摘要
目的
探究嗜盐细菌在中国新疆2种不同类型盐湖中的分布特征及其酶学特性。
方法
采集代表性硫酸盐型(七角井)和碳酸盐型(南湖碱湖)盐湖土壤样本,分析其理化性质,并结合培养实验比较2个盐湖的微生物多样性、嗜盐细菌优势类群及其酶活特性。
结果
2种类型盐湖的理化性质存在显著差异,七角井盐湖盐度高达227.15 g/kg,高于南湖碱湖的158.61 g/kg,其余pH、HCO
结论
新疆硫酸盐型(七角井)与碳酸盐型(南湖碱湖)盐湖的嗜盐微生物种类存在显著差异,碳酸盐型(南湖碱湖)的嗜盐细菌群落多样性更高,并展现出广泛的酶活性。本研究为盐湖微生物资源的开发利用和生态保护提供了科学依据。
盐湖是地球上独特而重要的生态系统,具有高盐度、高pH值和高矿化度等极端环境特征,是重要的矿产资源和生物资源宝
极端环境条件孕育了盐湖中独特的微生物群落,其中嗜盐微生物为主要组成。根据嗜盐菌最适生长NaCl浓度的不同,Kushne
我国新疆地处欧亚大陆腹地,远离海洋,气候干旱,蒸发强烈,是我国盐湖资源最为丰富的地区之
当前对新疆盐湖嗜盐菌的研究相对有限,尤其是缺乏不同类型盐湖嗜盐细菌多样性的比较研究,以及对其功能特性的深入分析。本研究选择新疆典型的硫酸盐型(七角井)和碳酸盐型(南湖碱湖)盐湖作为研究对象,采用Illumina MiSeq测序技术与传统培养方法相结合的方法,揭示新疆典型硫酸盐型和碳酸盐型盐湖嗜盐细菌的多样性特征,比较两类盐湖嗜盐细菌群落组成的异同,分析土壤理化性质与微生物群落多样性的关系,评估不同培养基的分离效果,筛选具有潜在应用价值的嗜盐细菌株。本研究结果将有助于深入了解新疆盐湖微生物资源,为盐湖生态系统的保护和可持续利用提供科学依据。
1 材料与方法
1.1 材料
1.1.1 样品采集
土壤样品采集自新疆七角井盐湖和南湖碱湖,两盐湖位于我国新疆维吾尔自治区哈密地区吐哈盆地,气候终年干旱,从自20世纪50年代起两盐湖已无地表水,属于典型的干盐湖,七角井盐湖常有人开采制盐。根据郑喜
1.1.2 主要试剂和仪器
HS Taq酶,TaKaRa公司;PowerSoi
PCR仪,ThermoFisher Scientific公司;pH计,上海理达仪器厂;电导率仪,上海仪电科学仪器股份有限公司;火焰光度计,上海精密科学仪器有限公司。
1.1.3 培养基
F1培养基(g/L
1.2 盐湖土壤理化性质分析
采集南湖碱湖土壤样品8份,七角井盐湖土壤样品7份。盐湖土壤理化性质测定方法具体参照《土壤农业化学分析方法
1.3 Illumina MiSeq测序分析盐湖土壤微生物多样性
根据PowerSoi
1.4 盐湖嗜盐细菌的分离与纯化
为了评估当前常用嗜盐细菌分离培养基的分离效果,本研究通过文献调研,选取7种培养基,在5%、10%和15% NaCl浓度条件下进行嗜盐菌株分离。首先取出冰箱中保存的合并好的2份盐湖土样,各称取2 g置于锥形瓶中,用无菌水按1:10比例制作土壤稀释液,将其振荡混合充分后吸取100 μL稀释液,采用涂布平板法接种到各分离培养基,使其均匀分布,倒置于37 ℃恒温箱培养7-14 d。根据菌株的形态特征、颜色和大小进行筛选,选择形态存在明显差异的菌株并记录菌株生长信息,挑选每种培养基中的单菌落在F1培养基平板进行菌株纯化,去除重复菌株。
1.5 嗜盐代表菌株的鉴定
基因组提取与扩增参考文献[
1.6 嗜盐代表菌株功能特性研究
按照李泉泉
1.7 数据处理
应用SPSS (v17.0)对土壤理化性质环境因子进行独立样本t检验(检验显著性水平为P<0.05)和Spearman相关性分析。利用PAST (v4.09)软件对分离微生物进行α多样性分析,采用GraphPad Prism (v8.0)绘图。
2 结果与分析
2.1 两盐湖土壤理化性质
南湖碱湖和七角井两盐湖土壤的主要理化性质存在明显差异。如
Sample | pH | Conductivity (ms/cm) | Physical and chemical factors (g/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total salt | CO | HCO | C | SO | C | M | N | ||||
Nanhu Alkaline Lake | 8.51±0.52** | 35.84±21.21 | 158.61±95.75 | 0.05±0.04 | 0.39±0.23** | 22.66±17.91 | 75.12±54.84 | 4.46±1.98 | 0.49±0.35 | 43.26±26.16 | 2.64±7.43* |
Qijiaojing | 8.44±0.24 | 59.28±30.41 | 227.15±121.30 | 0.03±0.03 | 0.17±0.07 | 90.82±74.77* | 48.45±43.87 | 6.81±4.11 | 2.23±1.61*** | 69.94±41.95 | 0.30±0.25 |
*: P<0.05; **: P<0.01; ***: P<0.001.
2.2 两盐湖土壤微生物多样性及群落结构
2.2.1 基于免培养技术的微生物群落组成分析
Illumina MiSeq测序数据分析显示(

图1 两盐湖微生物物种多样性。A:门水平;B:属水平;C:主要细菌群落的丰度差异(门水平);D:基于Bray Curtis距离的主坐标分析;E:Illumina MiSeq测序与培养法的微生物差异韦恩图(属水平)。N:南湖碱湖;Q:七角井;a:Illumina MiSeq测序;b:可培养;*:P<0.05;***:P<0.001;ns:无显著性。
Figure 1 Microbial species diversity in the two salt lakes. A: Phylum level; B: Genus level; C: The difference in the abundance of the main bacterial flora (phylum level); D: Principal coordinate analysis generated using Bray Curtis distance; E: Venn maps of microbial differences obtained by two methods (genus level). N: Nanhu Alkaline Lake; Q: Qijiaojing; a: Illumina MiSeq sequencing; b: Pure culture; *: P<0.05; ***: P<0.001; ns: No significant.
在属水平(
通过对比2个盐湖的微生物α多样性指数(
Diversity index | Illumina MiSeq sequencing | Pure culture | |||
---|---|---|---|---|---|
Nanhu Alkaline Lake | Qijiaojing | Nanhu Alkaline Lake | Qijiaojing | ||
Simpson | 0.94±0.04*** | 0.74±0.004 | 0.06±0.11 | 0.18±0.21 | |
Shannon | 4.06±0.58*** | 2.83±0.32 | 0.13±0.23 | 0.28±0.28 |
***: P<0.001.
通过Spearman相关性分析(
Phylum | Genus | pH | Conductivity | Total salt | CO | HCO | C | SO | C | M | N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Actinomycetota | Bifidobacterium | -0.34 | 0.26 | 0.18 | -0.23 | -0.47 | 0.52* | -0.33 | 0.07 | 0.59* | 0.22 | -0.20 |
Kocuria | 0.75*** | 0.13 | 0.20 | 0.75*** | 0.86*** | -0.21 | 0.77*** | 0.10 | -0.33 | 0.18 | 0.34 | |
Nitriliruptor | 0.38 | -0.34 | -0.23 | 0.16 | 0.59* | -0.53* | 0.39 | -0.19 | -0.40 | -0.22 | 0.01 | |
Bacteroidota | Bacteroides | -0.24 | 0.36 | 0.31 | -0.07 | -0.38 | 0.60* | -0.30 | 0.25 | 0.53* | 0.29 | -0.12 |
Parabacteroides | -0.12 | 0.41 | 0.36 | 0.02 | -0.32 | 0.62** | -0.26 | 0.32 | 0.51* | 0.35 | -0.02 | |
Pontibacter | 0.54* | 0.18 | 0.33 | 0.46 | 0.66** | -0.25 | 0.75*** | 0.15 | 0.02 | 0.29 | 0.28 | |
Balneolota | Aliifodinibius | -0.24 | -0.56* | -0.49 | -0.31 | -0.24 | -0.49 | -0.25 | -0.33 | -0.33 | -0.54* | 0.04 |
Bacillota | Clostridium | -0.34** | 0.19 | 0.11 | -0.29* | -0.53*** | 0.56 | -0.52*** | 0.15 | 0.48 | 0.15 | -0.11 |
Dialister | -0.22 | 0.29 | 0.21 | -0.12 | -0.39 | 0.62* | -0.33 | 0.15 | 0.50* | 0.23 | 0.04 | |
Faecalibacterium | -0.16 | 0.39 | 0.34 | -0.01 | -0.36 | 0.65** | -0.29 | 0.32 | 0.55* | 0.34 | -0.00 | |
Fusicatenibacter | -0.24 | 0.35 | 0.26 | -0.09 | -0.41 | 0.67** | -0.35 | 0.21 | 0.52* | 0.28 | -0.01 | |
Planococcus | 0.55* | -0.03 | 0.10 | 0.30 | 0.72** | -0.40 | 0.67** | 0.08 | -0.12 | 0.09 | 0.25 | |
Roseburia | -0.14 | 0.41 | 0.36 | 0.00 | -0.34 | 0.65** | -0.27 | 0.31 | 0.53* | 0.35 | -0.01 | |
Ruminococcus | -0.15 | 0.41 | 0.36 | 0.00 | -0.35 | 0.65** | -0.27 | 0.30 | 0.54* | 0.35 | -0.01 | |
Methanobacteriota | Halalkalicoccus | 0.53* | 0.22 | 0.25 | 0.45 | 0.67** | 0.05 | 0.55* | 0.42 | -0.04 | 0.21 | 0.62* |
Pseudomonadota | Sphingomonas | 0.00 | -0.56* | -0.46 | -0.10 | 0.06 | -0.66** | -0.01 | -0.61* | -0.56* | -0.44 | -0.20 |
Rhodothermaeota | Salinibacter | -0.53* | -0.09 | -0.13 | -0.31 | -0.53* | 0.180 | -0.41 | -0.20 | 0.15 | -0.17 | -0.01 |
Relative abundance>2%. *: P<0.05; **: P<0.01; ***: P<0.001.
2.2.2 基于可培养技术的微生物群落组成分析
通过7种培养基、3种NaCl浓度以及平板稀释涂布,共获得1 130株菌株(南湖碱湖391株,七角井739株)。在5%和10% NaCl浓度的培养基中主要分离到的是嗜盐细菌和放线菌。大部分菌落呈白色或乳白色,对这些菌株进行形态学特征分析后进行纯化和去重复。选取50株代表性嗜盐菌株进行16S rRNA基因序列相似性分析,登录号为PP411945-PP411975 (
Phylum | Genus | Strain | Count | The closest species | Similarity (%) | GenBank | NaCl optimum (%) | Amylase | Cellulase | Esterase |
---|---|---|---|---|---|---|---|---|---|---|
Actinomycetota | Myceligenerans | 4 364 | 6 | Myceligenerans salitolerans XHU 5031 | 99.68 | PP411948 | 5 | - | ++ | ++ |
Nocardiopsis | 4 004 | 235 |
Nocardiopsis aegyptia DSM 4444 | 100.00 | PP411954 | 5 | - | - | +++ | |
4 074 | 20 |
Nocardiopsis aegyptia DSM 4444 | 100.00 | PP411947 | 5 | - | - | +++ | ||
4 076 | 1 |
Nocardiopsis akebiae HDS1 | 100.00 | PP411965 | 5 | ND | ND | ND | ||
4 130 | 13 |
Nocardiopsis akebiae HDS1 | 98.95 | PP411955 | 5 | + | ++ | +++ | ||
4 210 | 1 |
Nocardiopsis akebiae HDS1 | 99.05 | PP411953 | 5 | - | ++ | +++ | ||
4 325 | 92 |
Nocardiopsis alba DSM 4337 | 98.80 | PP411968 | 5 | ND | ND | ND | ||
4 382 | 23 |
Nocardiopsis alba DSM 4337 | 98.80 | PP411969 | 10 | - | - | +++ | ||
4 053 | 3 |
Nocardiopsis chromatogenes YIM 9010 | 99.68 | PP411946 | 10 | - | - | +++ | ||
4 402 | 1 |
Nocardiopsis eucommiae HDS | 98.63 | PP411970 | 5 | + | ++ | +++ | ||
4 148 | 1 |
Nocardiopsis halophila KCTC 982 | 99.14 | PP411966 | 10 | - | ++ | +++ | ||
4 393 | 2 |
Nocardiopsis synnemataformans DSM 4414 | 98.75 | PP411945 | 5 | ++ | ++ | +++ | ||
Streptomyces | 4 201 | 1 | Streptomyces mangrovicola GY1 | 99.83 | PP411959 | 5 | + | ++ | - | |
4 287 | 1 | Streptomyces ochraceiscleroticus NRRL ISP-5594 | 99.14 | PP411967 | 10 | + | - | +++ | ||
4 387 | 1 | Streptomyces ochraceiscleroticus NRRL ISP-5594 | 99.14 | PP411956 | 5 | - | ++ | ++ | ||
4 178 | 3 |
Streptomyces pini PL1 | 99.38 | PP411952 | 5 | ++ | ++ | +++ | ||
4 087 | 12 |
Streptomyces sparsus YIM 9001 | 99.83 | PP411963 | 10 | - | ++ | + | ||
Balneolota | Fodinibius | 4 159 | 13 |
Aliifodinibius salipaludis WN02 | 97.78 | PP411972 | 5 | ND | ND | ND |
Bacillota | 4 164 | 1 |
Aliifodinibius salipaludis WN02 | 97.7 | PP411973 | 10 | +++ | + | - | |
4 240 | 3 |
Aliifodinibius salipaludis WN02 | 98.23 | PP411975 | 10 | ND | ND | ND | ||
Alteribacillus | 4 126 | 4 |
Alteribacillus bidgolensis IBRC-M1061 | 99.37 | PP411971 | 10 | +++ | + | - | |
Bacillus | 4 057 | 186 |
Bacillus vallismortis DV1-F- | 99.84 | PP411950 | 10 | +++ | +++ | +++ | |
4 259 | 15 |
Bacillus vallismortis DV1-F- | 99.84 | PP411949 | 10 | +++ | +++ | +++ | ||
4 308 | 3 |
Bacillus vallismortis DV1-F- | 99.83 | PP411964 | 5 | +++ | ++ | +++ | ||
4 368 | 244 |
Bacillus vallismortis DV1-F- | 99.84 | PP411951 | 5 | - | ++ | - | ||
Gracilibacillus | 4 041 | 5 |
Gracilibacillus saliphilus YIM 9111 | 99.66 | PP411962 | 5 | +++ | - | - | |
4 395 | 1 |
Gracilibacillus salitolerans SCU5 | 99.83 | PP411957 | 5 | - | ++ | - | ||
Pseudomonadota | Halomonas | 4 169 | 235 |
Halomonas elongata DSM 258 | 100.00 | PP411974 | 15 | ND | ND | ND |
4 390 | 1 |
Halomonas xinjiangensis TRM 017 | 98.15 | PP411960 | 5 | + | - | - | ||
4 399 | 1 |
Halomonas xinjiangensis TRM 017 | 98.15 | PP411961 | 5 | - | ++ | +++ | ||
Microbulbifer | 4 174 | 2 |
Microbulbifer halophilus YIM 9111 | 99.68 | PP411958 | 5 | - | ++ | ++ |
+: Functional enzyme activity; -: Negative; ND: No data.
在属水平(
如
2.3 两盐湖嗜盐细菌组成分析
Illumina MiSeq测序结果无法区分轻度、中度和极端嗜盐菌的组成。为进一步了解盐湖中不同嗜盐细菌的分布情况,本研究选取丰度大于0.5%的49个属级类群进行分析。通过查阅相关文献并结合盐度实验数据,确定了这些菌属的嗜盐性特征[原始数据储存在国家微生物科学数据中心(http://nmdc.cn),编号为NMDCX0002079]。研究发现,18个属为轻度嗜盐菌,包括Bacteroides、Nitriliruptor和Ruminococcus等;19个属为中度嗜盐菌,包括Aliifodinibius、Bacillus和Halomonas等;以及1个极端嗜盐菌属盐场杆菌属(Salinibacter)。此外,还有11个属尚未见嗜盐性相关报道。
Illumina MiSeq测序显示(

图2 两盐湖嗜盐细菌多样性。A:嗜盐细菌多样性;B:中度嗜盐细菌多样性。S:轻度嗜盐细菌;M:中度嗜盐细菌;E:极端嗜盐细菌;Un:未分类;N:南湖碱湖;Q:七角井;相对丰度>0.5%。
Figure 2 High abundance halophiles bacteria diversity in the two salt lake. A: Halophiles bacteria diversity; B: Moderate halophiles bacteria diversity. S: Slight halophiles bacteria; M: Moderately halophiles bacteria; E: Extreme halophiles bacteria; Un: Unclassified; N: Nanhu Alkaline Lake; Q: Qijiaojing; Relative abundance>0.5%.
总体而言,两盐湖间嗜盐细菌群落结构差异大,以轻度嗜盐细菌为主,南湖碱湖中的中度嗜盐细菌相较于七角井更为丰富。
2.4 培养基分离效果的比较
本研究采用7种不同的分离培养基从2个盐湖土壤样本中分离获得1 130株嗜盐细菌(

图3 不同培养基获得的嗜盐细菌多样性比较。A:两盐湖可培养菌群多样性(N:南湖碱湖;Q:七角井);B:7种培养基嗜盐细菌的多样性。
Figure 3 Comparison of halophilic bacterial diversity obtained from different culture media. A: Diversity of culturable halophiles in two salt lakes (N: Nanhu Alkaline Lake; Q: Qijiaojing); B: Diversity composition of halophiles in seven media.
Culture media | Diversity index | |
---|---|---|
Simpson | Shannon | |
F1 | 0.54 | 0.83 |
F2 | 0.67 | 0.80 |
F3 | 0.08 | 0.20 |
F4 | 0.48 | 0.67 |
F5 | 0.02 | 0.06 |
F6 | 0.52 | 0.81 |
F7 | 0.38 | 0.85 |
2.5 可培养微生物产酶特性
通过可培养嗜盐细菌功能酶筛选发现(

图4 两盐湖功能酶分析。A:嗜盐细菌的功能酶活多样性;B:两盐湖的酶活性分布(N:南湖碱湖;Q:七角井)。
Figure 4 Functional diversity of halophiles in two salt lakes. A: Functional diversity of moderate halophiles bacteria at genus level; B: Enzyme activity in two salt lakes (N: Nanhu Alkaline Lake; Q: Qijiaojing).
3 讨论与结论
嗜盐微生物是盐湖微生态系统中的主要类群,它们通过积累胞内小分子相容溶质以抵御渗透压,其多样性的代谢特征和产多功能酶的特性展现出巨大的工业应用潜
根据盐湖演化进程,硫酸盐型盐湖的成盐年代比碳酸盐型盐湖更
通过Illumina MiSeq测序分析,发现两盐湖均蕴含丰富的嗜盐细菌微生物资源,共有37门82纲150目286科590属。Bacteroidota、Bacillota、Actinomycetota和Pseudomonadota为两盐湖普遍存在的核心类群。对比其他盐湖研究结果发现,盐湖中优势的嗜盐微生物类群在门级分类水平上存在一定的共性,主要优势类群包括假单胞菌门、芽孢杆菌门、拟杆菌
两个盐湖在属级类群分布上存在显著差异,除Pontibacter为两盐湖共有的高丰度类群外,其余丰度>0.5%的类群在另一湖中的丰度普遍低于0.1%。七角井中丰度较高的Faecalibacterium、Ruminococcus和Megasphaeras均属于Bacillota,其内生孢子的能力使其能在极端条件下正常繁殖和生
尽管通过可培养方法可以探究盐湖嗜盐细菌的多样性,但该方法存在明显局限性。大部分分离菌株属于低丰度类群,如Myceligenerans、Nocardiopsis、Streptomyces、Fodinibius、Alteribacillus、Gracilibacillus和Microbulbifer,其丰度均低于0.5%,并非盐湖中主要的嗜盐细菌群。本研究主要从5%盐浓度培养基中分离获得了中度嗜盐细菌,其中南湖碱湖的优势类群为Bacillus,七角井的优势类群为放线菌Nocardiopsis。Bacillus、Nocardiopsis、Halomonas和Streptomyces等属被认为是代表性的中度嗜盐菌,广泛分布于盐
不同培养基分离结果显示,F6 (R2A)培养基获得的嗜盐细菌株数和菌株种类最为丰富,是一款优秀的分离培养嗜盐细菌的培养基。Ore
本次酶活筛选结果显示,可培养嗜盐细菌产功能酶的能力较强,其中产酯酶和纤维素酶的嗜盐细菌数量最多,而产淀粉酶菌株较少。Bacillus是两盐湖中主要的产功能酶类群,芽孢杆菌被广泛应用于工业生产多种功能酶和有机代谢物,据估计,总酶市场中近50%的酶由枯草芽孢杆菌生
本研究联合Illumina MiSeq测序和传统培养方法,探究了新疆碳酸盐型(南湖碱湖)和硫酸盐型(七角井) 2种类型盐湖中嗜盐细菌的生物多样性。研究发现,2个盐湖的微生物群落结构存在显著差异,碳酸盐型南湖碱湖更有利于嗜盐细菌的生存。不同培养基分离获得的嗜盐微生物类群为后续特定菌株的获取提供了理论参考。此外,两盐湖微生物的功能特性研究对开发利用盐湖嗜盐微生物在生物资源库、酶制剂和生物新功能等领域具有重要的理论意义。
作者贡献声明
高琳:利用传统微生物学方法对两盐湖进行菌种分离,以及初稿的撰写;谢卓斌:高通量测序数据分析,以及全文撰写与修改;王芸:全文指导与修改;蒋刚强:盐湖土壤样品的采集;韩燕燕:土壤样品理化性质的测定;陈雪莹:数据收集和处理;孙鹏:提供技术支持。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
郑喜玉. 中国盐湖志[M]. 北京: 科学出版社, 2002. [百度学术]
ZHENG XY. Annals of Salt Lakes in China[M]. Beijing: Science Press, 2002 (in Chinese). [百度学术]
郭佩, 李长志. 含油气盆地蒸发盐矿物成因类型及其地质意义[J]. 古地理学报, 2022, 24(2): 210-225. [百度学术]
GUO P, LI CZ. Genesis of evaporites in petroliferous basins and the sedimentary and climatic significances[J]. Journal of Palaeogeography, 2022, 24(2): 210-225 (in Chinese). [百度学术]
郑喜玉. 新疆盐湖[M]. 北京: 科学出版社, 1995. [百度学术]
ZHENG XY. Xinjiang Salt Lake[M]. Beijing: Science Press, 1995 (in Chinese). [百度学术]
M.Г. 瓦里亚什科, 范立. 钾盐矿床形成的地球化学规律[M]. 北京: 中国工业出版社, 1965. [百度学术]
М.Г. Валящко, FAN L. Geochemical Law of Formation of Potassium Salt Deposit[M]. Beijing: China Architecture & Building Press, 1965 (in Chinese). [百度学术]
LOWENSTEIN TK, JAGNIECKI EA, CARROLL AR, SMITH ME, RENAUT RW, OWEN RB. The green river salt mystery: what was the source of the hyperalkaline lake waters?[J]. Earth-Science Reviews, 2017, 173: 295-306. [百度学术]
KUSHNER DJ. Microbial Life in Extreme Environments[M]. London: Academic Press, 1978. [百度学术]
VENTOSA A, NIETO JJ, OREN A. Biology of moderately halophilic aerobic bacteria[J]. Microbiology and Molecular Biology Reviews, 1998, 62(2): 504-544. [百度学术]
OREN A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity[J]. Saline Systems, 2008, 4(1): 2. [百度学术]
MAHESHWARI D, SARAF M. Halophiles. Sustainable Development and Biodiversity[M]. Switzerland: Springer International Publishing, 2015. [百度学术]
唐蜀昆, 姜怡, 职晓阳, 娄恺, 李文均, 徐丽华. 嗜盐放线菌分离方法[J]. 微生物学通报, 2007, 34(2): 390-392. [百度学术]
TANG SK, JIANG Y, ZHI XY, LOU K, LI WJ, XU LH. Method for separate halophilic actinomycetes[J]. Microbiology, 2007, 34(2): 390-392 (in Chinese). [百度学术]
田蕾. 艾丁湖可培养嗜盐细菌多样性及功能菌的筛选[D]. 雅安: 四川农业大学, 2017. [百度学术]
TIAN L. Diversity and functional enzymes, screening of culturable halophilic bacteria from Aiding Lake[D]. Yaan: Master’s Thesis of Sichuan Agricultural University, 2017 (in Chinese). [百度学术]
TANG SK, TIAN XP, ZHI XY, CAI M, WU JY, YANG LL, XU LH, LI WJ. Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(9): 2075-2080. [百度学术]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [百度学术]
LU RK. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese). [百度学术]
KLINDWORTH A, PRUESSE E, SCHWEER T, PEPLIES J, QUAST C, HORN M, GLÖCKNER FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J]. Nucleic Acids Research, 2013, 41(1): e1. [百度学术]
HALL M, BEIKO RG. 16S rRNA gene analysis with QIIME 2[J]. Methods in Molecular Biology, 2018, 1849: 113-129. [百度学术]
周双清, 黄小龙, 黄东益, 胡新文, 陈吉良. Chelex-100快速提取放线菌DNA作为PCR扩增模板[J]. 生物技术通报, 2010, 26(2): 123-125. [百度学术]
ZHOU SQ, HUANG XL, HUANG DY, HU XW, CHEN JL. A rapid method for extracting DNA from actinomycetes by Chelex-100[J]. Biotechnology Bulletin, 2010, 26(2): 123-125 (in Chinese). [百度学术]
YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617. [百度学术]
李泉泉, 王芸, 王科珂, 倪萍, 孙鹏, 苏为涌, 张碧柳. 新疆两盐湖可培养极端嗜盐菌组成及功能多样性研究[J]. 微生物学报, 2022, 62(6): 2074-2089. [百度学术]
LI QQ, WANG Y, WANG KK, NI P, SUN P, SU WY, ZHANG BL. Composition and functional diversity of extreme halophiles isolated from two salt lakes in Xinjiang[J]. Acta Microbiologica Sinica, 2022, 62(6): 2074-2089 (in Chinese). [百度学术]
LOZUPONE CA, KNIGHT R. Global patterns in bacterial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11436-11440. [百度学术]
SIMACHEW A, LANZÉN A, GESSESSE A, ØVREÅS L. Prokaryotic community diversity along an increasing salt gradient in a soda ash concentration pond[J]. Microbial Ecology, 2016, 71(2): 326-338. [百度学术]
WU QL, ZWART G, SCHAUER M, KAMST-VAN AGTERVELD MP, HAHN MW. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China[J]. Applied and Environmental Microbiology, 2006, 72(8): 5478-5485. [百度学术]
SALMASO N, BOSCAINI A, PINDO M. Unraveling the diversity of eukaryotic microplankton in a large and deep perialpine lake using a high throughput sequencing approach[J]. Frontiers in Microbiology, 2020, 11: 789. [百度学术]
郑敏娜, 梁秀芝, 韩志顺, 康佳惠, 陈燕妮. 不同改良措施对盐碱土土壤细菌群落多样性的影响[J]. 草地学报, 2021, 29(6): 1200-1209. [百度学术]
ZHENG MN, LIANG XZ, HAN ZS, KANG JH, CHEN YN. Effects of different improvement measures on the diversity of soil bacteria communities in salt-alkali soil[J]. Acta Agrestia Sinica, 2021, 29(6): 1200-1209 (in Chinese). [百度学术]
WALLIS PD, HAYNES RJ, HUNTER CH, MORRIS CD. Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE[J]. Applied Soil Ecology, 2010, 46(1): 147-150. [百度学术]
李二阳, 马雪莉, 吕杰, 马媛, 吕光辉. 新疆天山北坡不同盐湖微生物菌群结构及其影响因子[J]. 生态学报, 2021, 41(18): 7212-7225. [百度学术]
LI EY, MA XL, LÜ J, MA Y, LÜ GH. Microbial community structure and its influencing factors of different salt lakes on the northern slope of Tianshan Mountains, Xinjiang[J]. Acta Ecologica Sinica, 2021, 41(18): 7212-7225 (in Chinese). [百度学术]
韩晶, 胡文革, 王艳萍, 武菲, 张晓红, 王翠华. 新疆艾比湖湿地博乐河入口处土壤细菌多样性分析[J]. 微生物学通报, 2014, 41(11): 2244-2253. [百度学术]
HAN J, HU WG, WANG YP, WU F, ZHANG XH, WANG CH. Bacterial diversity in Bole river entrance soil of Ebinur Lakewetland, Xinjiang by 16S rRNA gene sequence analysis[J]. Microbiology China, 2014, 41(11): 2244-2253 (in Chinese). [百度学术]
朱德锐, 韩睿, 石晴, 沈国平, 龙启福, 双杰. 青藏高原盐湖细菌群落与超盐环境因素的相关性[J]. 中国环境科学, 2017, 37(12): 4657-4666. [百度学术]
ZHU DR, HAN R, SHI Q, SHEN GP, LONG QF, SHUANG J. Correlation analysis of bacterial community and hypersaline environmental factors in extreme salt lakes on the Qinghai-Xizang Plateau[J]. China Environmental Science, 2017, 37(12): 4657-4666 (in Chinese). [百度学术]
杜洽军. 中国干旱区土壤微生物多样性格局及影响因素研究[D]. 兰州: 兰州大学博士学位论文, 2021. [百度学术]
DU QJ. The patterns and determinants of soil microbial diversity in China’s drylands[D]. Lanzhou: Doctoral Dissertation of Lanzhou University, 2021 (in Chinese). [百度学术]
刘永红, 房保柱, 高磊, 李丽, 王爽, 蒋宏忱, 李文均. 巴里坤盐湖退化区土壤微生物群落结构及生态功能分析[J]. 微生物学报, 2022, 62(6): 2053-2073. [百度学术]
LIU YH, FANG BZ, GAO L, LI L, WANG S, JIANG HC, LI WJ. Community structure and ecological functions of soil microorganisms in the degraded area of Barkol Lake[J]. Acta Microbiologica Sinica, 2022, 62(6): 2053-2073 (in Chinese). [百度学术]
ADHIKARI NP, ADHIKARI S, LIU XB, SHEN L, GU ZQ. Bacterial diversity in alpine lakes: a review from the third pole region[J]. Journal of Earth Science, 2019, 30(2): 387-396. [百度学术]
JAKUBCZYK D, LESZCZYŃSKA K, PACYGA-PRUS K, KOZAKIEWICZ D, KAZANA-PŁUSZKA W, GEŁEJ D, MIGDAŁ P, KRUSZAKIN R, ZABŁOCKA A, GÓRSKA S. What happens to Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with eukaryotic cells?[J]. BMC Microbiology, 2024, 24(1): 60. [百度学术]
DURANTI S, LUGLI GA, NAPOLI S, ANZALONE R, MILANI C, MANCABELLI L, ALESSANDRI G, TURRONI F, OSSIPRANDI MC, SINDEREN DV, VENTURA M. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(5): 1288-1298. [百度学术]
李怡歆, 陈勇, 刘晓禄, 艾尼江·尔斯满, 徐李娟, 刘倩倩, 包晓玮, 宋素琴. 新疆达坂城盐湖嗜盐细菌分离鉴定及活性分析[J]. 新疆农业科学, 2023, 60(7): 1766-1772. [百度学术]
CHEN YX, LI Y, LIU XL, ERSIMAN AINIJIANG, XU LJ, LIU QQ, BAO XW, SONG SQ. Isolation identification and activity of halophilic bacteria from Dabancheng Salt Lake, Xinjiang[J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1766-1772 (in Chinese). [百度学术]
沈硕. 青藏高原察尔汗盐湖地区可培养中度嗜盐菌的群落结构与多样性[J]. 微生物学报, 2017, 57(4): 490-499. [百度学术]
SHEN S. Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake on Qinghai-Xizang Plateau[J]. Acta Microbiologica Sinica, 2017, 57(4): 490-499 (in Chinese). [百度学术]
刘双霜. 东海海域具潜在应用价值的微生物筛选与鉴定[D]. 上海: 东华大学硕士学位论文, 2010. [百度学术]
LIU SS. Screening and identification on the microorganism with potential applications from the East sea[D]. Shanghai: Master’s Thesis of Donghua University, 2010 (in Chinese). [百度学术]
常显波, 刘文正, 张晓华. 青岛泊子盐场放线菌多样性及其功能酶的筛选[J]. 干旱地区农业研究, 2015, 33(1): 233-237. [百度学术]
CHANG XB, LIU WZ, ZHANG XH. Biodiversity of actinomycetes from Pozi saltern in Qingdao and the screening for functional enzymes[J]. Agricultural Research in the Arid Areas, 2015, 33(1): 233-237 (in Chinese). [百度学术]
MA KJ, YE YL, FU YH, FU GY, SUN C, XU XW. Genomic and phylotypic properties of three novel marine Bacteroidota from bare tidal flats reveal insights into their potential of polysaccharide metabolism[J]. Frontiers in Marine Science, 2023, 10: 1222157. [百度学术]
DAI J, XU MB, PENG F, JIANG F, CHEN X, WANG Z, FANG CX. Pontibacter soli sp. nov., isolated from the soil of a Populus rhizosphere in Xinjiang, China[J]. Antonie Van Leeuwenhoek, 2014, 105(1): 65-72. [百度学术]
ZHANG L, ZHANG QJ, LUO XS, TANG YL, DAI J, LI YW, WANG Y, CHEN G, FANG CX. Pontibacter korlensis sp. nov., isolated from the desert of Xinjiang, China[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(5): 1210-1214. [百度学术]
OREN A. Pyruvate: a key nutrient in hypersaline environments?[J]. Microorganisms, 2015, 3(3): 407-416. [百度学术]
SINGH V, SHOW PL. Biomanufacturing for Sustainable Production of Biomolecules[M]. Singapore: Springer Singapore, 2023. [百度学术]
李文均, 张永光. 拟诺卡氏菌属放线菌研究进展[J]. 微生物学通报, 2016, 43(5): 1123-1135. [百度学术]
LI WJ, ZHANG YG. Advances in studies on the genus Nocardiopsis[J]. Microbiology China, 2016, 43(5): 1123-1135 (in Chinese). [百度学术]
BENÍTEZ-MATEOS AI, PARADISI F. Halomonas elongata: a microbial source of highly stable enzymes for applied biotechnology[J]. Applied Microbiology and Biotechnology, 2023, 107(10): 3183-3190. [百度学术]