摘要
目的
为发掘具有高效降解秸秆能力的微生物资源,提高秸秆在低温条件下的资源化利用效率,对955株大型真菌的木质纤维素降解能力进行了筛选。
方法
采用平板筛选法初步筛选具有羧甲基纤维素酶(carboxymethyl cellulase, CMCase)、木聚糖酶(xylanase)和漆酶(laccase)活性的菌株;通过滤纸崩解试验进一步筛选具备纤维素降解能力的菌株;对筛选得到的菌株进行液体发酵培养,并在第3、6、9和12天测定其酶活性,以筛选出降解木质纤维素能力较强的优势菌株。
结果
筛选得到11株在低温(15 ℃)条件下具有较强木质纤维素降解能力的优势菌株,分别为香栓孔菌(Trametes suaveolens) ZRL20181126、乳白耙齿菌(Irpex lacteus) ZRL20200020、乳白蛋巢菌(Crucibulum leave) ZRL20211707、韧革菌(Stereum hirsutum) ZRL20211291、糙皮侧耳(Pleurotus ostreatus) GX20170029、枫生射脉革菌(Phlebia acerina) ZRL20221433、黄斑蘑菇(Agaricus xanthodermus) QL20170055、灰孔新小层孔菌(Neofomitella fumosipora) GX20170468、多瓣鳞伞(Pholiota multicingulata) GX20170329、褐伞残孔菌(Abortiporus biennis) GX20172649和黄小蜜环菌(Armillaria cepistipes) ZRL20190819。其中,乳白蛋巢菌、黄斑蘑菇和多瓣鳞伞是首次报道具有较高木质纤维素降解能力的菌株。测定结果显示,这11株菌的羧甲基纤维素酶、木聚糖酶和漆酶的最高活性分别达到262.31、91.03和196.50 U/mL。香栓孔菌的羧甲基纤维素酶活性在15 ℃条件下达到168.17 U/mL,显著高于常温条件下的67.88 U/mL;糙皮侧耳的羧甲基纤维素酶活性为150.78 U/mL,漆酶活性为154.32 U/mL;韧革菌的漆酶活性为63.27 U/mL,是常温条件下的2倍。
结论
本研究筛选得到11株在低温(15 ℃)条件下降解木质纤维素能力较强的优势菌株,为寒冷地区木质纤维素资源的降解及低温工业应用提供了重要的理论支持。
随着农业生产的不断发展,我国农作物秸秆的年产量逐年增加,其中玉米秸秆的产量增幅尤为显著。2021年全国秸秆产生量为8.65亿t,其中玉米秸秆产生量达到3.21亿
秸秆主要由纤维素、半纤维素和木质素等复杂有机物组成,这些成分的交联结构使秸秆降解困
近年来,已有研究报道了一些耐低温的微生物能够分解木质纤维素,如在低温条件下纤维素酶活性较高的两形头孢霉(Aspergillus janus)和草酸青霉(Penicillium oxalicum),但低温环境下的大型真菌资源仍然较
1 材料与方法
1.1 供试菌株
本研究所用菌株为中国科学院微生物研究所赵瑞琳课题组分离保藏的955株大型真菌菌株,分别属于担子菌门中137个属的245个物种。
1.2 主要试剂和仪器
酒石酸钾钠、3,5-二硝基水杨酸、羧甲基纤维素钠(carboxymethylcellulose-Na, CMC-Na)、木聚糖和刚果红,上海麦克林生化科技股份有限公司;苯酚,国药集团化学试剂有限公司。
多功能酶标仪,Molecular Devices公司;振荡培养箱,上海旻泉仪器有限公司。
1.3 木质纤维素降解菌初筛
1.3.1 平板法筛选木质纤维素降解菌株
将直径为7 mm的圆形菌块分别接种于羧甲基纤维素钠培养基、愈创木酚PDA培养基和木聚糖培养
(1) |
1.3.2 滤纸崩解法筛选纤维素降解菌株
将初筛获得的菌株接种于液体培养基中,在25 ℃、150 r/min振荡培养3 d,获得菌
1.4 木质纤维素降解菌复筛
粗酶液制备:将5个直径为7 mm的圆形菌块接种到100 mL的玉米秸秆产酶培养基中,15 ℃、150 r/min振荡培养12 d后,8 000 r/min离心10 min,收集发酵上清液保存,用于漆酶、羧甲基纤维素酶和木聚糖酶活性的测
1.5 玉米秸秆失重率测定
称取1.6 g玉米秸秆至100 mL三角瓶中,加入80 mL赫奇逊氏培养基,并用无菌打孔器切取直径为7 mm的圆形菌块5个,接种于培养基中,置于15 ℃、150 r/min振荡培养9 d。培养结束后,将降解后的玉米秸秆残余物在45 ℃烘干至恒重,计算玉米秸秆绝对失重率,如
(2) |
式中:m0为对照组玉米秸秆干重,m1为处理组玉米秸秆干重。对照组除不接种菌块外,其余处理与实验组相同,每份样品设置3个重复。
2 结果与分析
2.1 木质纤维素降解真菌的快速筛选
将活化后的菌株分别进行羧甲基纤维素酶、木聚糖酶和漆酶的平板快速筛选。结果显示,分别产木聚糖酶、漆酶和羧甲基纤维素酶1种酶的菌株分别有26、32和69株;同时产木聚糖酶和漆酶的菌株36株,产木聚糖酶和羧甲基纤维素酶的菌株123株,产漆酶和羧甲基纤维素酶的菌株130株;同时产生羧甲基纤维素酶、木聚糖酶和漆酶3种酶的菌株共208株。其中,将产生羧甲基纤维素酶、木聚糖酶和漆酶的酶指数(EI值)分别排名前10的菌株,以及同时产生这3种酶的菌株共228株作为后续进一步筛选的目标菌株。这228个菌株间的酶活性存在显著差异,具体酶指数原始数据存储在国家微生物科学数据中心(http://nmdc.cn),编号为NMDCX0002085,部分菌株的平板菌落及变色圈见

图1 产木质纤维素酶的真菌菌株平板快速筛选显色分析。A:羧甲基纤维素酶;B:木聚糖酶;C:漆酶。
Figure 1 Chromogenic assay for rapid plate screening of lignocellulolytic enzyme-producing fungal strains. A: Carboxymethyl cellulase (CMCase); B: Xylanase; C: Laccase.
2.2 滤纸崩解试验
为了进一步探查228株菌株对纤维素的降解能力,对其开展了滤纸崩解试验(NMDCX0002085)。228株菌株对滤纸条均有一定程度的崩解能力,其中44个菌株滤纸崩解较为明显(
No. | Strain ID | Degree of filter paper degradation | No. | Strain ID | Degree of filter paper degradation |
---|---|---|---|---|---|
1 | ZRL20170883 | +++++ | 23 | ZRL20181126 | +++ |
2 | ZRL20190819 | +++ | 24 | GX20172649 | ++++ |
3 | ZRL20200578 | +++ | 25 | ZRL20152075 | +++ |
4 | QL20170055 | +++ | 26 | ZRL20211291 | +++ |
5 | GX20170702 | +++ | 27 | ZRL20221232 | +++ |
6 | ZRL20190771 | +++ | 28 | ZRL20210094 | ++++ |
7 | GX20170368 | +++ | 29 | ZRL20201493 | +++ |
8 | ZRL20161117 | ++++ | 30 | ZRL20211252 | +++ |
9 | ZRL20211559 | +++ | 31 | ZRL20210558 | +++ |
10 | ZRL20220275-1 | +++ | 32 | ZRL20210699 | +++ |
11 | ZRL20161815 | +++ | 33 | ZRL20200020 | +++ |
12 | ZRL20221433 | +++ | 34 | GX20170029 | +++ |
13 | GX20170579 | +++ | 35 | ZRL20201260 | ++++ |
14 | ZRL20220770 | +++ | 36 | GX20170468 | +++ |
15 | ZRL20211707 | +++ | 37 | QL20170034 | +++ |
16 | ZRL20190663 | +++ | 38 | ZRL20221226 | +++ |
17 | ZRL20180729 | +++ | 39 | ZRL20180315-3 | +++ |
18 | ZRL20201647 | +++ | 40 | GX20172239 | +++ |
19 | ZRL20201817 | +++ | 41 | ZRL20221312 | +++ |
20 | ZRL20190854 | +++ | 42 | GX20170329 | +++ |
21 | ZRL20161052 | +++ | 43 | ZRL20162143 | +++ |
22 | ZRL20170506 | +++ | 44 | ZRL20201188 | ++++ |
+++:滤纸变为不定形状态;++++:滤纸成团糊状;+++++:液体呈半清状。
+++: Indicates the filter paper becoming deformed; ++++: Indicates the filter paper forming an aggregated, paste-like structure; +++++: Indicates the liquid turning semi-clear.
2.3 木质纤维素酶活测定及目的菌株鉴定
根据木聚糖标准溶液与DNS溶液反应后在540 nm波长处的吸光值,绘制用于木聚糖酶活测定的木聚糖标准曲线:Y=0.247 3X-0.004 4,
对初筛得到的菌株接种到玉米秸秆产酶培养基中进行液体发酵培养,在第3、6、9、12天分别测定其产生的羧甲基纤维素酶、木聚糖酶和漆酶的活性(

图2 不同菌株酶活力测定结果。A:羧甲基纤维素酶;B:木聚糖酶;C:漆酶。
Figure 2 The measured enzyme activity results of different strains. A: Carboxymethyl cellulase (CMCase); B: Xylanase; C: Laccase.
No. | Strain ID | Name | 3 d | 6 d | 9 d | 12 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CMCase activity (U/mL) | Xylanase activity (U/mL) | Laccase activity (U/mL) | CMCase activity (U/mL) | Xylanase activity (U/mL) | Laccase activity (U/mL) | CMCase activity (U/mL) | Xylanase activity (U/mL) | Laccase activity (U/mL) | CMCase activity (U/mL) | Xylanase activity (U/mL) | Laccase activity (U/mL) | |||
1 | ZRL20181126 | 香栓孔菌Trametes suaveolens | 7.03±0.00 | 15.77±1.91 | 6.17±0.00 | 45.63±2.46 | 58.90±3.81 | 100.31±10.91 | 168.17±4.42 | 33.07±4.49 | 21.60±0.00 | 85.86±3.57 | 20.26±1.03 | 21.60±0.00 |
2 | ZRL20200020 |
乳白耙齿菌 Irpex lacteus | 6.79±0.40 | 16.22±1.03 | 4.12±0.59 | 74.73±0.80 | 21.84±2.43 | 1.03±1.78 | 162.84±4.34 | 31.27±0.39 | 5.14±3.56 | 208.06±1.20 | 18.69±1.70 | 5.14±3.56 |
3 | ZRL20211707 | 乳白蛋巢菌Crucibulum laeve | 24.18±2.13 | 11.95±1.95 | 1.03±0.59 | 67.77±1.75 | 47.67±2.17 | 3.09±0.00 | 136.18±1.75 | 39.36±7.41 | 25.72±1.78 | 250.95±1.75 | 18.24±1.95 | 25.72±1.78 |
4 | ZRL20211291 |
韧革菌 Stereum hirsutum | 4.59±0.49 | 2.97±0.95 | 0.00±0.00 | 172.23±2.46 | 21.61±3.71 | 15.43±4.36 | 113.68±2.81 | 43.40±1.91 | 63.27 ± 2.18 | 208.06±1.20 | 74.18±2.06 | 6.17 ± 0.00 |
5 | GX20170029 |
糙皮侧耳 Pleurotus ostreatus | 8.76±0.49 | 0.00±0.00 | 6.17±0.00 | 29.63±0.49 | 4.65±1.43 | 58.64±21.82 | 150.78±1.45 | 27.68±5.35 | 154.32±0.00 | 165.86±5.40 | 8.13±2.72 | 154.32±0.00 |
6 | ZRL20221433 |
枫生射脉革菌 Phlebia acerina | 8.42±1.97 | 4.65±1.43 | 0.00±0.00 | 57.11±1.97 | 9.03±1.91 | 1.54±2.18 | 124.35±2.44 | 38.91±0.67 | 49.38±5.35 | 262.31±0.70 | 47.22±6.12 | 49.38±5.35 |
7 | QL20170055 |
黄斑蘑菇 Agaricus xanthodermus | 5.29±2.46 | 12.74±0.48 | 0.00±0.00 | 70.33±3.93 | 11.05±12.39 | 18.52±4.36 | 50.38±1.61 | 38.68±2.81 | 188.27±6.17 | 25.34±2.24 | 43.40±5.52 | 188.27±6.17 |
8 | GX20170468 | 灰孔新小层孔菌Neofomitella fumosipora | 0.00±0.00 | 8.81±3.46 | 2.06±1.57 | 0.74±0.73 | 9.70±2.94 | 0.00±0.00 | 15.84±2.13 | 52.61±12.90 | 2.06±1.78 | 52.61±3.71 | 91.03±0.78 | 2.06±1.78 |
9 | GX20170329 |
多瓣鳞伞 Pholiota multicingulata | 12.82±2.44 | 8.58±1.03 | 3.08±0.00 | 47.37±1.84 | 77.32±7.42 | 2.06±1.78 | 31.60±2.81 | 51.80±16.01 | 3.08±0.00 | 15.55±1.03 | 5.44±2.37 | 3.08±0.00 |
10 | GX20172649 |
褐伞残孔菌 Abortiporus biennis | 3.55±0.00 | 3.98±5.24 | 7.72±1.09 | 49.81±2.46 | 11.05±0.95 | 57.10±2.18 | 111.83±1.06 | 39.13±12.52 | 186.21±8.91 | 158.67±2.09 | 41.16±1.56 | 186.21±8.91 |
11 | ZRL20190819 | 黄小蜜环菌Armillaria cepistipes | 5.98±1.48 | 0.00±0.00 | 0.00±0.00 | 245.97±0.49 | 10.04±3.34 | 47.84±6.55 | 66.85±0.70 | 20.71±4.10 | 62.76±4.71 | 41.81±1.84 | 32.17±3.71 | 62.76±4.71 |

图3 筛选菌株在漆酶、纤维素酶和木聚糖酶活性中的韦恩图
Figure 3 Venn diagram showing the overlap of strains with laccase, CMCase, and xylanase activities.
2.4 玉米秸秆失重率测定
菌株对秸秆干重降解率的测定结果表明,各菌株降解能力存在显著差异(

图4 10株真菌菌株降解玉米秸秆后的干重降解率
Figure 4 Dry weight degradation rate of corn straw by 10 fungal strains.
3 讨论
本研究系统性探讨了955株大型真菌菌株在15 ℃低温条件下的酶活性,这些菌株分别属于担子菌门中137个属的245个物种,包括漆酶、羧甲基纤维素酶和木聚糖酶的分泌水平,筛选出11株具有显著降解能力的菌株,分属于11个物种,从而揭示了不同菌株在低温环境中的适应性及其潜在应用价值。
本研究首次报告了C. leave、P. multicingulata和A. xanthodermus在木质纤维素降解方面的较高能力,且在15 ℃低温条件下表现出显著的酶活性(
在以往的研究中,T. suaveolens、I. lacteus、S. hirsutum、P. ostreatus、P. acerina、N. fumosipora、A. biennis和A. cepistipes这8个物种在常温条件下都表现出较高的木质纤维素降解能
尽管本研究筛选出了一些具有较强降解木质纤维素能力的低温适应性大型真菌,但这些菌株在低温下表现出优异降解性能的具体机制仍需进一步探讨。木质纤维素的降解主要依赖于纤维素降解酶、半纤维素降解酶以及木质素降解酶(如漆酶)的协同作用。尤其是T. suaveolens在15 ℃条件下表现出较高的羧甲基纤维素酶活性(168.17 U/mL),相较于柳卓含
一般来说,低温通常对酶活性具有抑制作用。本研究通过对大量大型真菌菌株在低温环境中的酶活性进行系统性筛选和检测,发现了一批对低温环境具有极强适应性且表现出高效漆酶活性的物种和菌株。这些工作填补了相关研究空白,为大型真菌木质纤维素降解特性在低温环境中的应用提供了重要的数据支持,也为寒冷地区秸秆等农业废弃物的降解及低温工业应用提供了重要的理论支持。
4 结论
本研究对来自245个大型真菌物种的955个菌株进行了木质纤维素降解酶活性筛选,获得了11株在低温(15 ℃)条件下表现出优异木质纤维素降解能力的菌株,分别为T. suaveolens、I. lacteus、C. leave、S. hirsutum、P. ostreatus、P. acerina、A. xanthodermus、N. fumosipora、P. multicingulata、A. biennis和A. cepistipes等11个物种。其中,C. leave、A. xanthodermus和P. multicingulata是首次被报道具有较高的木质纤维素降解能力;进一步分析发现,T. suaveolens在低温条件下同时具备较高的纤维素、半纤维素和木质素降解能力。P. ostreatus和S. hirsutum在低温条件下分别表现出较高的羧甲基纤维素酶、木聚糖酶和漆酶活性,这些结果进一步说明大型真菌在低温环境中仍能保持较高的木质纤维素降解能力。本研究为寒冷地区玉米秸秆的生物降解提供了重要的微生物资源,拓展了低温木质纤维素降解菌的种类,为秸秆资源化利用提供了科学依据和理论支持,具有实际应用潜力。
作者贡献声明
刘明月:实验设计、实验操作、数据处理、文章撰写及修改;王爱萍:监督指导,修改论文;赵瑞琳:提供材料、实验指导、论文修改润色。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
《全国农作物秸秆综合利用情况报告》发布[J]. 中国农技推广, 2022, 38(10): 85. [百度学术]
WANG S, HUANG XL, ZHANG Y, YIN CB, RICHEL A. The effect of corn straw return on corn production in Northeast China: an integrated regional evaluation with meta-analysis and system dynamics[J]. Resources, Conservation and Recycling, 2021, 167: 105402. [百度学术]
江晓东, 迟淑筠, 王芸, 宁堂原, 李增嘉. 少免耕对小麦/玉米农田玉米还田秸秆腐解的影响[J]. 农业工程学报, 2009, 25(10): 247-251. [百度学术]
JIANG XD, CHI SJ, WANG Y, NING TY, LI ZJ. Effect of less tillage and no-tillage patterns on decomposition of returned maize straw in wheat/maize system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10): 247-251 (in Chinese). [百度学术]
钟方潜, 苏琪骅, 周任君, 易明建, 吴其重, 颜妍. 秸秆焚烧对区域城市空气质量影响的模拟分析[J]. 气候与环境研究, 2017, 22(2): 149-161. [百度学术]
ZHONG FQ, SU QH, ZHOU RJ, YI MJ, WU QZ, YAN Y. Impact of crop straw burning on urban air quality based on WRF-chem simulations[J]. Climatic and Environmental Research, 2017, 22(2): 149-161 (in Chinese). [百度学术]
张根, 陈宝锐, 陈涛, 谢怡茵, 薛颖昊, 魏政. 农作物秸秆木质纤维素生物降解酶及降解菌的研究进展[J]. 农学学报, 2023, 13(2): 24-32. [百度学术]
ZHANG G, CHEN BR, CHEN T, XIE YY, XUE YH, WEI Z. Research progress on enzymes and microorganisms for biodegradation of lignocelluloses from crop straw[J]. Journal of Agriculture, 2023, 13(2): 24-32 (in Chinese). [百度学术]
孙竹文. 芦苇木质纤维素高效降解工艺探索及优化[D]. 咸阳: 西北农林科技大学硕士学位论文, 2023. [百度学术]
SUN ZW. Research and optimization of efficient degradationtechnology of reed lignocellulose[D]. Xianyang: Master’s Thesis of Northwest A&F University, 2023 (in Chinese). [百度学术]
YU Q, LIU RH, LI K, MA RJ. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 51-58. [百度学术]
SÁNCHEZ C. Lignocellulosic residues: biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27(2): 185-194. [百度学术]
CHEN LZ, TANG T, WANG Z, ZHAO N, WU S, LIU YS. A novel fungal and bacterial consortium promotes the degradation of rice straw: conditions optimization and degradation properties[J]. International Biodeterioration & Biodegradation, 2024, 194: 105875. [百度学术]
MARTINEZ D, LARRONDO LF, PUTNAM N, GELPKE MDS, HUANG K, CHAPMAN J, HELFENBEIN KG, RAMAIYA P, DETTER JC, LARIMER F, COUTINHO PM, HENRISSAT B, BERKA R, CULLEN D, ROKHSAR D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J]. Nature Biotechnology, 2004, 22(6): 695-700. [百度学术]
张漾泓, 张少冰, 张家顺, 马江山, 刘高强. 一株新分离的云芝栓孔菌Z-1应用于木质素降解及染料脱色[J]. 菌物学报, 2021, 40(7): 1854-1868. [百度学术]
ZHANG YH, ZHANG SB, ZHANG JS, MA JS, LIU GQ. A newly isolated Trametes versicolor Z-1 and its application to lignin degradation and dye decolorization[J]. Mycosystema, 2021, 40(7): 1854-1868 (in Chinese). [百度学术]
JIANG GF, CHEN PJ, BAO YZ, WANG XF, YANG TJ, MEI XL, BANERJEE S, WEI Z, XU YC, SHEN QR. Isolation of a novel psychrotrophic fungus for efficient low-temperature composting[J]. Bioresource Technology, 2021, 331: 125049. [百度学术]
李娜, 王迪, 任翠梅, 芮海英, 于吉东, 杨柳. 1株耐低温玉米秸秆纤维素降解真菌的分离与鉴定[J]. 玉米科学, 2024, 32(8): 114-119. [百度学术]
LI N, WANG D, REN CM, RUI HY, YU DJ, YANG L. Isolation and identification of a low temperature-tolerant maize stalk cellulose-degrading fungus[J]. Journal of Maize Sciences, 2024, 32(8): 114-119 (in Chinese). [百度学术]
穆春雷, 武晓森, 李术娜, 马鸣超, 李俊, 沈德龙, 朱宝成. 低温产纤维素酶菌株的筛选、鉴定及纤维素酶学性质[J]. 微生物学通报, 2013, 40(7): 1193-1201. [百度学术]
MU CL, WU XL, LI SN, MA MC, LI J, SHEN DL, ZHU BC. Screening and identification of a cold-adapted cellulase-producing strain and characterization of cellulase[J]. Microbiology China, 2013, 40(7): 1193-1201 (in Chinese). [百度学术]
杨会敏, 李伟, 汪世华, 尹文兵. 耐低温玉米秸秆高效腐解真菌菌株的筛选及评价[J/OL]. 菌物研究, [2025-03-18]. http://kns.cnki.net/kcms/detail/22.1352.S.20230421.1331.002.html. [百度学术]
YANG HM, LI W, WANG SH, YI WB. Screening and evaluation of fungal strains for efficient decomposition of corn straw at low temperature[J/OL]. Journal of Fungal Research, [2025-03-18]. http://kns.cnki.net/kcms/detail/22.1352.S.20230421.1331.002.html(in Chinese). [百度学术]
王宜磊, 朱陶, 邓振旭. 愈创木酚法快速筛选漆酶产生菌[J]. 生物技术, 2007, 17(2): 40-42. [百度学术]
WANG YL, ZHU T, DENG ZX. Using O-methoxyphenol to fast screen laccase produced fungus[J]. Biotechnology, 2007, 17(2): 40-42 (in Chinese). [百度学术]
FLORENCIO C, COURI S, FARINAS CS. Correlation between agar plate screening and solid-state fermentation for the pprediction of cellulase production by Trichoderma strains[J]. Enzyme Research, 2012, 2012: 793708. [百度学术]
李建树, 孙丽坤, 韩向敏, 张明盩. 高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J]. 甘肃农业大学学报, 2020, 55(3): 29-37. [百度学术]
LI JS, SUN LK, HAN XM, ZHANG MC. Screening, identification and enzyme activity determination of high temperature cellulose degrading microorganism[J]. Journal of Gansu Agricultural University, 2020, 55(3): 29-37 (in Chinese). [百度学术]
李子婧, 刘帆, 汤胜, 马庆旭, 韩科峰, 吴良欢. 纤维素降解菌长枝木霉菌(Trichoderma longibrachiatum) ZJ-10的筛选及产酶条件优化[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 614-624. [百度学术]
LI ZJ, LIU F, TANG S, MA QX, HAN KF, WU LH. Screening of cellulose-degrading fungus Trichoderma longibrachiatum ZJ-10 and optimization of enzyme production conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 614-624 (in Chinese). [百度学术]
王炳坤. 玉米秸秆低温降解菌复合菌剂制备及应用效果研究[D]. 长春: 吉林农业大学硕士学位论文, 2022. [百度学术]
WANG BK. Study on preparation and application effect of corn stalk low temperature degrading bacteria compound microbial inoculum[D]. Changchun: Master’s Thesis of Jilin Agricultural University, 2022 (in Chinese). [百度学术]
刘霄. 高效降解玉米秸秆复合菌群的构建及其降解效果研究[D]. 哈尔滨: 东北农业大学硕士学位论文, 2019. [百度学术]
LIU X. Construction and effectiveness of a high-efficient microbial consortium for corn straw degradation[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2019 (in Chinese). [百度学术]
于素素. 低温玉米秸秆降解菌的筛选及其复合菌系产酶条件优化[D]. 沈阳: 沈阳农业大学硕士学位论文, 2019. [百度学术]
YU SS. Screening of low-temperature corn straw degradation strains andoptimization of enzyme production conditions of complex strain[D]. Shenyang: Master’s Thesis of Shenyang Agricultural University, 2019 (in Chinese). [百度学术]
杨艳铭. 秸秆降解多功能复合菌剂筛选、降解效果研究及Catellatospora tritici多相分类鉴定[D]. 哈尔滨: 东北农业大学硕士学位论文, 2022. [百度学术]
YANG YM. Screening and degradation effect of multifunctional compound bacteria forstraw degradation and identifying Catellatospora tritici sp. nov. by polyphasictaxonomy[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2022 (in Chinese). [百度学术]
安琪, 员瑗, 戴玉成, 韩美玲. 木质纤维素降解真菌菌株筛选及对玉米秸秆的生物降解研究[J]. 菌物学报, 2023, 42(3): 782-792. [百度学术]
AN Q, YUN Y, DAI YC, HAN ML. Screening of lignocellulose degrading fungal strains and their biodegradation of corn straw[J]. Mycosystema, 2023, 42(3): 782-792 (in Chinese). [百度学术]
杨梦雅, 闫非凡, 闫美超, 王贺, 朴仁哲, 崔宗均, 赵洪颜. 低温木质纤维素分解复合菌系PLC-8对玉米秸秆的分解特性[J]. 中国农业科技导报, 2021, 23(1): 73-81. [百度学术]
YANG MY, YAN FF, YAN MC, WANG H, PIAO RZ, CUI ZJ, ZHAO HY. Decomposition characteristics of corn stover by microbial consortium PLC-8 with lignocellulose-degradation at low temperature[J]. Journal of Agricultural Science and Technology, 2021, 23(1): 73-81 (in Chinese). [百度学术]
赵龙妹, 张兰, 曹慧, 董惠心, 杜东晓, 李旺, 李元晓, 曹平华, 何万领. 土壤中产木聚糖酶菌株的筛选及发酵条件优化[J]. 微生物学通报, 2021, 48(10): 3506-3519. [百度学术]
ZHAO LM, ZHANG L, CAO H, DONG HX, DU DX, LI W, LI YX, CAO PH, HE WL. Screening and fermentation conditions optimization of xylanase-producing strain from soil[J]. Microbiology China, 2021, 48(10): 3506-3519 (in Chinese). [百度学术]
宋自力, 张伟, 廖头根, 汪世华, 李伟, 尹文兵. 血红密孔菌高产漆酶菌株的筛选及其对烟梗的生物降解[J]. 菌物学报, 2019, 38(3): 381-392. [百度学术]
SONG ZL, ZHANG W, LIAO TG, WANG SH, LI W, YIN WB. Highly laccase-yielding strains of Pycnoporus sanguineus and their activities on tobacco stem biodegradation[J]. Mycosystema, 2019, 38(3): 381-392 (in Chinese). [百度学术]
HILDÉN K, MÄKELÄ MR, LANKINEN P, LUNDELL T. Agaricus bisporus and related Agaricus species on lignocellulose: production of manganese peroxidase and multicopper oxidases[J]. Fungal Genetics and Biology, 2013, 55: 32-41. [百度学术]
戴建清. 双孢蘑菇W192液体菌种摇瓶培养过程中的生理生化分析[J]. 福建农业学报, 2021, 36(2): 182-187. [百度学术]
DAI JQ. Physiological and biochemical properties of Agaricus bisporus in shaking flask culture[J]. Fujian Journal of Agricultural Sciences, 2021, 36(2): 182-187 (in Chinese). [百度学术]
白长胜, 刘秋瑾, 尹珺伊, 王欢, 田秋丰, 邱景会, 汤继龙, 史同瑞. 产木质纤维素降解酶真菌的筛选及产酶特性[J]. 微生物学通报, 2023, 50(3): 1098-1110. [百度学术]
BAI CS, LIU QJ, YIN JY, WANG H, TIAN QF, QIU JH, TANG JL, SHI TR. Screening and enzymatic characterization of the fungal strains producing lignocellulose-degrading enzymes[J]. Microbiology China, 2023, 50(3): 1098-1110 (in Chinese). [百度学术]
AN Q, SHI WY, HE YX, HAO WY, MA KY, CHEN X, YAN XY, BIAN LS, LI CS, HAN ML. Evaluation of the capacity of laccase secretion of four novel isolated white-rot fungal strains in submerged fermentation with lignocellulosic biomass[J]. BioResources, 2021, 16(4): 6706. [百度学术]
柳卓含, 律凤霞. 野生大型真菌鉴定及其木质纤维素酶对玉米秸秆降解效果的影响[J]. 中国食用菌, 2024, 43(5): 80-85. [百度学术]
LIU ZH, LV FX. Identification of wild macrofungi and the effect of lignocellulase on the degradation of corn stover[J]. Edible Fungi of China, 2024, 43(5): 80-85 (in Chinese). [百度学术]
THAKUR N, TRIPATHI A. Comparative analysis of extracellular ligninolytic enzymes in wild white-rot fungi Stereum hirsutum and brown-rot fungi Postia placenta collected from Shilly forest of Himachal Pradesh[J]. Asia Life Sciences, 2020, 12: 16-27. [百度学术]
SAHU N, MERÉNYI Z, BÁLINT B, KISS B, SIPOS G, OWENS RA, NAGY LG. Hallmarks of Basidiomycete soft- and white-rot in wood-decay-omics data of two Armillaria species[J]. Microorganisms, 2021, 9(1): 149. [百度学术]
刘晓敏, 陈向东, 张薇薇, 王忠巧, 宋明海, 兰进, 马琳. 不同蜜环菌菌株的鉴定及胞外酶活性研究[J]. 中国农学通报, 2020, 36(24): 99-106. [百度学术]
LIU XM, CHEN XD, ZHANG WW, WANG ZQ, SONG MH, LAN J, MA L. Identification of different Armillaria spp. strains and extracellular enzyme activity[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 99-106 (in Chinese). [百度学术]
张富美, 侯瑞. 一株槭射脉革菌MY51的分离鉴定及对染料的脱色能力[J]. 应用与环境生物学报, 2020, 26(2): 332-338. [百度学术]
ZHANG FM, HOU R. Isolation and identification of strain Phlebia acerina MY51 and its decolorization to dyes[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 332-338 (in Chinese). [百度学术]
肖瑶, 杨建远, 张炳火, 王萍兰, 杨云仙, 查代明. 白耙齿菌F036液态发酵产纤维素酶条件优化及纤维素酶酶学性质初步研究[J]. 食品与发酵工业, 2019, 45(6): 70-76. [百度学术]
XIAO Y, YANG JY, ZHANG BH, WANG PL, YANG YX, ZHA DM. Fermentation conditions for cellulase production by Irpex lacteus F036 and its enzymatic properties[J]. Food and Fermentation Industries, 2019, 45(6): 70-76 (in Chinese). [百度学术]
孙悦, 胡渤洋, 徐鑫, 刘子璐, 李小凤, 张国庆. 二年残孔菌的培养条件优化及其液体发酵产物的抗氧化及漆酶活性[J]. 应用与环境生物学报, 2020, 26(2): 306-311. [百度学术]
SUN Y, HU BY, XU X, LIU ZL, LI XF, ZHANG GQ. Culture condition optimization, antioxidant capacity, and laccase production of Abortiporus biennis[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 306-311 (in Chinese). [百度学术]
LIU Y, JIA KZ, CHEN HY, WANG ZL, ZHAO W, ZHU LW. Cold-adapted enzymes: mechanisms, engineering and biotechnological application[J]. Bioprocess and Biosystems Engineering, 2023, 46(10): 1399-1410. [百度学术]
MAGGI O, TOSI S, ANGELOVA M, LAGOSTINA E, FABBRI AA, PECORARO L, ALTOBELLI E, PICCO AM, SAVINO E, BRANDA E, TURCHETTI B, ZOTTI M, VIZZINI A, BUZZINI P. Adaptation of fungi, including yeasts, to cold environments[J]. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2013, 147(1): 247-258. [百度学术]