摘要
目的
分离毛竹(Phyllostachys edulis)根际兼备溶解无机磷和有机磷能力的菌株,挖掘菌株解磷相关的功能基因,为利用解磷微生物活化土壤磷库、提高土壤磷有效性奠定基础。
方法
以亚热带地区重要经济林木——毛竹为研究对象,采用高通量筛选技术分离毛竹根际解磷菌。通过微孔板培养和土壤接种实验,分别探究碳源类型和土壤磷含量对其解磷能力的影响。采用全基因组测序技术解析其与解磷相关的基因,以探究其解磷机制。
结果
筛选出一株多途径解磷的细菌,命名为zafu-3,鉴定为木糖氧化无色杆菌(Achromobacter xylosoxidans)。该菌株能利用葡萄糖和柠檬酸等4种碳源来溶解Ca3(PO4)2、FePO4、AlPO4、卵磷脂和植酸钙,最佳解磷效果为32.75 mg/(L·d)。与对照组相比,接种菌株zafu-3后,土壤酸性和碱性磷酸酶活性分别增加了4.21%-33.88%和13.54%-112.06%,特别是在高磷土壤中,土壤pH值降低了0.04,有效磷含量增加了16.32%。全基因组结果表明,该菌株包含了35个参与磷酸水解酶编码的基因和53个参与有机酸代谢的编码基因。此外,菌株zafu-3具有产生产吲哚乙酸、铁载体和降解木质素的相关功能基因。
结论
菌株zafu-3可通过分泌多种有机酸和磷酸酶直接溶解无机和有机磷源,并可能通过促进植物生长间接激活土壤磷库,这为多功能生物肥料的开发提供了重要的菌种资源和科学依据。
磷(phosphorus, P)是植物生长所必需的元素,直接决定了植物生产力与生态功能的发挥。土壤总磷含量约为0.05-3.00 g/kg,但大多数磷以难溶解的形式存在,这限制了植物对磷的直接吸收与利
根际微生物是驱动土壤元素循环和植物养分获取的引擎。解磷菌是辅助植物获取土壤磷素的主要微生物类群。解磷微生物活化土壤中的磷主要包括2个过程:(1) 释放多种磷酸酶矿化有机磷;(2) 分泌有机酸、质子以及自身的呼吸作用释放并溶解于土壤溶液中的CO2,从而降低土壤pH,增加无机磷的溶解
毛竹(Phyllostachys edulis)是我国竹林资源的主体,面积为527.76万h
本研究以3种难溶性无机磷和2种难溶性有机磷为磷源,分离毛竹根际解磷细菌,并采用微孔板培养和土壤接种实验探究其解磷效果,进一步采用全基因组测序技术,分析其解磷机制及植物促生潜力。本研究旨在分离出能够同时溶解多种无机磷和有机磷且具备多种促生特性的菌株,并挖掘菌株编码有机酸和磷酸酶等解磷相关的基因,为利用这些菌株提高土壤有效磷含量奠定基础。
1 材料与方法
1.1 样地概况和样品采集
试验样地位于浙江省杭州市临安区毛竹林试验平台(30°14′N,119°42′E)。该地区地处中亚热带季风气候区,土壤为黄土壤,pH 4.3±0.1。于2022年10月,在试验样地随机设置3个20 m×20 m的样方。在样方内随机选择5株胸径相近(11.9±0.6) cm的毛竹,沿着毛竹基部挖取根系样品,随后轻轻抖动根系以去除其上黏附的大块土壤。根系样品置于无菌采样袋中,低温运至实验室立即进行解磷微生物的分离。此外,从该地区低磷(low phosphorus, LP)样地及其邻近的高磷(high phosphorus, HP)毛竹林样地,各自采集了5份林间土壤样本,分别混匀、风干后过20目筛,用于探究解磷菌对土壤磷库的活化潜力。LP和HP样地土壤总磷含量分别为(0.55±0.10) g/kg和(0.60±0.80) g/kg,有效磷含量无显著差异,均为(27.20±4.54) mg/kg。
1.2 根际解磷微生物分离
采用微孔板高通量筛选
1.3 菌株zafu-3的形态及生长特征
菌株zafu-3接种在胰蛋白胨大豆肉汤固体(trypticase soy agar, TSA) (青岛高科技工业园海博生物技术有限公司)培养基上,观察其菌落特征;以无碳源的PVK和MG培养基为基础,探究菌株zafu-3对15种常见的毛竹根系分泌物中碳
菌株zafu-3接种至TSB培养基中,30 ℃、180 r/min振荡培养3 h后,30 ℃、3 000 r/min离心10 min,去上清,菌体用无菌水进行重悬,调整菌液浓度至OD600值为0.1,以便进行定量分析。以体积分数5%的接种量将OD600值为0.1的菌液接种至新鲜的TSB培养基中,30 ℃、180 r/min振荡培养,每隔3-9 h测定菌液在OD600处的吸光度数值,并通过稀释涂布法,在TSA培养基上对菌液中的细胞数量进行计数,绘制菌株的生长曲线。每次取样设置3个重复,用未接菌的TSB培养基对紫外分光光度计进行校正。
1.4 菌株zafu-3的解磷能力及促生特性
以葡萄糖、蔗糖、木聚糖和柠檬酸为碳源时,菌株在解磷培养基上形成明显的溶磷圈,用溶解圈直径(D)与菌株直径(d)的比值(D/d)初步判断菌株的解磷能力。进一步,将菌株接种在添加这4种碳源的PVK1、PVK2、PVK3、MG1和MG2液体培养基中,探究碳源对菌株解磷能力的影响。每个处理设置6个重复,以不接菌的培养基作为空白对照。所有样本在30 ℃、180 r/min振荡培养3 d后,采用钼锑抗显色法测定菌株的解磷能
1.5 菌株zafu-3对土壤磷素的活化
土壤样品在121 ℃灭菌5次,每次30 min,每次间隔12 h。实验在300 mL的玻璃培养瓶中进行。每个培养瓶中加入30 g LP或HP样地的土壤。然后,将1 mL处于指数期的菌液在30 ℃、3 000 r/min离心10 min后,与用等量无菌水重悬,将其接种至土壤中,使得终浓度为1
1.6 菌株zafu-3的全基因组测序及分析
将菌株zafu-3接种至装有50 mL TSB的100 mL锥形瓶中,在30 ℃、180 r/min振荡培养12 h后,于30 ℃、12 000 r/min离心10 min,去上清,收集菌体。通过细菌DNA提取试剂盒(磁珠法) (上海美吉生物医药科技有限公司)对菌株zafu-3进行基因组DNA提取。对菌株基因组DNA进行定量后,高质量的DNA用于建库测序。使用Sequel IIe测序仪(PacBio公司)和Illumina测序仪[因美纳(中国)科学器材有限公司]进行全基因组测序。将DNA片段化为约400 bp片段,并使用琼脂糖凝胶鉴定片段的大小和分布,之后进行Illumina文库制备;将基因组DNA片段化为约10 kb的片段,然后根据PacBio说明书进行末端补平,两端分别连接环状单链,构建PacBio文库。在Illumina测序仪上对文库分别进行双端测序(2×150 bp),通过高通量测序技术测定其序
1.7 统计分析
数据采用SPSS 22.0进行分析,运用单因素方差分析(one-way ANOVA)检测不同磷源下菌株的解磷能力差异、不同碳源下菌株的解磷能力差异,以及不同磷添加水平和溶磷菌接种对土壤理化性质的影响,具体包括土壤pH、ACP活性、ALP活性和有效磷含量,并采用最小显著差值法(least significant difference, LSD)进行显著性分析(α=0.05),采用Logistic模型对菌株的OD600值和CFU对数值进行非线性拟合。采用Origin 2024对数据进行绘图,图中所用数据均为平均值±标准差。
2 结果与分析
2.1 解磷菌株的形态及培养特征
从毛竹根际分离得到一株能活化Ca3(PO4)2、FePO4、AlPO4、卵磷脂和植酸钙5种磷源的菌株zafu-3。该菌株可在pH 4.0-10.0、6%以下的NaCl浓度条件下生长。菌株zafu-3在6-24 h快速增长,培养24 h后,菌株OD600值为3.21,细胞数量为3.15×1

图1 菌株zafu-3的形态与培养特征及其解磷能力。A:生长曲线(1:菌落形态;2:光学显微镜下的细胞形态);B:添加不同碳源后菌株解磷能力的变化(1:不同碳源下菌株溶解5种磷源的总量),不同小写字母和斜体小写字母分别代表组内和组间显著差异(P<0.05)。
Figure 1 The morphological and cultural characteristics and the phosphorus solubilization ability of strain zafu-3. A: Growth curves (1: Colony morphology; 2: Cell morphology under the light microscope); B: P solubilizing activity of strain zafu-3 cultured with different carbon sources (1: Total content of five P sources solubilized among different carbon sources). Different lowercase letters and italic lowercase letters indicated significant differences among groups and between different groups respectively (P<0.05).
添加不同碳源后菌株zafu-3在5种磷源培养基中的生长情况如
Carbon source | PVK1 | PVK2 | PVK3 | MG1 | MG2 |
---|---|---|---|---|---|
Carbohydrate | |||||
Glucose | +++* | +++* | ++* | ++* | +++* |
Fructose | +++ | + | - | ++ | ++ |
Sucrose | ++ | +* | - | +* | ++* |
Cellulose | - | - | + | - | - |
Xylan | +* | - | - | +* | ++* |
Amino acid | |||||
Glutamate | - | - | ++ | ++ | +++ |
Serine | - | - | - | - | - |
Proline | ++ | ++ | + | +++ | ++ |
Isoleucine | ++ | ++ | ++ | ++ | ++ |
Lysine | ++ | ++ | +++ | - | ++ |
Organic acids | |||||
Oxalic acid | +++ | +++ | ++ | +++ | ++ |
Malic acid | + | - | - | + | - |
Citric acid | +++* | ++* | - | - | ++* |
Succinic acid | +++ | +++ | ++ | +++ | +++ |
Lactic acid | - | - | - | - | - |
-: Negative; +, ++, +++: Positive; * indicated the presence of a P-solubilizing circle on the medium.
2.2 菌株zafu-3的解磷能力与促生特性
以葡萄糖、蔗糖、木聚糖和柠檬酸为碳源时,菌株在部分解磷培养基上形成明显的溶磷圈(

图2 菌株zafu-3的促生特性。A:以柠檬酸为唯一碳源降解植酸钙;B:木质素降解;C:IAA产生。
Figure 2 The plant growth-promoting properties of strain zafu-3. A: Degradation of calcium phytate using citric acid as the sole carbon source; B: Degradation of lignin; C: Generation of IAA.
2.3 菌株zafu-3对土壤磷有效性的调控
菌株zafu-3接种至土壤中30 d后,其在LP和HP土壤中的数量分别为68.34 CFU/g和162.72 CFU/g。在HP土壤中接菌后,土壤pH值与对照相比降低了0.04,而LP土壤pH值几乎不变(

图3 接种菌株zafu-3后低磷和高磷土壤的理化性质。A:pH;B:酸性磷酸酶活性;C:碱性磷酸酶活性;D:有效磷含量。不同小写字母表示不同处理之间的显著性差异(P<0.05)。
Figure 3 The soil physicochemical properties of LP and HP after the inoculation with strain zafu-3. A: pH; B: ACP activity; C: ALP activity; D: Available P content. Different lowercase letters indicated significant differences in different conditions (P<0.05).
2.4 菌株zafu-3全基因组特征和KEGG分析
基于16S rRNA基因序列的系统发育树分析,结果表明菌株zafu-3与木糖氧化无色杆菌(Achromobacter xylosoxidans)在一起形成稳定的分支(

图4 基于16S rRNA基因序列的系统发育树及与近缘菌株的ANI值。括号中为菌株的GenBank序列号,标尺0.01表示每个位点的核苷酸替换率,ANI值对比菌株与发育树菌株水平对应。
Figure 4 The phylogenetic tree of strain zafu-3 based on 16S rRNA gene sequences and ANI values among strain zafu-3 and other closely related four strains. The serial number in brackets was the GenBank accession number of the strain. Bar indicated 0.01 nucleotide substitutions per site. The strains with comparative ANI values horizontally corresponded to the strains of the phylogenetic tree.
全基因组结果表明,菌株zafu-3由一个环状染色体组成,其全基因组序列长度为6 650 369 bp,G+C比例为67.49%,包含了6 009条编码基因。全基因组有6条KEGG一级分类通路,共包含42条KEGG二级分类通路(

图5 菌株zafu-3的KEGG通路。不同颜色代表KEGG通路的一级分类;纵坐标代表KEGG通路的二级分类;横坐标代表该分类的基因数量。
Figure 5 The KEGG pathways in strain zafu-3. Different column colors indicated the level 1 classification of KEGG pathway; The ordinate indicated the level 2 classification of KEGG pathway; The abscissa indicated the number of genes under the annotation of this classification.
2.5 菌株zafu-3编码有机酸和水解酶的基因
菌株zafu-3有53个参与有机酸代谢的编码基因,这些基因共合成26种与有机酸代谢相关的酶且均属于代谢通路(
Genes | KEGG ID | Annotation | EC number | Gene numbers |
---|---|---|---|---|
Organic acid | ||||
ilvB | K01652 | Acetolactate synthase I/II/III large subunit | 2.2.1.6 | 8 |
argD | K00821 | Acetylornithine/N-succinyldiaminopimelate aminotransferase | 2.6.1.11; 2.6.1.17 | 2 |
leuA | K01649 | 2-isopropylmalate synthase | 2.3.3.13 | 2 |
argJ | K00620 | Glutamate N-acetyltransferase/amino-acid N-acetyltransferase | 2.3.1.35; 2.3.1.1 | 1 |
aspB | K00812 | Aspartate aminotransferase | 2.6.1.1 | 4 |
argC | K00145 | N-acetyl-gamma-glutamyl-phosphate reductase | 1.2.1.38 | 2 |
ilvD | K01687 | Dihydroxy-acid dehydratase | 4.2.1.9 | 2 |
ilvE | K00826 | Branched-chain amino acid aminotransferase | 2.6.1.42 | 2 |
icd | K00031 | Isocitrate dehydrogenase | 1.1.1.42 | 2 |
ilvH | K01653 | Acetolactate synthase I/III small subunit | 2.2.1.6 | 1 |
ilvC | K00053 | Ketol-acid reductoisomerase | 1.1.1.86 | 1 |
argE | K01438 | Acetylornithine deacetylase | 3.5.1.16 | 4 |
gltA | K01647 | Citrate synthase | 2.3.3.1 | 4 |
argAB | K14682 | Amino-acid N-acetyltransferase | 2.3.1.1 | 1 |
ectB | K00836 | Diaminobutyrate-2-oxoglutarate transaminase | 2.6.1.76 | 1 |
leuC | K01703 | 3-isopropylmalate/(R)-1-methylmalate dehydratase small subunit | 4.2.1.33; 4.2.1.34 | 2 |
leuD | K01704 | 3-isopropylmalate/(R)-2-methylmalate dehydratase small subunit | 4.2.1.33; 4.2.1.35 | 2 |
leuB | K00052 | 3-isopropylmalate dehydrogenase | 1.1.1.85 | 1 |
asd | K00133 | Aspartate-semialdehyde dehydrogenase | 1.2.1.11 | 1 |
acnA | K01681 | Aconitate hydratase | 4.2.1.3 | 2 |
lysC | K00928 | Aspartate kinase | 2.7.2.4 | 1 |
acnB | K01682 | Aconitate hydratase 2/2-methylisocitrate dehydratase | 4.2.1.3; 4.2.1.99 | 1 |
LYSN | K05825 | 2-aminoadipate transaminase | 2.6.1.- | 2 |
argB | K00930 | Acetylglutamate kinase | 2.7.2.8 | 1 |
ict-P | K18289 | CoA-transferases;succinyl-CoA:(S)-malate CoA-transferase | 2.8.3.22 | 2 |
- | K18292 | (S)-citramalyl-CoA lyase | 4.1.3.25 | 1 |
Phosphohydrolase | ||||
acyP | K01512 | Acylphosphate phosphohydrolase | 3.6.1.7 | 1 |
ushA | K11751 | UDP-sugar sugarphosphohydrolase | 3.1.3.5 | 1 |
gph | K01091 | 2-phosphoglycolate phosphohydrolase | 3.1.3.18 | 4 |
rsbU_P | K07315 | O-phosphoserine phosphohydrolase | 3.1.3.3 | 4 |
suhB | K01092 | Myo-inositol-phosphate phosphohydrolase | 3.1.3.25 | 2 |
gmhB | K03273 | d-glycero-alpha-d-manno-heptose 1,7-bisphosphate 7-phosphohydrolase | 3.1.3.82; 3.1.3.83 | 2 |
serB | K01079 | O-phosphoserine phosphohydrolase | 3.1.3.3 | 2 |
mupP | K22292 | N-acetyl-d-muramate 6-phosphate phosphohydrolase | 3.1.3.105 | 1 |
rsgA | K06949 | Thiamine phosphate phosphohydrolase | 3.1.3.100 | 1 |
phnX | K05306 | 2-oxoethylphosphonate phosphonohydrolase | 3.11.1.1 | 1 |
fbp | K03841 | d-fructose-1,6-bisphosphate 1-phosphohydrolase | 3.1.3.11 | 1 |
pphA | K07313 | Protein-serine/threonine-phosphate phosphohydrolase | 3.1.3.16 | 1 |
surE | K03787 | Phosphoric-monoester hydrolases;3′-ribonucleotide phosphohydrolase | 3.1.3.5; 3.1.3.6 | 1 |
- | K07053 | Nucleoside-3′,5′-bisphosphate 3′-phosphohydrolase | 3.1.3.97 | 1 |
cpdB | K01119 | 3′-ribonucleotide phosphohydrolase | 3.1.3.6 | 1 |
wzb | K25307 | Protein-tyrosine-phosphate phosphohydrolase | 3.1.3.48 | 1 |
ipgD | K13085 | 1-phosphatidyl-1-d-myo-inositol-4,5-bisphosphate 4-phosphohydrolase | 3.1.3.78 | 1 |
bacA | K06153 | Ditrans, octacis-undecaprenyl-diphosphate phosphohydrolase | 3.6.1.27 | 1 |
ppx-gppA | K01524 | Polyphosphate phosphohydrolase | 3.6.1.40; 3.6.1.11 | 1 |
bcrC | K19302 | Ditrans, octacis-undecaprenyl-diphosphate phosphohydrolase | 3.6.1.27 | 1 |
pgpA | K01095 | Phosphatidylglycerophosphate phosphohydrolase | 3.1.3.27 | 1 |
ribBA | K14652 | GTP 7,8-8,9-dihydrolase (formate-releasing, phosphate-releasing) | 3.5.4.25 | 1 |
ffh | K03106 | GTP phosphohydrolase (protein-synthesis-assisting) | 3.6.5.4 | 1 |
- | K01081 | 5′-ribonucleotide phosphohydrolase | 3.1.3.5 | 1 |
kdsC | K03270 | 3-deoxy-d-manno-octulosonate-8-phosphate 8-phosphohydrolase | 3.1.3.45 | 1 |
IMPL2 | K18649 | β-l-galactose-1-phosphate phosphohydrolase |
3.1.3.15; 3.1.3.25; 3.1.3.93 | 1 |
(待续)
因。在细胞过程通路中发现有3个参与木质素降解的基因,其中2条同属于环境信息通路,3条基因编码同种超氧化氢酶降解木质素,同时有165个基因,编码参与苯丙氨酸代谢、苯甲酸盐降解、丙酮酸代谢等代谢路径的蛋白质,这些蛋白质与木质素降解过程密切相关。
3 讨论与结论
本研究从毛竹根际分离出一株多效解磷菌zafu-3,为木糖氧化无色杆菌。目前报道的解磷细菌主要为芽孢杆菌属(Bacillus)、假单胞菌属(Pseudolnonas)、伯克霍尔德氏菌属(Burkholderia)
菌株zafu-3全基因组序列中含有53条编码有机酸和35条编码磷酸水解酶的基因,且接菌后土壤pH下降、磷酸酶活性上升,这表明在细菌培养过程中,多种编码有机酸和水解酶的基因得到了表达。例如,gltA编码的柠檬酸合成酶催化草酰乙酸和乙酰辅酶A合成柠檬酸,柠檬酸和土壤中的金属离子反应后生成的柠檬酸盐能够降低土壤pH值,这一变化进而增加了难溶性磷的溶解,增强了植物对磷的吸
菌株zafu-3不仅具备解磷功能,还具有多种促生特性。在其全基因组中,存在参与合成色氨酸侧链氧化酶(tryptophan side-chain oxidase, TSO)的基因,如kynA,可用于合成促进植物生长的激素IAA。在菌株培养液中已检测到IAA,这表明相应基因在活细菌中表达。同时,菌株zafu-3有21条参与铁载体编码的基因,铁载体与土壤中的铁螯合,进而释放磷酸铁中的磷,为植物同时提供铁元素和有效磷。本研究在菌株的培养过程中并未检测到铁载体的产生,这可能是由于全基因组中有2条编码转录调节蛋白Fur的furB基因。在铁离子充足的环境下,Fur蛋白会抑制铁载体编码基因的表
值得注意的是,在实际应用中解磷菌株所处的环境条件远比实验室环境复杂,这增加了利用解磷菌提高土壤磷有效性和促进植物生长的不确定性。例如,菌株在野外环境中的稳定性和存活期限难以预测。然而,菌株zafu-3在不同pH值、NaCl浓度、碳源和磷源供应下,均能保持其解磷活性。因此,该菌株有望在多样化的土壤环境中持续发挥其促进土壤中有机磷和无机磷转化的能力。这可能与菌株基因组中编码多种有机酸和磷酸酶的基因表达密切相关,多样化的功能基因有助于菌株适应不同的环境条件。此外,基于菌株zafu-3所包含的解磷相关功能基因,可通过基因编辑与基因表达调控、构建工程菌株等分子生物学技术提高其解磷能力,有效缓解植物因磷素不足而面临的生长限制问题。
本研究从毛竹根际分离出一株具备多途径解磷的木糖氧化无色杆菌(Achromobacter xylosoxidans) zafu-3。该菌含有大量与解磷和促生功能相关的基因,主要通过分泌多种有机酸和磷酸酶溶解难溶性无机磷和有机磷,尤其是在高磷土壤中。此外,菌株zafu-3在多种碳源和磷源、较宽的pH和NaCl浓度范围内均能良好生长,这确保了其功能稳定性。因此,菌株zafu-3有望成为提高土壤磷生物有效性的工程菌株,其在解磷菌肥研发、促进缺磷土壤条件下的植物生长方面具有广阔的应用前景。
作者贡献声明
项春铸:方法设计、调查研究、数据分析、结果可视化、论文撰写与修订;房翠莲:调查研究、结果可视化;田佳怡:调查研究;张清:调查研究;李全:方法设计、论文修订;宋新章:研究概念生成;曹婷婷:研究概念生成、方法设计、论文撰写与修订、课题监管与指导。
利益冲突
公开声明
参考文献
ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review[J]. Science of the Total Environment, 2018, 612: 522-537. [百度学术]
WANG JX, QI ZM, BENNETT EM. Managing mineral phosphorus application with soil residual phosphorus reuse in Canada[J]. Global Change Biology, 2024, 30(1): e17001. [百度学术]
YAO QM, LI Z, SONG Y, WRIGHT SJ, GUO X, TRINGE SG, TFAILY MM, PAŠA-TOLIĆ L, HAZEN TC, TURNER BL, MAYES MA, PAN CL. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil[J]. Nature Ecology & Evolution, 2018, 2(3): 499-509. [百度学术]
MAHREEN N, YASMIN S, ASIF M, YAHYA M, EJAZ K, UR-RAHMAN M, YOUSAF S, AMIN I, ZULFIQAR S, IMRAN A, KHALIQ S, ARIF M. Mitigation of water scarcity with sustained growth of rice by plant growth promoting bacteria[J]. Frontiers in Plant Science, 2023, 14: 1081537. [百度学术]
PENG LY, HUANG JG, HUANG CY, YANG HJ. Genetic sequencing provides insights into molecular and genetic mechanisms of Lysobacter enzymogenes HYP18 involved in soil organic nitrogen and phosphorus mobilization and plant growth promotion[J]. Plant and Soil, 2023, 491(1): 525-542. [百度学术]
WANG ZK, FU XX, KURAMAE EE. Insight into farming native microbiome by bioinoculant in soil-plant system[J]. Microbiological Research, 2024, 285: 127776. [百度学术]
WANG CQ, KUZYAKOV Y. Mechanisms and implications of bacterial-fungal competition for soil resources[J]. The ISME Journal, 2024, 18(1): wrae073. [百度学术]
OTEINO N, LALLY RD, KIWANUKA S, LLOYD A, RYAN D, GERMAINE KJ, DOWLING DN. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates[J]. Frontiers in Microbiology, 2015, 6: 745. [百度学术]
SONG XZ, PENG CH, CIAIS P, LI Q, XIANG WH, XIAO WF, ZHOU GM, DENG L. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest[J]. Science Advances, 2020, 6(12): eaaw5790. [百度学术]
冯鹏飞, 李玉敏. 2021年中国竹资源报告[J]. 世界竹藤通讯, 2023, 21(2): 100-103. [百度学术]
FENG PF, LI YM. China’s bamboo resources in 2021[J]. World Bamboo and Rattan, 2023, 21(2): 100-103 (in Chinese). [百度学术]
王潇. 磷添加对毛竹林不同土层磷组分的影响[D]. 杭州: 浙江农林大学硕士学位论文, 2024. [百度学术]
WANG X. Effect of phosphorus addition on phosphorus components in different soil layers of Moso bamboo forest[D]. Hangzhou: Master’s Thesis of Zhejiang A&F University, 2024 (in Chinese). [百度学术]
WANG Q, YANG P, MAHARAJAN T, RAMAKRISHNAN M, ASIM M, GUI RY, ZHOU MB. Strigolactone mediates Moso bamboo root response to phosphate stress[J]. Journal of Agricultural and Food Chemistry, 2023, 71(20): 7921-7936. [百度学术]
SHI WH, XING YJ, ZHU Y, GAO N, YING YQ. Diverse responses of phoD- and pqqC-harbouring bacterial communities to variation in soil properties of Moso bamboo forests[J]. Microbial Biotechnology, 2022, 15(7): 2097-2111. [百度学术]
ZENG QX, PEÑUELAS J, SARDANS J, ZHANG QF, ZHOU JC, YUE K, CHEN Y, YANG YS, FAN YX. Keystone bacterial functional module activates P-mineralizing genes to enhance enzymatic hydrolysis of organic P in a subtropical forest soil with 5-year N addition[J]. Soil Biology and Biochemistry, 2024, 192: 109383. [百度学术]
ZHANG JY, LIU YX, GUO XX, QIN Y, GARRIDO-OTER R, SCHULZE-LEFERT P, BAI Y. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols, 2021, 16(2): 988-1012. [百度学术]
GADAGI RS, SA T. New isolation method for microorganisms solulbilizing iron and aluminum phosphates using dyes[J]. Soil Science and Plant Nutrition, 2002, 48(4): 615-618. [百度学术]
NAUTIYAL CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiology Letters, 1999, 170(1): 265-270. [百度学术]
刘耀辉. 促生菌对毛竹幼苗根系代谢物及微生物群落的影响[D]. 南昌: 江西农业大学硕士学位论文, 2022. [百度学术]
LIU YH. Effects of growth-promoting bacteria on root metabolites and microbial community of Phyllostachys pubescens seedlings[D]. Nanchang: Master’s Thesis of Jiangxi Agricultural University, 2022 (in Chinese). [百度学术]
GARCÍA-PALACIOS P, SHAW EA, WALL DH, HÄTTENSCHWILER S. Temporal dynamics of biotic and abiotic drivers of litter decomposition[J]. Ecology Letters, 2016, 19(5): 554-563. [百度学术]
WANG XJ, YANG LL, GENG X, SHI WJ, CHEN YZ, LU CF. Integrative analysis of metabolome and transcriptome reveals the different metabolite biosynthesis profiles related to palatability in winter and spring shoot in Moso bamboo[J]. Plant Physiology and Biochemistry, 2023, 202: 107973. [百度学术]
YANG CL, DONG Y, FRIMAN VP, JOUSSET A, WEI Z, XU YC, SHEN QR. Carbon resource richness shapes bacterial competitive interactions by alleviating growth-antibiosis trade-off[J]. Functional Ecology, 2019, 33(5): 868-875. [百度学术]
杨顺, 杨婷, 林斌, 刘杏忠, 向梅春. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018, 58(2): 264-273. [百度学术]
YANG S, YANG T, LIN B, LIU XZ, XIANG MC. Isolation and evaluation of two phosphate-dissolving fungi[J]. Acta Microbiologica Sinica, 2018, 58(2): 264-273 (in Chinese). [百度学术]
韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌圃中木质素降解菌的筛选及降解效果[J]. 生物技术通报, 2022, 38(3): 113-120. [百度学术]
HAN DJ, WANG ZH, ZHOU N, LIU GQ, YANG SH, WANG WJ. Screening and degradation effect of lignin-degrading bacteria in termite nurseries[J]. Biotechnology Bulletin, 2022, 38(3): 113-120 (in Chinese). [百度学术]
ZHANG Y, WAN SZ, SHI FX, FANG XM, HUANG C. Identification and characterization of a phosphate-solubilizing bacterium and its growth-promoting effect on Moso bamboo seedlings[J]. Forests, 2024, 15(2): 364. [百度学术]
LI JQ, PEI JM, PENDALL E, REICH PB, NOH NJ, LI B, FANG CM, NIE M. Rising temperature may trigger deep soil carbon loss across forest ecosystems[J]. Advanced Science, 2020, 7(19): 2001242. [百度学术]
张艳军, 陈宝婷, 张玉梅, 张逸飞, 朱宝琳, 苏盼, 丁林贤, 谢乃钧, 张萍华. 广西蚕沙细菌组成多样性解析和VBNC菌群的发掘[J]. 微生物学报, 2020, 60(5): 1036-1046. [百度学术]
ZHANG YJ, CHEN BT, ZHANG YM, ZHANG YF, ZHU BL, SU P, DING LX, XIE NJ, ZHANG PH. Bacterial diversity and VBNC bacteria in silkworm excrement from Guangxi[J]. Acta Microbiologica Sinica, 2020, 60(5): 1036-1046 (in Chinese). [百度学术]
ZHOU J, LI XL, PENG F, LI CY, LAI CM, YOU QG, XUE X, WU YH, SUN HY, CHEN Y, ZHONG HT, LAMBERS H. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2021, 27(24): 6578-6591. [百度学术]
HEDLEY MJ, STEWART JWB, CHAUHAN BS. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. [百度学术]
VAN-DIJK EL, AUGER H, JASZCZYSZYN Y, THERMES C. Ten years of next-generation sequencing technology[J]. Trends in Genetics, 2014, 30(9): 418-426. [百度学术]
JIAO YP, PELUSO P, SHI JH, LIANG T, STITZER MC, WANG B, CAMPBELL MS, STEIN JC, WEI XH, CHIN CS, GUILL K, REGULSKI M, KUMARI S, OLSON A, GENT J, SCHNEIDER KL, WOLFGRUBER TK, MAY MR, SPRINGER NM, ANTONIOU E, et al. Improved maize reference genome with single-molecule technologies[J]. Nature, 2017, 546(7659): 524-527. [百度学术]
WICK RR, JUDD LM, GORRIE CL, HOLT KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Computational Biology, 2017, 13(6): e1005595. [百度学术]
HYATT D, CHEN GL, LOCASCIO PF, LAND ML, LARIMER FW, HAUSER LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119. [百度学术]
朱德旋, 杜春梅, 董锡文, 薛春梅, 王瑞. 一株寒地高效解无机磷细菌的分离鉴定及拮抗作用[J]. 微生物学报, 2020, 60(8): 1672-1682. [百度学术]
ZHU DX, DU CM, DONG XW, XUE CM, WANG R. Identification and antagonism activity of an inorganic phosphorus-dissolving bacterial strain isolated from cold region[J]. Acta Microbiologica Sinica, 2020, 60(8): 1672-1682 (in Chinese). [百度学术]
GUNASEKARAN V, DONMEZ E, GIRHARD M, URLACHER VB, CONSTANTÍ M. Biodegradation of fuel oxygenates and their effect on the expression of a newly identified cytochrome P450 gene in Achromobacter xylosoxidans MCM2/2/1[J]. Process Biochemistry, 2014, 49(1): 124-129. [百度学术]
李哲, 陈潼樾, 冷粟, 吴迪, 张秀芳, 周野, 车驰, 李明堂. 一株氧化木糖无色杆菌对Pb的生物矿化作用及其应用效果研究[J]. 农业环境科学学报, 2017, 36(10): 2014-2020. [百度学术]
LI Z, CHEN TY, LENG S, WU D, ZHANG XF, ZHOU Y, CHE C, LI MT. Biomineralization of Pb by a strain of Achromobacter xylosoxidans and its practical application in bioremediation[J]. Journal of Agro-Environment Science, 2017, 36(10): 2014-2020 (in Chinese). [百度学术]
武凤霞, 范丙全, 刘建玲. 木糖氧化无色杆菌反硝化亚种细菌的分离鉴定及其菲降解特性研究[J]. 植物营养与肥料学报, 2007, 13(4): 725-729. [百度学术]
WU FX, FAN BQ, LIU JL. Isolation of Achromobacter xylosoxidans subsp. denitrificans and it’s degradation of phenanthrene[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(4): 725-729 (in Chinese). [百度学术]
贺军军, 罗萍, 陈永辉, 易润华, 李勤奋, 戴小红. 甘蔗渣纤维素降解菌的筛选及鉴定[J]. 微生物学杂志, 2011, 31(1): 39-42. [百度学术]
HE JJ, LUO P, CHEN YH, YI RH, LI QF, DAI XH. Screening and identification of cellulose degrading-bacteria from fermented bagasse[J]. Journal of Microbiology, 2011, 31(1): 39-42 (in Chinese). [百度学术]
刘韶娜, 杨国明, 李卫芬. 一株降解氨氮菌株的筛选[J]. 养猪, 2014, 2: 77-78. [百度学术]
LIU SN, YANG GM, LI WF. Isolation of microorganisms degrading ammonia-nitrogen of wastewater[J]. Swine Production, 2014, 2: 77-78 (in Chinese). [百度学术]
原海兵, 刘军, 韩志双, 郇阿梅, 石娇娇. 土壤中1株解磷细菌的筛选及其生长特性的研究[J]. 安徽农业大学学报, 2013, 40(5): 843-848. [百度学术]
YUAN HB, LIU J, HAN ZS, HUAN AM, SHI JJ. A phosphorus bacteria separated from soil and its growth characteristics[J]. Journal of Anhui Agricultural University, 2013, 40(5): 843-848 (in Chinese). [百度学术]
张晗昱, 李丹丹, 郑瑾, 樊金娟, 王清威, 杜显元, 任金蔓, 宋权威, 吴慧君, 谢加才. 青藏高原多年冻土区解磷菌筛选及抗逆能力评价[J]. 微生物学报, 2024, 64(6): 1876-1890. [百度学术]
ZHANG HY, LI DD, ZHENG J, FAN JJ, WANG QG, DU XY, REN JM, SONG QW, WU HJ, XIE JC. Screening of phosphorus-solubilizing strains with stress tolerance in the permafrost region of the Qinghai-Xizang Plateau[J]. Acta Microbiologica Sinica 2024, 64(6): 1876-1890 (in Chinese). [百度学术]
张雪梅, 张秀梅, 李文涛. 鳗草根际溶磷微生物分离、筛选及其对鳗草生长的影响[J]. 中国水产科学, 2020, 27(1): 82-96. [百度学术]
ZHANG XM, ZHANG XM, LL WT. lsolation and characterization of phosphate-solubilizing bacteria in the rhizosphere of eelgrass Zostera marina and promotion effect on eelgrass growth[J]. Journal of Fishery Sciences of China, 2020, 27(1): 82-96 (in Chinese). [百度学术]
AHN Y, LEE UJ, LEE YJ, LIPUMA JJ, HUSSONG D, MARASA B, CERNIGLIA CE. Oligotrophic media compared with a tryptic soy agar or broth for the recovery of Burkholderia cepacia complex from different storage temperatures and culture conditions[J]. Journal of Microbiology and Biotechnology, 2019, 29(10): 1495-1505. [百度学术]
张巧, 商飞飞, 段振华, 唐小闲. 荸荠贮藏期间2株腐败菌鉴定及其特性[J]. 江苏农业学报, 2019, 35(1): 189-194. [百度学术]
ZHANG Q, SHANG FF, DUAN ZH, TANG XX. Identification and characteristics of two spoilage bacteria from water chestnut during storage[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 189-194 (in Chinese). [百度学术]
NAZ F, MAQBOOL A, MALIK K. Degradation of legume phytate in soil using fungal phytase[J]. Pakistan Journal of Botany, 2013, 45(3): 1017-1022. [百度学术]
MCKAY FLETCHER DM, RUIZ S, DIAS T, PETROSELLI C, ROOSE T. Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake[J]. The New Phytologist, 2020, 227(2): 376-391. [百度学术]
HUANG LM, JIA XX, ZHANG GL, SHAO MN. Soil organic phosphorus transformation during ecosystem development: a review[J]. Plant and Soil, 2017, 417(1): 17-42. [百度学术]
GABALLA A, ANTELMANN H, AGUILAR C, KHAKH SK, SONG KB, SMALDONE GT, HELMANN JD. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11927-11932. [百度学术]