloarchaeon Haloarcula marismortui[J]. Extremophiles, 2015, 19(2): 315-325. [百度学术]
LI Y, WANG J, LI EY, YANG XD, YANG JJ. Shifts in microbial community structure and co-occurrence network along a wide soil salinity gradient[J]. Microorganisms, 2024, 12(7): 1268. [百度学术]