摘要
目的
从泉州湾2种红树林的根际土壤中分离并鉴定放线菌,进行抗真菌活性初筛以获取目标菌株,并对链霉菌属(Streptomyces) W444的次级代谢产物进行分离与鉴定。
方法
从泉州湾洛阳江采集2种不同红树林植物的根际土壤样品,采用稀释涂布法对土样中的放线菌进行分离,并构建16S rRNA基因系统发育树。采用琼脂打孔扩散法进行抗真菌活性筛选,对获取的目标菌株Streptomyces sp. W444进行放大规模发酵,并对其次级代谢产物进行了分离与鉴定。根据生物合成基因簇定位和分析,推导星孢菌素的生物合成途径。
结果
从根际土样中分离得到56株放线菌,分布于6目6科8属,其中链霉菌属和小单孢菌属为优势菌,占比分别为41.0%和33.9%。通过抗真菌筛选获得抑菌活性较好的菌株Streptomyces sp. W444,并从中分离鉴定了3个吲哚类化合物:staurosporine、K252c和streptochlorin。此外,还从菌株Streptomyces sp. W444基因组中定位了星孢菌素生物合成基因簇,并对其生物合成途径进行了推导。
结论
泉州湾红树林根际土壤中的放线菌具有多样性,并蕴含着丰富的潜在天然产物资源,从菌株Streptomyces sp. W444中分离鉴定了吲哚咔唑类生物碱staurosporine、K252c和streptochlorin,这为研究泉州湾红树林可培养放线菌的多样性和次级代谢产物研究提供了坚实的基础。
近年来,致病性真菌感染的致病率和死亡率呈上升趋势,严重威胁人类的健
放线菌产生的天然产物及其衍生物是新药先导化合物的重要来
洛阳江红树林湿地位于泉州湾河口湿地自然保护核心区,对于该区域微生物的研究主要集中于微生物群落结构变迁、分布和种类鉴定等方
1 材料与方法
1.1 土壤样品
植物根际土壤样品于2022年6月采自泉州湾洛阳江红树林自然保护区,样品及采集信息如
样品编号 Sample number | 植物根际 Plant rhizosphere | 采样地经纬度 Latitude and longitude of the sampling site |
---|---|---|
S1 | 互花米草Spartina alterniflora | 24°55′14″N, 118°39′49″E |
S2 | 秋茄Kandelia candel | 24°54′0″N, 118°40′8″E |
1.2 培养基
分离培养基W1:可溶性淀粉20 g,CaCO3 1 g,KH2PO4·3H2O 0.5 g,KNO3 0.1 g,MgSO4·7H2O 0.5 g,NaCl 0.5 g,L-天冬素1 g。W2:酪蛋白0.4 g,淀粉10 g,CaCO3 0.1 g,KH2PO4·3H2O 0.2 g。W3:燕麦片40 g。W4:淀粉10 g,酵母提取物3 g,蛋白胨1.5 g。W5:甘油6 mL,精氨酸1 g,KH2PO4·3H2O 1 g,MgSO4·7H2O 1 g。W6:腐殖酸1 g,Na2HPO4 0.5 g,KCl 1.7 g,MgSO4·7H2O 0.05 g,FeSO4·7H2O 0.01 g,CaCO3 0.02 g,复合维生素母液1 mL。W7:葡萄糖4 g,酵母粉4 g,麦芽浸粉10 g,复合维生素母液1 mL。其中复合维生素母液的配方参照梁效
发酵培养基(g/L):可溶性淀粉40.0,葡萄糖5.0,花生饼粉20.0,蛋白胨5.0, MgSO4·7H2O 0.5,K2HPO4 0.5,CaCO3 1.0,海盐10,调pH 7.5。
检定菌培养基:真菌培养采用PDA培养基。
1.3 主要试剂和仪器
pEASY-T1克隆试剂盒及感受态细胞,北京全式金生物技术股份有限公司;2×Es Taq MasterMix,北京康为世纪生物科技有限公司;Chelex-100,Bio-Rad公司;AxyPrep PCR纯化试剂盒,爱思进生物技术(杭州)有限公司;PCR引物由苏州金唯智生物科技有限公司合成;IPTG、氨苄西林,北京绿泽森生物技术有限公司;其他试剂均为分析纯或色谱纯。
超净工作台,苏州安泰空气技术有限公司;高速台式离心机,上海安亭科学仪器厂;PCR仪,国力天(深圳)科技有限公司;立式压力蒸汽灭菌器,厦门柏嘉生物科技有限公司;恒温振荡培养箱,上海福玛实验设备有限公司;恒温培养箱,上海一恒科学仪器有限公司;Agilent-1260高效液相色谱仪,色谱柱为Agilent Eclipse XDB-C18柱(5 μm,250 mm×4.6 mm);核磁共振波谱采用Bruker DRX2500核磁共振仪(600 MHz)测定,以TMS为内标,MeOD为溶剂;ESI-MS采用Agilent 6460液质联用仪,以CH3OH为溶剂测定;凝胶为Sephadex LH-20 (40-70 μm,Amersham Pharmacia Biotech AB,Uppsala,Sweden);反相硅胶为YMC* GEL ODS-A (12 nm,S-50 μm)。
1.4 检定菌
真菌白色念珠菌(ATCC 90028)购自广东环凯微生物科技有限公司,黑曲霉(FJAT-31087)由福建省农业科学院生物资源研究所农业微生物研究中心惠赠,茄病镰刀菌(QY22)购自中国海洋微生物菌种保藏管理中心。
1.5 土壤样品的处理
将2份土壤样品于无菌超净台中自然风干后,分别置于灭过菌的研钵研碎。称取研碎后的土样3 g,悬浮于30 mL 100%无菌海水中,置于250 mL三角瓶(内含10个小玻璃珠),充分振荡,混合均匀后加入蛋白胨和十二烷基硫酸钠母液至终浓度分别为6%和0.05%,于50 ℃水浴中10 min,之后超声波处理15 s,用无菌海水稀释至最终浓度分别为1
1.6 菌株的分离纯化与保存
肉眼观察上述已培养的分离平板,挑取放线菌菌落于相应的琼脂斜面,28 ℃培养5-7 d;转接于斜面的分离菌株挑出进一步纯化,采用平板划线法进行单菌落分离,挑取纯化后的单菌落接种于相应的斜面培养基;将纯化平板上的菌落刮下,保存于50%灭菌甘油中,-80 ℃保藏。
1.7 基于16S rRNA基因序列的分子鉴定
菌株的基因组DNA提取、PCR反应体系和条件均参照梁效
1.8 发酵粗提物抗真菌活性检测
1.8.1 放线菌发酵液粗提物的制备
将目标菌株接种于相应的培养基,于28 ℃恒温箱培养5 d,取菌丝体或者孢子接入3瓶装有150 mL发酵培养基的500 mL锥形瓶中,于28 ℃、180 r/min培养3-5 d。发酵液于5 000 r/min离心20 min,取菌渣浸泡于甲醇中1 d,再次离心获取甲醇上清液,之后于旋转蒸发仪浓缩成膏状;取上清液,等体积乙酸乙酯萃取3次,有机相同法浓缩至膏状;将上述2种浸膏合并待用。称取少量粗提物用甲醇溶解,配成浓度为20 mg/mL的母液,4 ℃冰箱中备用
1.8.2 待测液抗真菌活性的检测
采用琼脂打孔扩散试验,通过测量抑菌圈的大小直观地考察发酵液的抑菌性能。取制备好的1
1.8.3 化合物最小抑菌浓度(MIC)的测定
对化合物F2-1、F4-1和F5-1进行抗真菌活性测试,阳性对照为多菌灵。指示真菌为白色念珠菌ATCC 90028、茄病镰刀菌QY22和黑曲霉FJAT-31087。化合物和多菌灵DMSO溶解,采用试管稀释法,用培养基将化合物稀释为200、100、50、25、12.5、6.25 μg/mL的质量浓度,无菌试管为空白对照,加入100 μL菌悬液(1×1
1.9 阳性菌株发酵粗提物的HPLC-DAD分析
取1.8制备的发酵粗提物,使用0.45 μm的滤膜过滤,色谱柱:Eclipse XDB-C18,4.6 mm×250 mm,进样量10 μL,流动相为甲醇-水(10%-100%,60 min),流速为1 mL/min,检测采用二极管阵列检测器(diode array detector, DAD)检测器,波长扫描范围190-800 nm。
1.10 菌株W444的大规模摇瓶发酵
将菌株W444接种于W7固体培养基上,28 ℃培养4 d,刮取孢子接种于W7液体培养基中,28 ℃、250 r/min培养2 d获取种子液,将其按体积分数为5%的接种量接入20 L发酵培养基中,28 ℃、250 r/min培养4 d获取发酵液。发酵粗提物的制备同方法1.8.1。
1.11 化合物的分离和纯化
粗提物(8.5 g)经C18反相硅胶柱层析粗分,甲醇水梯度(10%-100%)洗脱,收集馏分,HPLC检测合并得馏分Fr.1-Fr.7。馏分Fr.2上样于Sephadex LH-20,甲醇洗脱得馏分Fr.2-11,Fr.2-11进行高压液相制备,48%甲醇水洗脱得到化合物F2-1 (10.5 mg);馏分Fr.4上样于Sephadex LH-20,甲醇洗脱得馏分Fr.4-3,Fr.4-3进行高压液相制备,65%甲醇水洗脱得到化合物F4-1 (6.5 mg);馏分Fr.5上样于Sephadex LH-20,甲醇洗脱得馏分Fr.5A-Fr.5C,Fr.5A进行高压液相制备,70%甲醇水洗脱,制备得到化合物F5-1 (8 mg)。化合物经质谱(ESI-MS)和NMR等波谱分析及与文献比较确定结构。
2 结果与分析
2.1 菌株分离鉴定及不同红树林植物根际沉积物中的放线菌多样性分析
本研究通过16S rRNA基因序列的BLAST比对去重,并将结果提交至EzBioCloud数据库进行鉴定。
Names | Mangrove plants | Top-hit taxon | Accession number | Similarity (%) |
---|---|---|---|---|
W1-3 | Kandelia candel | Micromonospora provocatoris (AY894337) | PP204174 | 98.93 |
W4-1 | Kandelia candel | Micromonospora aurantiaca (CP002162) | PP204175 | 99.93 |
W3-1-1 | Kandelia candel | Micromonospora taraxaci (VIWZ01000001) | PP204177 | 99.30 |
W3-7 | Kandelia candel | Micromonospora solifontis (LC383890) | PP204178 | 99.09 |
W112 | Kandelia candel | Micromonospora humida (MT907442) | PP204181 | 99.26 |
W126 | Kandelia candel | Micromonospora fluminis (LR130241) | PP204182 | 99.78 |
W321 | Kandelia candel | Micromonospora globbae (LC177396) | PP204183 | 99.78 |
W152 | Kandelia candel | Micromonospora fluminis (LR130241) | PP204184 | 100.00 |
W153 | Kandelia candel | Micromonospora endophytica (EU560726) | PP204185 | 99.77 |
W156 | Kandelia candel | Micromonospora maritima (HQ704071) | PP204186 | 100.00 |
W343 | Kandelia candel | Micromonospora aurantiaca (CP002162) | PP204187 | 99.85 |
W2-1 | Kandelia candel | Micromonospora aurantiaca (CP002162) | PP204191 | 99.41 |
W3-4 | Kandelia candel | Micromonospora taraxaci (VIWZ01000001) | PP204192 | 98.69 |
W3-6 | Kandelia candel | Micromonospora terminaliae (KX394339) | PP204193 | 98.37 |
W3-8 | Kandelia candel | Micromonospora aurantiaca (CP002162) | PP204194 | 99.49 |
W136 | Kandelia candel | Micromonospora fluminis (LR130241) | PP204196 | 100.00 |
W145 | Kandelia candel | Micromonospora fluminis (LR130241) | PP204197 | 99.27 |
W131 | Kandelia candel | Streptomyces sundarbansensis (AY550275) | PP211921 | 99.42 |
W221 | Kandelia candel | Streptomyces niveus (DQ442532) | PP211922 | 99.50 |
W141 | Kandelia candel | Streptomyces sundarbansensis (AY550275) | PP211923 | 99.85 |
W147 | Kandelia candel | Streptomyces spirodelae (MW602308) | PP211925 | 99.48 |
W162 | Kandelia candel | Streptomyces olivaceus (JOFH01000101) | PP211926 | 99.78 |
W171 | Kandelia candel | Streptomyces badius (AY999783) | PP211927 | 99.78 |
W262 | Kandelia candel | Streptomyces mayteni (EU200683) | PP211928 | 99.48 |
W272 | Kandelia candel | Streptomyces badius (AY999783) | PP211929 | 99.78 |
W273 | Kandelia candel | Streptomyces mayteni (EU200683) | PP211930 | 99.48 |
W372 | Kandelia candel | Streptomyces badius (AY999783) | PP211932 | 99.78 |
W444 | Kandelia candel | Streptomyces fradiae (MIFZ01000280) | PP211933 | 99.93 |
W462 | Kandelia candel | Streptomyces olivaceus (JOFH01000101) | PP211934 | 99.93 |
W471 | Kandelia candel | Streptomyces sundarbansensis (AY550275) | PP211935 | 99.85 |
W442 | Kandelia candel | Streptomyces endocoffeicus (MN116545) | PP211940 | 99.41 |
W132 | Kandelia candel | Amycolatopsis lurida (AJ577997) | PP211970 | 99.41 |
W233 | Kandelia candel | Amycolatopsis lurida (AJ577997) | PP211971 | 99.34 |
W334 | Kandelia candel | Amycolatopsis lurida (AJ577997) | PP211973 | 98.69 |
W242 | Kandelia candel | Saccharopolyspora shandongensis (EF104116) | PP211985 | 100.00 |
W251 | Kandelia candel | Gordonia terrae (BAFD01000032) | PP211986 | 100.00 |
W6-2 | Spartina alterniflora | Micromonospora fluminis (LR130241) | PP204179 | 99.92 |
W6-4 | Spartina alterniflora | Micromonospora aurantiaca (CP002162) | PP204180 | 100.00 |
W5-4 | Spartina alterniflora | Micromonospora aurantiaca (CP002162) | PP204195 | 100.00 |
W5-1 | Spartina alterniflora | Micromonospora provocatoris (AY894337) | PP204176 | 99.35 |
W743 | Spartina alterniflora | Verrucosispora rhizosphaerae (HQ123438) | PP204188 | 99.55 |
W751 | Spartina alterniflora | Micromonospora globispora (KF818390) | PP204189 | 99.62 |
W763 | Spartina alterniflora | Micromonospora krabiensis (LT598496) | PP204190 | 99.85 |
W671 | Spartina alterniflora | Streptomyces badius (AY999783) | PP211936 | 99.78 |
W742 | Spartina alterniflora | Streptomyces spirodelae (MW602308) | PP211937 | 99.48 |
W744 | Spartina alterniflora | Streptomyces spirodelae (MW602308) | PP211938 | 99.26 |
W761 | Spartina alterniflora | Streptomyces olivaceus (JOFH01000101) | PP211939 | 99.93 |
W572 | Spartina alterniflora | Streptomyces mayteni (EU200683) | PP211941 | 99.48 |
W531 | Spartina alterniflora | Amycolatopsis lurida (AJ577997) | PP211975 | 99.40 |
W723 | Spartina alterniflora | Gordonia didemnid (JN615417) | PP211976 | 100.00 |
W731 | Spartina alterniflora | Nocardia rhizosphaerae (KP972639) | PP211977 | 99.78 |
W733 | Spartina alterniflora | Amycolatopsis keratiniphila (LQMT01000206) | PP211978 | 99.48 |
W735 | Spartina alterniflora | Nocardioides luteus (AF005007) | PP211979 | 99.48 |
W822 | Spartina alterniflora | Gordonia terrae (BAFD01000032) | PP211980 | 99.93 |
W831 | Spartina alterniflora | Amycolatopsis keratiniphila (LQMT01000206) | PP211981 | 99.48 |
W745 | Spartina alterniflora | Saccharopolyspora spongiae (KX037095) | PP211988 | 98.66 |
(待续)

图1 红树林来源部分代表性分离菌株通过16S rRNA基因序列构建的系统发育树
Figure 1 Phylogenetic tree constructed by 16S rRNA gene sequence of representative isolates from mangrove sources.
菌6株、糖多孢菌2株,戈登氏菌3株、类诺卡氏菌1株、诺卡氏菌1株和疣孢菌1株。在所有分离的放线菌中,小单孢菌为主要类群,占总分离菌株的41.0%,其次是链霉菌属,占33.9%,其他属放线菌占总分离菌株的25.0%。
对2种红树林植物根际沉积物样品的放线菌进行多样性分析,发现从秋茄和互花米草的根际土样中获得的放线菌数目有一定差异,分别为36株(占比64.3%)和20株(占比35.7%) (

图2 两种红树林植物根际土壤中可培养放线菌的比例和分类统计。A:秋茄根际土壤;B:互花米草根际土壤。
Figure 2 The proportion and classification of cultivable actinobacteria isolated from rhizosphere soil samples of two mangrove plants. A: Rhizosphere soil of Kandelia candel; B: Rhizosphere soil of Sporobolus alterniflorus.
2.2 菌株Streptomycessp. W444发酵粗提物HPLC分析和抗真菌活性测试
本研究根据系统发育树的分类特征和菌株的摇瓶长势,筛选出21株放线菌进行小规模发酵,经HPLC分析发现菌株Streptomyces sp. W444在发酵培养基中发酵的次级代谢产物较为丰富(

图3 Streptomyces sp. W444发酵粗样的HPLC检测分析
Figure 3 HPLC analysis of fermentation extracts of Streptomyces sp. W444.
样品 Sample | 白色念珠菌ATCC 90028 Candida albicans ATCC 90028 | 黑曲霉FJAT-31087 Aspergillus niger FJAT-31087 | 茄病镰刀菌QY22 Fusarium solanaceae QY22 |
---|---|---|---|
W444 | 20 | 19 | 24 |
多菌灵Carbendazim | 35 | 37 | 32 |
浓度c=30 mg/mL;抑菌圈直径d单位mm。
Concentration c=30 mg/mL; Diameter of antifungal circle d: mm.

图4 Streptomyces sp. W444发酵粗提物的抗真菌活性初筛。A:茄病镰刀菌QY22;B:黑曲霉FJAT-3108。a:Streptomyces sp. W444发酵粗提物(30 mg/mL);b:阳性对照多菌灵(25 mg/mL);c:阴性对照甲醇。
Figure 4 Antifungal activities of crude extracts from Streptomyces sp. W444. A: Fusarium solani QY22; B: Aspergillus niger FJAT-31087. a: Crude extract of strain W444 (30 mg/mL); b: Positive control with carbendazime (25 mg/mL); c: Negative control with MeOH.
2.3 菌株Streptomycessp. W444中化合物的分离和结构鉴定
对菌株Streptomyces sp. W444进行20 L扩大发酵,经乙酸乙酯萃取得8.5 g粗浸膏,通过中压反相色谱、Sephadex LH-20凝胶色谱和HPLC半制备等分离手段获得3个吲哚类化合物(F2-1、F4-1和F5-1)。利用质谱ESI-MS

图5 化合物的化学结构。A:化合物F2-1;B:化合物F4-1;C:化合物F5-1。
Figure 5 Chemical structure of the compounds. A: Compound F2-1; B: Compound F4-1; C:Compound F5-1.
化合物F2-1为白色粉末。UV (MeOH) λmax 221、271和286 nm处有特征吸收峰。ESI-MS m/z 219 [M+H
化合物4-1为淡黄色粉末状。UV (MeOH)λmax 240、288、333、360 nm处有特征吸收峰。ESI-MS m/z 310 [M-H
Position | Compound 4-1 | δ H values for compound 5-1 | ||
---|---|---|---|---|
δ C, type | δ H | δ C, type | ||
1 | 112.5, CH | 7.63, 1H, d | 108.9, CH | 7.56, 1H, d |
2 | 126.3, C | 7.44, 1H, t | 125.7, CH | 7.45, 1H, td |
3 | 119.4, CH | 7.24, 1H, t | 120.4, C | 7.28, 1H, t |
4 | 127.0, CH | 9.20, 1H, d | 127.0, CH | 9.27, 1H, d |
4a | 124.5, C | - | 124.4, C | - |
4b | 117.7, C | - | 115.4, C | - |
4c | 120.3, C | - | 119.5, C | - |
5 | 176.0, C | - | 175.6, C | - |
6 | - | - | - | - |
7 | 47.1, CH2 | 5.03, 2H, s | 45.4, CH2 | 4.98, 2H, s |
7a | 134.7, C | - | 133.9, C | - |
7b | 115.9, C | - | 115.8, C | - |
7c | 124.3, C | - | 125.6, C | - |
8 | 122.0, CH | 8.04, 1H, d | 121.9, CH | 7.96, 1H, d |
9 | 121.3, CH | 7.33, 1H, t | 121.3, CH | 7.28, 1H, t, |
10 | 126.4, CH | 7.48, 1H, t | 126.3, CH | 7.41, 1H, td, |
11 | 111.8, CH | 7.69, 1H, t | 116.3, CH | 8.00, 1H, d |
11a | 141.1, C | - | 140.9, C | - |
12a | 130.8, C | - | 131.9, C | - |
12b | 126.5, C | - | 128.2, C | - |
13a | 141.2, C | - | 138.1, C | - |
2′ | 93.3, C | - | ||
3′ | 84.5, CH | 4.04, 1H, d | ||
4′ | 52.7, CH | 3.25, 1H, m | ||
5′ | 31.1, CH2 | 252, 2.62, 2H, m | ||
6′ | 82.1, CH | 6.62, 1H, dd | ||
7′ | 30.1, CH3 | 2.39, 3H, s | ||
8′ | 58.5, CH3 | 3.14, 3H, s | ||
9′ | 334, CH3 | 1.79, 3H, s |
化合物F5-1为淡黄色固体(MeOH),在240、290和336 nm处有较强的紫外吸收。ESI-MS给出分子离子峰m/z 467.1 [M+H
2.4 Staurosporine生物合成基因簇定位分析与生物合成途径推导
利用antiSMASH 7.
Orf | Product size (aa) | Protein homolog | Identity (%)/Similarity (%) | Proposed function | Accession number |
---|---|---|---|---|---|
1 | 957 | StaR | 68/72 | Transcriptional activator | BAC55205 |
2 | 408 | StaN | 85/92 | Cytochrome P450 | BAC55208 |
3 | 436 | StaG | 79/87 | N-glycosyltransferase | BAC55209 |
4 | 504 | StaO | 82/87 | l-amino acid oxidase | BAC55210 |
5 | 1 154 | StaD | 73/79 | Chromopyrrolic acid synthase | BAC15759 |
6 | 418 | StaP | 73/80 | Cytochrome P450 | BAC55212 |
7 | 274 | StaMA | 73/83 | Methyltransferase | BAC55213 |
8 | 288 | StaMB | 82/89 | Methyltransferase | BAC55218 |
9 | 545 | StaC | 80/88 | Monooxygenase | BAF47693 |
10 | 280 | 89/92 | Recombinase family protein | MET7710960 | |
11 | 295 | 96/97 | Aminoglycoside phosphotransferase family protein | WP_093549433 | |
12 | 427 | 97/98 | Helix-turn-helix domain-containing protein | SCD65229 | |
13 | 157 | 100/100 | ATP-binding protein | WP_283298866 | |
14 | 150 | 95/96 | DUF6415 family natural product biosynthesis protein | WP_283298867 | |
15 | 157 | 96/96 | DUF6302 family protein | WP_229870986 | |
16 | 66 | 97/96 | DUF5999 family protein | WP_229901893 | |
17 | 221 | 97/99 | Hypothetical protein | WP_337674500 | |
18 | 411 | 98/99 | Methyltransferase, FxLD system | WP_283298873 | |
19 | 65 | 97/98 | FxLD family lanthipeptide | WP_093549423 | |
20 | 1 006 | 97/97 | Lantibiotic dehydratase | WP_337674501 | |
21 | 407 | 97/98 | Lanthionine synthetase C family protein | WP_189716992 | |
22 | 329 | 97/98 | Thiopeptide-type bacteriocin biosynthesis protein | WP_308435751 | |
23 | 241 | 82/85 | Hypothetical protein | MER5525945 | |
24 | 278 | 97/97 | SGNH/GDSL hydrolase family protein | WP_031128207 | |
25 | 338 | 99/99 | Hemolysin family protein | WP_359285438 | |
26 | 516 | 96/97 | Hemolysin family protein | WP_359388163 | |
27 | 142 | 94/95 | GNAT family N-acetyltransferase | AYA81838 | |
28 | 83 | 96/96 | Antitoxin | WP_315879421 | |
29 | 123 | 99/99 | Fic family toxin-antitoxin system, toxin component | WP_317433620 | |
30 | 126 | 87/88 | Hypothetical protein | OSY52980 | |
31 | 226 | 97/98 | Class I SAM-dependent methyltransferase | MEV2200025 | |
32 | 114 | 98/98 | VOC family protein | MEV2200026 | |
33 | 240 | 96/96 | Dethiobiotin synthase | WP_317433624 |

图6 Staurosporine的生物合成基因簇定位(A)和生物合成途径推导(B)
Figure 6 The located biosynthesis gene clusters of staurosporine (A) and its proposed biosynthetic pathway (B).
2.5 化合物的MIC值测定
通过MIC的测定发现,3个化合物对真菌均具有较好的抑制活性,结果如
样品 Sample | 白色念珠菌ATCC 90028 Candida albicans | 黑曲霉 FJAT-31087 Aspergillus niger | 茄病镰刀菌QY22 Fusariums olanaceae QY22 |
---|---|---|---|
Compound F2-1 | >200 | >200 | 200 |
Compound F4-1 | >200 | 100 | 100 |
Compound F5-1 | 50 | 25 | 50 |
Carbendazim | 25 | 12.5 | 50 |
3 讨论与结论
红树林生态系统表现为生物群落复杂多样,其生物量占全球热带和亚热带沿海地区的60%-75
结合抑菌活性筛选,选取Streptomyces sp. W444作为目标菌株,从中分离鉴定了3个吲哚类化合物,分别为streptochlorin、K252c和staurosporine。结构上,星孢菌素类化合物(K252c和staurosporine)作为吲哚咔唑类生物碱,表现出广泛的生物活性,如Streptomyces sp. ZS-A121产生了5个星孢菌素衍生物,其中一个新的星孢菌素衍生物streptomholyrine A对白色念珠菌(C. albicans)具有较强抑制活性,其MIC为12.5 μg/m
综上所述,本研究从泉州湾的2种红树林植物根际土样中分离鉴定了56株放线菌,并基于样品来源初步探讨了可培养放线菌的多样性,结果表明泉州湾红树林的放线菌资源丰富,发掘潜力巨大,为今后进一步开发利用泉州湾红树林药用放线菌资源奠定了基础。同时,综合菌株代谢产物的抗真菌活性,从Streptomyces sp. W444中鉴定了3个吲哚类化合物,定位了staurosporine类化合物的生物合成基因簇,并推导了其生物合成途径,拓宽了staurosporine类化合物的菌株来源,为其生物合成研究奠定了基础。
作者贡献声明
张文州:实验设计与执行,撰写初稿;陈琳琳:数据收集与整理,抗菌实验操作;林水森:数据收集与整理,协助撰写初稿;林阳君:数据收集与整理,数据分析与解释;庄月娥:数据收集与整理,协助撰写初稿;谢志新:技术支持;江红:稿件修订;连云阳:稿件修订;骆祝华:稿件修订;彭飞:概念与设计,数据分析与解释,稿件修订。
利益冲突
公开声明
参考文献
RODRIGUES ML, NOSANCHUK JD. Fungal diseases as neglected pathogens: a wake-up call to public health officials[J]. PLoS Neglected Tropical Diseases, 2020, 14(2): e0007964. [百度学术]
FISHER MC, ALASTRUEY-IZQUIERDO A, BERMAN J, BICANIC T, BIGNELL EM, BOWYER P, BROMLEY M, BRÜGGEMANN R, GARBER G, CORNELY OA, GURR SJ, HARRISON TS, KUIJPER E, RHODES J, SHEPPARD DC, WARRIS A, WHITE PL, XU JP, ZWAAN B, VERWEIJ PE. Tackling the emerging threat of antifungal resistance to human health[J]. Nature Reviews Microbiology, 2022, 20(9): 557-571. [百度学术]
REVIE NM, IYER KR, ROBBINS N, COWEN LE. Antifungal drug resistance: evolution, mechanisms and impact[J]. Current Opinion in Microbiology, 2018, 45:70-76. [百度学术]
RÜTTEN A, KIRCHNER T, MUSIOL-KROLL EM. Overview on strategies and assays for antibiotic discovery[J]. Pharmaceuticals, 2022, 15(10): 1302. [百度学术]
ALAM K, MAZUMDER A, SIKDAR S, ZHAO YM, HAO JF, SONG CY, WANG YY, SARKAR R, ISLAM S, ZHANG YM, LI AY. Streptomyces: the biofactory of secondary metabolites[J]. Frontiers in Microbiology, 2022, 13: 968053. [百度学术]
OSSAI J, KHATABI B, NYBO SE, KHAREL MK. Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies[J]. Journal of Applied Microbiology, 2022, 132(1): 59-77. [百度学术]
de LIMA JÚNIOR AA, de SOUSA EC, de OLIVEIRA THB, de SANTANA RCF, da SILVA SKR, COELHO LCBB. Genus Streptomyces: recent advances for biotechnological purposes[J]. Biotechnology and Applied Biochemistry, 2023, 70(4): 1504-1517. [百度学术]
KIM ES. recent advances of actinomycetes[J]. Biomolecules, 2021, 11(2): 134. [百度学术]
徐静, 邹仁健, 陈红军, 温珍昌. 红树林放线菌生物多样性及其抗菌活性代谢产物研究进展[J]. 广东海洋大学学报, 2022, 42(6): 143-152. [百度学术]
XU J, ZOU RJ, CHEN HJ, WEN ZC. Research progress on biodiversity and antimicrobial metabolites from mangrove actinomycetes[J]. Journal of Guandong Ocean University, 2022, 42(6): 143-152 (in Chinese). [百度学术]
林鹏, 张瑜斌, 邓爱英, 庄铁诚. 九龙江口红树林土壤微生物的类群及抗菌活性[J]. 海洋学报, 2005, 27(3): 133-141. [百度学术]
LIN P, ZHANG YB, DENG AY, ZHUANG TC. Microflora and antimicrobial activities of soil microorganisms in mangrove forests in the Jiulong Estuary[J]. Acta Oceanologica Sinica, 2005, 27(3): 133-141 (in Chinese). [百度学术]
WANG Z, YIN JL, BAI M, YANG J, JIANG CP, YI XX, LIU YH, GAO CH. new polyene macrolide compounds from mangrove-derived strain Streptomyces hiroshimensis GXIMD 06359: isolation, antifungal activity, and mechanism against Talaromyces marneffei[J]. Marine Drugs, 2024, 22(1): 38. [百度学术]
WANG WL, SONG TF, CHAI WY, CHEN L, CHEN L, LIAN XY, ZHANG ZZ. Rare polyene-polyol macrolides fromMangrove-derived Streptomyces sp. ZQ4BG[J]. Scientific Reports, 2017, 7: 1703. [百度学术]
CHE Q, LI T, LIU XF, YAO TT, LI J, GU QQ, LI DH, LI WL, ZHU TJ. Genome scanning inspired isolation of reedsmycins A-F, polyene-polyol macrolides from Streptomyces sp. CHQ-64[J]. RSC Advances, 2015, 5(29): 22777-22782. [百度学术]
ZENG QF, HUANG HQ, ZHU J, FANG Z, SUN QG, BAO SX. A new nematicidal compound produced by Streptomyces albogriseolus HA10002[J]. Antonie Van Leeuwenhoek, 2013, 103(5): 1107-1111. [百度学术]
许敬华, 李意敏, 丁思龙, 张秋芳, 陈永山. 泉州湾红树林人工种植过程根际微生物群落结构演变特征[J]. 湿地科学与管理, 2023, 19(1): 9-14. [百度学术]
XU JH, LI YM, DING SL, ZHANG QF, CHEN YS. Characteristics of rhizosphere microbial community structure evolution during mangrove plantation[J]. Wetland Science & Management, 2023, 19(1): 9-14 (in Chinese). [百度学术]
MIN LL, WANG WZ, OREN A, LAI QL, HUANG ZB. Coraliomargarita parva sp. nov., isolated from mangrove sediment and genome-based analysis of the class Opitutae revealed five novel families: Coraliomargaritaceae fam. nov., Pelagicoccaceae fam. nov., Cerasicoccaeae fam. nov., Oceanipulchritudinaceae fam. nov., and Alterococcaeae fam. nov.[J]. Frontiers in Microbiology, 2023, 14: 1202141. [百度学术]
HU YZ, GUO Y, LAI QL, DONG L, HUANG ZB. Draconibacterium mangrovi sp. nov., isolated from mangrove sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(8): 4816-4821. [百度学术]
梁效伟. 台湾海峡海洋沉积物放线菌的多样性及次级代谢产物生物合成基因筛选[D]. 福州: 福建医科大学硕士学位论文, 2012. [百度学术]
LIANG XW. Diversity of actinomycetes in marine sediments of Taiwan Province strait and screening of biosynthesis genes of secondary metabolites[D]. Fuzhou: Master's Thesis of Fujian Medical University, 2012 (in Chinese). [百度学术]
WATANABE H, AMANO S, YOSHIDA J, SASAKI T, HATSU M, TAKEUCHI Y, KAJII K, SHOMURA T, SEZAKI M. A new antibiotic SF2583A, 4-chloro-5-(3′-indolyl)oxazole, produced by Streptomyces[J]. Meiji Seika Kenkyu Nenpo, 1988, 27: 55-62. [百度学术]
YASUZAWA T, IIDA T, YOSHIDA M, HIRAYAMA N, TAKAHASHI M, SHIRAHATA K, SANO H. The structures of the novel protein kinase C inhibitors K-252a, b, c and d[J]. The Journal of Antibiotics, 1986, 39(8): 1072-1078. [百度学术]
DE FARIA AF, MARTINEZ DST, MEIRA SMM, DE MORAES ACM, BRANDELLI A, FILHO AGS, ALVES OL. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B: Biointerfaces, 2014, 113: 115-124. [百度学术]
LI XB, TANG JS, GAO H, DING R, LI J, HONG K, YAO XS. A new staurosporine analog from actinomycetes Streptomyces sp. (172614)[J]. Journal of Asian Natural Products Research, 2011, 13(8): 765-769. [百度学术]
BLIN K, SHAW S, AUGUSTIJN HE, REITZ ZL, BIERMANN F, ALANJARY M, FETTER A, TERLOUW BR, METCALF WW, HELFRICH EJN, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50. [百度学术]
ONAKA H, TANIGUCHI SI, IGARASHI Y, FURUMAI T. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans[J]. The Journal of Antibiotics, 2002, 55(12): 1063-1071. [百度学术]
GROOM K, BHATTACHARYA A, ZECHEL DL. Rebeccamycin and staurosporine biosynthesis: insight into the mechanisms of the flavin-dependent monooxygenases RebC and StaC[J]. Chembiochem, 2011, 12(3): 396-400. [百度学术]
SALAS AP, ZHU LL, SÁNCHEZ C, BRAÑA AF, ROHR J, MÉNDEZ C, SALAS JA. Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase[J]. Molecular Microbiology, 2005, 58(1): 17-27. [百度学术]
HOWARD-JONES AR, WALSH CT. Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid[J]. Journal of the American Chemical Society, 2006, 128(37): 12289-12298. [百度学术]
HOLGUIN G, VAZQUEZ P, BASHAN Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview[J]. Biology and Fertility of Soils, 2001, 33(4): 265-278. [百度学术]
颜利, 王金坑, 蒋金龙, 傅世锋, 戴娟娟, 欧阳玉蓉. 海洋生物多样性保护空间规划分区体系构建及其在泉州湾的应用[J]. 台湾海峡, 2012, 31(2): 238-245. [百度学术]
YAN L, WANG JK, JIANG JL, FU SF, DAI JJ, OUYANG YR. Spatial plan zoning system for marine biodiversity conservation and a case study of the Quanzhou Bay[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(2): 238-245 (in Chinese). [百度学术]
何洁, 张道锋, 徐盈, 张晓梅, 唐蜀昆, 徐丽华, 李文均. 印度洋红树林沉积物可培养海洋放线菌多样性及其活性[J]. 微生物学报, 2012, 52(10): 1195-1202. [百度学术]
HE J, ZHANG DF, XU Y, ZHANG XM, TANG SK, XU LH, LI WJ. Diversity and bioactivities of culturable marine actinobacteria isolated from mangrove sediment in Indian Ocean[J]. Acta Microbiologica Sinica, 2012, 52(10): 1195-1202 (in Chinese). [百度学术]
何子邦, 李顺莲, 吴友浪, 陈明胜, 庹利. 广西沿海红树林土壤放线菌多样性、新颖性及抗菌活性研究[J]. 中国抗生素杂志, 2022, 47(5): 463-473. [百度学术]
HE ZB, LI SL, WU YL, CHEN MS, TUO L. Diversity, novelty, and antibiotic activity of actinobacteria isolated from mangrove soil in Guangxi[J]. Chinese Journal of Antibiotics, 2022, 47(5): 463-473 (in Chinese). [百度学术]
XU L, LIU RS, FANG JB, ZHANG NJ, PU FQ, LEI Z, DING WJ, JIANG YJ. Cytotoxic and antifungal staurosporine derivatives from marine-derived actinomycete Streptomyces sp. ZS-A121[J]. Chemistry & Biodiversity, 2024, 21(2): e202301712. [百度学术]
MCALPINE JB, KARWOWSKI JP, JACKSON M, MULLALLY MM, HOCHLOWSKI JE, PREMACHANDRAN U, BURRES NS. MLR-52, (4′-demethylamino-4′,5′-dihydroxystaurosporine), a new inhibitor of protein kinase C with immunosuppressive activity[J]. The Journal of Antibiotics, 1994, 47(3): 281-288. [百度学术]
ZHOU B, HU ZJ, ZHANG HJ, LI JQ, DING WJ, MA ZJ. Bioactive staurosporine derivatives from the Streptomyces sp. NB-A13[J]. Bioorganic Chemistry, 2019, 82: 33-40. [百度学术]
XIAO F, LI HY, XU MY, LI T, WANG J, SUN CM, HONG K, LI WL. staurosporine derivatives generated by pathway engineering in a heterologous host and their cytotoxic selectivity[J]. Journal of Natural Products, 2018, 81(8): 1745-1751. [百度学术]
ZHANG MZ, CHEN Q, MULHOLLAND N, BEATTIE D, IRWIN D, GU YC, YANG GF, CLOUGH J. Synthesis and fungicidal activity of novel pimprinine analogues[J]. European Journal of Medicinal Chemistry, 2012, 53: 283-291. [百度学术]
王冕, 郝晓萌, 李娇, 胡媛媛, 关艳, 王以光, 甘茂罗, 肖春玲. 海洋链霉菌IMB3-202产生的吲哚咔唑生物碱[J]. 中国医药生物技术, 2018, 13(2): 137-144. [百度学术]
WANG M, HAO XM, LI J, HU YY, GUAN Y, WANG YG, GAN ML, XIAO CL. Identification of indolocarbazoles from the marine-derived Streptomyces sp. IMB3-202[J]. Chinese Medicinal Biotechnology, 2018, 13(2): 137-144(in Chinese). [百度学术]