摘要
目的
探究组氨酸激酶EnvZ调控副溶血弧菌群集性爬动和生物被膜形成的作用机制。
方法
利用含有诱导型启动子的pBAD24与pMal质粒,构建相应基因的过表达质粒,并将其导入野生株和envZ基因缺失株中,通过运动性培养基比较各菌株的群集性爬动能力,采用结晶紫染色法检测各菌株的生物被膜形成能力,并结合RT-qPCR与荧光报告系统检测下游基因的表达水平,以探究EnvZ调节副溶血弧菌群集性爬动和生物被膜形成的分子机制。
结果
ΔenvZ菌株的群集性爬动能力显著低于野生株,而导入pBAD24-envZ回补质粒的ΔenvZ菌株能够恢复其群集性爬动能力。这些菌株的群集性爬动能力与侧生鞭毛相关基因的表达水平呈正相关。在envZ基因缺失的菌株中,Scr系统启动子的转录活性显著低于野生株和ΔompR菌株。在envZ基因缺失的菌株中过表达Scr系统,可以显著恢复其群集性爬动;然而,在scrABC基因缺失的菌株中过表达EnvZ,并不能改变其群集性爬动能力。ΔenvZ菌株的生物被膜形成能力显著低于野生株,而pMal-envZ质粒能够使ΔenvZ菌株的生物被膜厚度恢复至野生株水平,但pMal-scrABC重组质粒则无此功能。在ΔenvZ菌株中,胞外多糖操纵子(epsA-J)的启动子活性与关键基因的转录水平均显著低于野生株。
结论
组氨酸激酶EnvZ可通过调控Scr系统的表达来增强副溶血弧菌的群集性爬动能力,同时也可通过调控胞外多糖的表达来促进该菌的生物被膜形成。
关键词
副溶血弧菌(Vibrio parahaemolyticus)是一种革兰氏阴性嗜盐菌,广泛存在于海水和海产品中,是我国沿海地区常见的食物源性病原
副溶血弧菌需应对各种生物和非生物因素的胁迫,如渗透压、酸碱度、氧含量变化及营养物质匮乏等。为应对外部环境变化,该病原菌采取了一系列策略,其中包括控制鞭毛运动和产生生物被膜
典型的双组分系统(two-component system)由组氨酸激酶(histidine kinase)和响应调节蛋白(response regulator)组
本研究首先通过构建回补质粒,确认了组氨酸激酶EnvZ参与副溶血弧菌的群集性爬动,随后探究了EnvZ对副溶血弧菌生物被膜形成的作用,并重点分析了EnvZ调控副溶血弧菌群集性爬动和生物被膜形成的作用机制。本研究有助于进一步理解副溶血弧菌在接触物体表面后如何调控鞭毛运动和生物被膜形成,并为探究副溶血弧菌的综合防治策略提供理论基础。
1 材料与方法
1.1 材料
1.1.1 菌株
副溶血弧菌野生株RMID 2210633 (WT)和envZ基因缺失株(ΔenvZ),质粒pDS132、pBAD24、pMal和pBBR-lux,以及大肠杆菌DH5α-λpir均为实验室自备。其中,副溶血弧菌具有链霉素抗性,而所有质粒均携带氯霉素抗性基因。
1.1.2 主要试剂和仪器
异丙基-β-d-硫代半乳糖苷(IPTG)、蔗糖、阿拉伯糖,生工生物工程(上海)股份有限公司;质粒提取试剂盒、PCR产物纯化/胶回收试剂盒,上海莱枫生物科技有限公司;限制性核酸内切酶,NEB公司。
pH计,Sartorius公司;PCR仪、小型台式高速离心机,Eppendorf公司;核酸电泳仪,北京六一仪器厂;高压灭菌锅,致微(厦门)仪器有限公司;恒温振荡培养箱,太仓市科教器材厂;多功能酶标仪,Bio-Tek公司。
1.1.3 培养基
LB液体培养基(g/L):NaCl 10.0,酵母提取物5.0,胰蛋白胨10.0,去离子水定容到1.0 L;121 ℃灭菌15 min。
MLB液体培养基(g/L):NaCl 30.0,酵母提取物5.0,胰蛋白胨10.0,去离子水定容到1.0 L;121 ℃灭菌15 min。
群集性爬动培养基(g/L):NaCl 30.0,酵母提取物5.0,胰蛋白胨10.0,琼脂粉12.0,去离子水定容到1.0 L;121 ℃灭菌15 min。
1.2 重组质粒的构建
利用pBAD24或pMal空质粒构建过表达EnvZ或ScrABC的重组质粒,使用Clone Manager软件设计用于构建重组质粒的各对引物(
Primers name | Primer sequences (5′→3′) |
---|---|
pBAD24-envZ-F | CGGGGTACCAGGATCATTAGGAAATTTCCATGCG |
pBAD24-envZ-R | CCCAAGCTTTTATTTGGTCGGGAAACTGATTTG |
pMal-scrABC-F | CAACAAGGACCATAGCATATGTATGGCTAATTTCCGACAAGGAT |
pMal-scrABC-R | TGCCTGCAGGTCGACTCTAGATTACTTATCATCATCATCCTTATAATCTGACCAAGTAGGTTGGTTTAGAAGTT |
pMal-envZ-F | CAACAAGGACCATAGCATATGCTCTTACTCGCTTAACCGGCA |
pMal-envZ-R | ACGACGGCCAGTGCCAAGCTTTTATTTGGTCGGGAAACTGATTT |
1.3 副溶血弧菌基因缺失株的构建
利用本实验室保存的pDS132-ompR与pDS132-scrABC重组质粒,构建ΔenvZΔompR和ΔscrABCΔenvZ多基因缺失
1.4 副溶血弧菌群集性爬动能力的检测
将副溶血弧菌野生株WT、ΔenvZ以及含质粒的大肠杆菌从-80 ℃冰箱中取出,分别接种至含链霉素的MLB液体培养基或含氯霉素的LB液体培养基中,并置于37 ℃、120 r/min振荡培养过夜。其中,大肠杆菌含有空质粒(pBAD24或pMal)或重组质粒(pBAD24-envZ或pMal-scrABC)。以三亲接合的方法将空质粒或重组质粒导入副溶血弧菌
1.5 副溶血弧菌总RNA提取和RT-qPCR
将各菌株接种到群集性爬动培养基上,37 ℃静置培养16-24 h;或在10 mL MLB液体培养基中,37 ℃静置培养约11 h,随后4 ℃、5 000 r/min离心5 min收菌。采用TRIzol法提取菌体总RN
Primers name | Primer sequences (5′→3′) |
---|---|
flg | GTACATCCAGAGGCACTCAAT |
flg | AACTTAGGTCTTTCGCCAAGTA |
laf | ATAAAGACCGCGCAGCAATG |
laf | AGATGCGTCTACGTCTAGAG |
epsC-F | AATTGGCCTAGCTCTGCTAC |
epsC-R | CCCGTAAACTTGCACTGAAATAG |
epsE-F | GAGTCACATGCTCAAACGTAAAC |
epsE-R | TCTGCCATCCAGAAAGGTAAAG |
epsG-F | TCCACTCCTTGCAGCTATTAC |
epsG-R | GGCGATTAAGCCAACAGAAAG |
16S rRNA-F | ACCGCCTGGGGAGTACGGTC |
16S rRNA-R | TTGCGCTCGTTGCGGGACTT |
1.6 利用荧光报告系统检测目的基因启动子活性
本实验室已成功构建含有Scr系统启动子区域的重组荧光质粒PscrABC-lux和含有胞外多糖操纵子epsA-J启动子区域的重组荧光质粒Peps-lu
1.7 副溶血弧菌生物被膜的测定
利用三亲接合的方法将pMal空质粒以及pMal-envZ和pMal-scrABC重组质粒分别导入副溶血弧菌WT和ΔenvZ菌株中。将生长良好的菌液按1:100的比例转接至1 mL含有100 μg/mL链霉素、5 μg/mL氯霉素和0.01 mmol/L IPTG的MLB液体培养基中。取已灭菌的玻璃小管,每管中加入300 μL菌液,每种菌株做3个重复。将玻璃小管封口,置于37 ℃恒温培养箱中静置培养24 h。随后,用移液枪将菌液吸出,用1×PBS轻洗3遍,加入300 μL浓度为0.5%的结晶紫溶液,静置染色20 min。将染液吸出,用1×PBS洗去多余的结晶紫溶液,直至加入1×PBS呈透明清澈状态。对玻璃小管进行拍照,再用500 μL无水乙醇对生物被膜进行溶解,使用多功能酶标仪测定其OD595数值。
1.8 数据分析
利用GraphPad Prism 8.0软件中的单因素方差分析(one-way ANOVA)和Student’s t-test 统计学方法对数据进行分析并作图(ns:P>0.05;*:P<0.05;**:P<0.01;***:P<0.001;****:P<0.000 1)。
2 结果与分析
2.1 组氨酸激酶EnvZ促进副溶血弧菌的群集性爬动
实验室前期研究发现,组氨酸激酶envZ基因缺失会导致副溶血弧菌的群集性爬动能力显著减

图1 EnvZ调控副溶血弧菌的群集性爬动。A:副溶血弧菌各菌株群集性爬动能力比较;B:使用ImageJ软件测量各菌株的运动直径;C:通过RT-qPCR检测各菌株侧生鞭毛基因的转录水平。
Figure 1 EnvZ regulates the swarming motility of Vibrio parahaemolyticus. A: Comparison of the swarming motility of the V. parahaemolyticus strains; B: The migration diameter of the swarming colonies was measured by using ImageJ software; C: The transcription levels of the lateral flagellar genes in V. parahaemolyticus strains were measured by RT-qPCR. ns: P>0.05; *: P<0.05; ****: P<0.000 1.
2.2 EnvZ调控副溶血弧菌Scr系统的表达
Scr系统由scrABC操纵子编码的3个蛋白构成,该系统通过调节环二鸟苷酸(c-di-GMP)信号分子的合成,进而影响副溶血弧菌的群集性爬动能

图2 EnvZ调控scrABC操纵子的启动子活性
Figure 2 EnvZ regulates the promoter activity of the scrABC operon. ns: P>0.05; **: P<0.01; ****: P<0.000 1.
2.3 Scr系统介入EnvZ调控副溶血弧菌的群集性爬动过程
为了探究Scr系统是否影响EnvZ对副溶血弧菌群集性爬动的调控过程,本研究构建了表达scrABC基因的重组质粒pMal-scrABC,并将该质粒导入WT菌株中。通过比较分别含有2种质粒的WT菌株的群集性爬动表型发现,含有pMal-scrABC重组质粒的WT菌株的群集性爬动能力显著强于含有pMal空质粒的WT菌株(图

图3 过表达Scr系统影响副溶血弧菌的群集性爬动能力。A:副溶血弧菌各菌株群集性爬动能力比较;B:使用ImageJ软件测量各菌株的运动直径(***:P<0.001)。
Figure 3 Overexpression of the Scr system affects the swarming motility of Vibrio parahaemolyticus. A: Comparison of the swarming motility of the V. parahaemolyticus strains; B: The migration diameter of the swarming colonies was measured using ImageJ software (***: P<0.001).
2.4 EnvZ独立于Scr系统调控副溶血弧菌的生物被膜形成
生物被膜是副溶血弧菌的一种重要生物表型,且与细菌的运动性密切相

图4 各菌株的生物被膜形成能力比较。A:结晶紫染色法观察生物被膜形成;B:吸光度值(OD595)检测生物被膜形成量(ns:P>0.05;**:P<0.01;***:P<0.001)。
Figure 4 Comparison of the biofilm formation of the Vibrio parahaemolyticus strains. A: Biofilm formation was measured by using crystal violet staining; B: Biofilm formation was quantified by measuring OD595 (ns: P>0.05; **: P<0.01; ***: P<0.001).
2.5 EnvZ促进胞外多糖基因操纵子的表达
胞外多糖作为细菌生物被膜的主要成分,在生物被膜形成过程中发挥了关键作

图5 EnvZ调控胞外多糖基因的表达。A:EnvZ调控epsA–J操纵子的启动子活性;B:通过RT-qPCR检测副溶血弧菌各菌株中胞外多糖基因的转录水平。
Figure 5 EnvZ regulates the expression of exopolysaccharides genes. A: EnvZ regulates the promoter activity of the epsA–J operon; B: The transcription levels of the exopolysaccharide genes in Vibrio parahaemolyticus strains were measured by RT-qPCR. ns: P>0.05; *: P<0.05; **: P<0.01.
3 讨论与结论
副溶血弧菌可以适应复杂多变的体内外环境,这依赖于各种信号调节系统,其中主要包括双组分系
Scr系统是副溶血弧菌重要的表面感应调节系统,其主要由scrABC操纵子编码的3种蛋白组成,即氨基转移酶ScrA、胞外溶质结合蛋白ScrB和c-di-GMP代谢酶Scr
在初始阶段,细菌的鞭毛运动可促进生物被膜的形
本研究通过分析组氨酸激酶EnvZ对副溶血弧菌群集性爬动和生物被膜形成的调控机制,发现EnvZ可调控Scr系统的表达以促进细菌的群集性爬动,同时可调控胞外多糖基因的表达以影响生物被膜的形成。该研究为进一步探究副溶血弧菌通过调控群集性爬动和生物被膜形成以适应外部环境的机制提供了理论基础。
作者贡献声明
袁艺萱:实验操作、数据收集和处理;吴文婷:协助实验操作、数据收集;陆倩:协助实验操作、数据处理;姚宁:协助实验操作;周秀娟:论文讨论;钟孝俊:数据处理、论文撰写和修改;杨梦华:实验设计、论文讨论和修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
LIU ZS, ZHOU Y, WANG HY, LIU CC, WANG LX. Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus[J]. International Journal of Food Microbiology, 2024, 417: 110691. [百度学术]
ZHONG XJ, PAN ZH, MU YJ, ZHU YC, ZHANG Y, MA JL, YANG MH, YAO HC. Characterization and epidemiological analysis of Vibrio parahaemolyticus isolated from different marine products in East China[J]. International Journal of Food Microbiology, 2022, 380: 109867. [百度学术]
WU K, ZOU DZ, LONG YY, XUE L, SHUAI SF, TIAN FY, LI M, FAN GY, ZHENG YY, SUN XR, WANG W, WANG L, NI XS, ZHANG XL, FAN YB, LI H. Contamination of Vibrio parahaemolyticus in crayfish for sale[J]. Frontiers in Microbiology, 2024, 15: 1388658. [百度学术]
CHEN HH, DONG SL, YAN Y, ZHAN L, ZHANG JY, CHEN JC, ZHANG Z, ZHANG YY, MEI LL. Prevalence and population analysis of Vibrio parahaemolyticus isolated from freshwater fish in Zhejiang Province, China[J]. Foodborne Pathogens and Disease, 2021, 18(2): 139-146. [百度学术]
KHAN F, TABASSUM N, ANAND R, KIM YM. Motility of Vibrio spp.: regulation and controlling strategies[J]. Applied Microbiology and Biotechnology, 2020, 104(19): 8187-8208. [百度学术]
BAI X, CHEN XL, ZHANG DF, LIU XF, LI JR. Targeted phytogenic compounds against Vibrio parahaemolyticus biofilms[J]. Critical Reviews in Food Science and Nutrition, 2025, 65(9): 1761-1772. [百度学术]
SU LM, HUANG RT, HSIAO HI. Biofilm formation comparison of Vibrio parahaemolyticus on stainless steel and polypropylene while minimizing environmental impacts and transfer to grouper fish fillets[J]. International Journal of Food Microbiology, 2025, 426: 110913. [百度学术]
BUSCHIAZZO A, TRAJTENBERG F. Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level?[J]. Annual Review of Microbiology, 2019, 73: 507-528. [百度学术]
HACHANI A, WOOD TE, FILLOUX A. Type VI secretion and anti-host effectors[J]. Current Opinion in Microbiology, 2016, 29: 81-93. [百度学术]
TANABE T, KATO A, SHIUCHI K, MIYAMOTO K, TSUJIBO H, MAKI J, YAMAMOTO S, FUNAHASHI T. Regulation of the expression of the Vibrio parahaemolyticus peuA gene encoding an alternative ferric enterobactin receptor[J]. PLoS One, 2014, 9(8): e105749. [百度学术]
ZHONG XJ, LIU FW, LIANG TQ, LU RR, SHI MT, ZHOU XJ, YANG MH. The two-component system TtrRS boosts Vibrio parahaemolyticus colonization by exploiting sulfur compounds in host gut[J]. PLoS Pathogens, 2024, 20(7): e1012410. [百度学术]
CHAKRABORTY S, KENNEY LJ. A new role of OmpR in acid and osmotic stress in Salmonella and E. coli[J]. Frontiers in Microbiology, 2018, 9: 2656. [百度学术]
JI XM, SHI AY, WANG J, ZHANG BW, HU YZ, LV H, WU J, SUN Y, LIU JM, ZHANG Y, WANG S. EnvZ/OmpR controls protein expression and modifications in Cronobacter sakazakii for virulence and environmental resilience[J]. Journal of Agricultural and Food Chemistry, 2024, 72(33): 18697-18707. [百度学术]
GERKEN H, SHETTY D, KERN B, KENNEY LJ, MISRA R. Effects of pleiotropic ompR and envZ alleles of Escherichia coli on envelope stress and antibiotic sensitivity[J]. Journal of Bacteriology, 2024, 206(6): e0017224. [百度学术]
姚宁, 鲁重, 王菲, 钟孝俊, 杨梦华. 双组分系统EnvZ/OmpR促进副溶血弧菌抵抗碱胁迫的作用机制[J]. 微生物学报, 2022, 62(12): 5043-5055. [百度学术]
YAO N, LU Z, WANG F, ZHONG XJ, YANG MH. The two-component system EnvZ/OmpR mediates alkaline stress tolerance of Vibrio parahaemolyticus[J]. Acta Microbiologica Sinica, 2022, 62(12): 5043-5055 (in Chinese). [百度学术]
姚宁. 副溶血性弧菌双组分系统EnvZ/OmpR功能鉴定及其调节细菌耐碱机制研究[D]. 杭州: 浙江农林大学硕士学位论文, 2022. [百度学术]
YAO N. Identification of the function of the two-component system EnvZ/OmpR and its role in regulating alkaline stress tolerance in Vibrio parahaemolyticus[D]. Hangzhou: Master’s Thesis of Zhejiang A&F University, 2022 (in Chinese). [百度学术]
LIU FW, WANG F, YUAN YX, LI XR, ZHONG XJ, YANG MH. Quorum sensing signal synthases enhance Vibrio parahaemolyticus swarming motility[J]. Molecular Microbiology, 2023, 120(2): 241-257. [百度学术]
ZHONG XJ, LU Z, WANG F, YAO N, SHI MT, YANG MH. Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence[J]. Applied and Environmental Microbiology, 2022, 88(6): e0223921. [百度学术]
GE Q, GAO M, LI XR, ZHONG XJ, ZHANG XF, ZHOU XJ, YANG MH. Vibrio parahaemolyticus down-regulates the intracellular c-di-GMP level to promote swarming motility by sensing surface[J]. Current Microbiology, 2024, 82(1): 32. [百度学术]
YILDIZ FH, VISICK KL. Vibrio biofilms: so much the same yet so different[J]. Trends in Microbiology, 2009, 17(3): 109-118. [百度学术]
MENG YY, PENG JH, QIAN J, FEI FL, GUO YY, PAN YJ, ZHAO Y, LIU HQ. The two-component system expression patterns and immune regulatory mechanism of Vibrio parahaemolyticus with different genotypes at the early stage of infection in THP-1 cells[J]. mSystems, 2023, 8(4): e0023723. [百度学术]
LI L, WANG QY, ZHANG H, YANG MJ, KHAN MI, ZHOU XH. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6): 1648-1653. [百度学术]
BROSSE A, BOUDRY P, WALBURGER A, MAGALON A, GUILLIER M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs[J]. Nucleic Acids Research, 2022, 50(12): 6753-6768. [百度学术]
HUYNH TN, CHEN LL, STEWART V. Sensor-response regulator interactions in a cross-regulated signal transduction network[J]. Microbiology, 2015, 161(7): 1504-1515. [百度学术]
MATSUBARA M, KITAOKA SI, TAKEDA SI, MIZUNO T. Tuning of the porin expression under anaerobic growth conditions by his-to-Asp cross-phosphorelay through both the EnvZ-osmosensor and ArcB-anaerosensor in Escherichia coli[J]. Genes to Cells, 2000, 5(7): 555-569. [百度学术]
KIMBROUGH JH, McCARTER LL. Identification of three new GGDEF and EAL domain-containing proteins participating in the scr surface colonization regulatory network in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2021, 203(4): e00409-20. [百度学术]
KIMBROUGH JH, THOMAS CRIBBS J, McCARTER LL. Homologous c-di-GMP-binding scr transcription factors orchestrate biofilm development in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2020, 202(6): e00723-19. [百度学术]
YU ZQ, ZHANG W, YANG H, CHOU SH, GALPERIN MY, HE J. Gas and light: triggers of c-di-GMP-mediated regulation[J]. FEMS Microbiology Reviews, 2023, 47(4): fuad034. [百度学术]
JUNG YC, LEE MA, LEE KH. Role of flagellin-homologous proteins in biofilm formation by pathogenic Vibrio species[J]. mBio, 2019, 10(4): e01793-19. [百度学术]
TESCHLER JK, ZAMORANO-SÁNCHEZ D, UTADA AS, WARNER CJA, WONG GCL, LININGTON RG, YILDIZ FH. Living in the matrix: assembly and control of Vibrio cholerae biofilms[J]. Nature Reviews Microbiology, 2015, 13(5): 255-268. [百度学术]
TESCHLER JK, NADELL CD, DRESCHER K, YILDIZ FH. Mechanisms underlying Vibrio cholerae biofilm formation and dispersion[J]. Annual Review of Microbiology, 2022, 76: 503-532. [百度学术]
ENOS-BERLAGE JL, GUVENER ZT, KEENAN CE, McCARTER LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus[J]. Molecular Microbiology, 2005, 55(4): 1160-1182. [百度学术]
FERREIRA RBR, ANTUNES LCM, PETER GREENBERG E, McCARTER LL. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces[J]. Journal of Bacteriology, 2008, 190(3): 851-860. [百度学术]