摘要
目的
从温州东海海域分离获得溶藻细菌,对其进行鉴定并研究其溶藻特性及溶藻机制,以期为赤潮的微生物治理提供坚实的科学基础。
方法
通过形态学分析、生理生化特征鉴定以及16S rRNA基因序列分析对菌株进行初步鉴定。测定菌株的溶藻活性、环境因子对溶藻活性的影响,以及溶藻特异性等溶藻特性。通过电镜观察、光合参数测定、藻细胞内活性氧和丙二醛含量测定以及抗氧化酶活性检测等方法,初步探究其溶藻机制。
结果
溶藻菌株J75被鉴定为假交替单胞菌(Pseudoalteromonas sp.),36 h内对中肋骨条藻的溶藻率可达95.97%。菌株J75通过分泌胞外溶藻物质实现间接溶藻,溶藻物质在-20-80 ℃、pH 5.0-9.0条件下均能保持良好的溶藻效果。菌株J75对米氏凯伦藻、微小原甲藻和球形棕囊藻均表现出溶藻活性。在J75无菌滤液的胁迫下,藻细胞的形态结构发生破坏,光合活性严重下降,活性氧含量升高,膜脂过氧化损伤加剧,超氧化物歧化酶、过氧化氢酶、过氧化物酶的活性均有所升高,谷胱甘肽含量也明显升高,表明溶藻细菌引起了藻细胞的氧化损伤,最终导致藻死亡。
结论
海洋溶藻假交替单胞菌J75通过分泌溶藻物质能够有效抑制多种赤潮微藻生长,在赤潮防治方面具有广阔的应用前景,对其溶藻特性和溶藻机制的探究为赤潮的治理提供了重要的理论依据。
近几十年来,由于水体富营养化不断加剧,赤潮在全球范围内频繁发
海洋环境中的异养细菌与浮游植物之间存在着密切的关系,一些藻际细菌与赤潮的暴发及消亡过程紧密相关,可能是调控赤潮生消的关键因素之
本研究从温州附近的东海海域分离到一株对中肋骨条藻具有较高杀藻活性的溶藻细菌,对该菌种进行了鉴定,探究了其杀藻特性,并初步阐释了其溶藻机制,旨在为深入研究赤潮过程中的藻-菌关系以及开发高效的溶藻菌剂提供良好的材料和研究基础。
1 材料与方法
1.1 藻种来源和培养
中肋骨条藻(Skeletonema costatum) GY-H69、米氏凯伦藻(Karenia mikimotoi) GY-H36、微小原甲藻(Prorocentrum minimum) GY-H38和球形棕囊藻(Phaeocystis globosa) GY-H37均购自上海光语生物科技有限公司。藻种经活化后采用f/2培养基培
1.2 溶藻菌的分离与鉴定
从温州洞头沿海采集不同区域的海水,用无菌海水稀释1
溶藻率=(1-C处理组/C对照组)×100% | (1) |
式中:C处理组为处理组的叶绿素a浓度,C对照组为对照组的叶绿素a浓度。
对具有溶藻活性的菌株进行形态观察、生理生化检测和16S rRNA基因序列分析。使用显微镜观察菌体形态特征,生理生化检测采用Lu等的方法进
1.3 溶藻菌株生长曲线的测定
将分离的溶藻细菌接种于2216E液体培养基中,28 ℃、180 r/min进行振荡培养。每1 h或2 h测定菌液在600 nm处的吸光度值,将吸光度值与其对应的培养时间进行作图获得菌株生长曲线。通过平板计数法测定菌株培养24 h后的浓度。
1.4 溶藻方式测定
将菌接种到2216E液体培养基中,在28 ℃、180 r/min条件下培养24 h。培养后的菌液以8 000 r/min离心3 min,将上清液用0.22 μm滤膜过滤,所得滤液为无细胞上清液。将去除上清液的菌体沉淀,用等体积的2216E培养基重悬2次,得到菌体重悬液。向处于指数生长期(叶绿素浓度约为490 μg/L)的中肋骨条藻中分别添加体积分数为5%的溶藻菌的菌液、上清液和菌体重悬液作为处理组,加入等体积2216E液体培养基的样品作为对照组。分别在0、12、24、36、48 h对其叶绿素a含量进行测定,计算溶藻率。
1.5 溶藻特性分析
1.5.1 溶藻活性测定
将菌株J75接种到2216E液体培养基中,在28 ℃、180 r/min条件下培养24 h,将培养好的J75菌液分别以体积分数1%、3%、5%和7%加入处于指数生长期(叶绿素a浓度约490 μg/L)的中肋骨条藻培养物中,分别在12、24、36 h对其叶绿素a含量进行测定,计算溶藻率。此外,分别收集培养6 h和24 h的菌液,按不同浓度(体积分数1%、3%和5%)分别添加至指数生长期(叶绿素浓度约为490 μg/L)的中肋骨条藻中,分别在6 h和24 h对其叶绿素a含量进行测定,计算溶藻率。
1.5.2 不同环境因子对溶藻效应的影响
将溶藻细菌培养24 h的上清液分别置于-20、0、20、40、60、80和100 ℃环境下处理2 h,然后使上清液温度恢复至室温。将处理后的上清液以5%的浓度添加至中肋骨条藻藻液中进行溶藻实验,添加相同体积的2216E培养基作为对照。24 h后测定对照组和处理组的叶绿素a含量,计算溶藻率。
将溶藻细菌上清液通过HCl或NaOH溶液调节其pH分别至1.0、3.0、5.0、7.0、9.0、11.0和13.0,静置2 h,然后调回到初始pH 7.0。将处理过的上清液以5%的浓度添加至中肋骨条藻藻液中进行溶藻实验,添加相同体积的2216E培养基作为对照。24 h后测定对照组和处理组的叶绿素a含量,计算溶藻率。
1.5.3 溶藻特异性分析
对溶藻菌的溶藻特异性进行分析,涉及的常见赤潮藻类包括米氏凯伦藻、微小原甲藻和球形棕囊藻。将菌株J75接种到2216E液体培养基中,在28 ℃、180 r/min条件下培养24 h。分别将溶藻菌上清液以5%与藻液共培养24 h,以直接加入等体积2216E液体培养基的样品作为对照,计算溶藻率。
1.6 溶藻机制初步研究
1.6.1 电镜观察
将溶藻细菌上清液与中肋骨条藻共培养24 h后,将藻液在8 000 r/min下离心5 min,收集到的藻细胞在含有2.5%戊二醛的溶液中于4 ℃固定过夜。随后,使用PBS (0.1 mol/L,pH 7.4)漂洗样品3次,再使用梯度浓度的乙醇(30%、50%、70%、80%、90%、95%和100%)对样品进行脱水处理。随后,使用乙酸异戊酯对样品进行置换处理2次。最后,使用冷冻干燥机干燥样品,经喷金处理后使用扫描电镜进行观察。
1.6.2 藻细胞光合系统参数测定
通过Phyto-PAM测定中肋骨条藻在J75上清液(5%)胁迫下不同时间点(0、12、24、36、48、60 h)的光合参数变化,包括叶绿素a含量,Fv/Fm (最大光化学量子产量)、rETRmax (最大电子传递速率)以及α (光能转化效率)。测量前,样品在黑暗中暗适应10 min。
1.6.3 藻细胞内活性氧、丙二醛含量及抗氧化酶活性测定
向中肋骨条藻中分别添加2.5%、5%、10%溶藻菌上清液共培养24 h,以添加相同体积的2216E培养基作为对照。24 h后收集样品,每个样品以6 000 r/min离心5 min收集藻细胞,用无菌PBS (0.1 mol/L,pH 7.4)洗涤3次。然后将细胞重悬于500 μL无菌PBS中,藻细胞用0.9 mm锆珠在细胞组织破碎仪中破碎6个周期(6.5 m/s,工作时间60 s,间隔时间60 s)。藻细胞破碎后,在4 ℃、6 000 r/min离心5 min,去除藻细胞碎片,取上清待测。按照检测试剂盒(南京建成生物工程研究所)所提供的方法对上清液中活性氧(reactive oxygen species, ROS)、丙二醛(malondialdehyde, MDA)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、谷胱甘肽(glutathione, GSH)、过氧化物酶(peroxidase, POD)含量进行测量。总蛋白含量采用BCA蛋白定量试剂盒测定。
1.7 统计分析
数据结果以平均值±标准差表示,利用SPSS软件进行方差分析,所得结果采用GraphPad Prism 8.0.2软件进行分析和作图。
2 结果与分析
2.1 溶藻细菌J75的分离与鉴定
从洞头海域采集的水样中,经过分离纯化共得到了90株菌株。通过与中肋骨条藻共培养进行筛选,获得了1株对中肋骨条藻具有良好溶藻效果的菌株,将其编号为J75。菌株J75的菌落呈圆形,淡黄色,略微突起,边缘较为光滑(

图1 菌株J75的形态学分析和系统发育树
Figure 1 Morphological characteristics and phylogenetic identification of strain J75. A: Morphological observation of the strain; B: Observation of the strain using a scanning electron microscope (SEM); C: Phylogenetic tree analysis of the strains. Numbers at the branch points indicate the bootstrap value; Scale bar indicates the estimated number of base changes per nucleotide sequence position.
Items | Results |
---|---|
Methyl red test | - |
Gram stain | - |
Starch hydrolysis | + |
Catalase test | + |
V-P test | + |
Oxidase test | + |
Carbon sources | |
d-mannitol | + |
d-glucose | + |
d-sucrose | + |
d-fructose | + |
d-maltose | + |
d-lactose | + |
+: Positive result; -: Negative result.
2.2 溶藻菌株J75的生长曲线
将溶藻细菌J75以1%的接种量接种于2216E液体培养基中,28 ℃、180 r/min条件下培养,定时使用分光光度计在600 nm处测量菌液的吸光度值,从而绘制出其生长曲线。0-2 h为J75的停滞期,2-12 h为对数期,12 h后细菌进入稳定期。通过平板计数法测定菌株在培养24 h后的浓度为5.76×1
2.3 溶藻菌株J75的溶藻方式
为了探究菌株J75的溶藻方式,分别将菌液、菌体重悬液和无菌上清液分别以5%加入到中肋骨条藻的培养液中进行共培养,结果如

图2 菌株J75不同组分对中肋骨条藻的溶藻效率
Figure 2 Algicidal rate of different fractions of J75 cultures against Skeletonema costatum.
2.4 溶藻菌株J75的溶藻特性分析
2.4.1 不同浓度J75菌液对中肋骨条藻的溶藻活性
将菌株J75培养液与中肋骨条藻进行共培养后,发现溶藻率随菌液浓度和处理时间的增加而显著上升,呈现出明显的剂量效应关系。如

图3 不同浓度J75菌液对溶藻活性的影响
Figure 3 Effects of different inoculation dosage of J75 culture on algicidal activity.

图4 不同生长阶段J75菌液对溶藻活性的影响
Figure 4 Effects of J75 culture at different growth phases on algicidal activity. A: Algicidal effect of 6 h fermentation culture; B: Algicidal effect of 24 h fermentation culture.
2.4.2 温度对溶藻效应的影响
菌株J75上清液在-20-80 ℃具有很高的热稳定性,但在100 ℃条件下活性显著降低。如

图5 不同温度对J75上清液溶藻活性的影响
Figure 5 Effects of different temperature on algicidal activity of J75 supernatant.
2.4.3 pH对溶藻效应的影响
不同pH值对溶藻菌J75溶藻效果的影响如

图6 不同pH对J75上清液溶藻活性的影响
Figure 6 Effects of different pH on algicidal activity of J75 supernatant.
2.4.4 溶藻菌J75对不同赤潮藻的溶藻特异性
为了探究菌株J75对不同种类赤潮藻的溶藻特异性,将J75上清液与多种藻种分别共培养72 h,结果表明菌株J75对米氏凯伦藻、微小原甲藻和球形棕囊藻均具有显著的溶藻作用(

图7 J75对不同赤潮藻的溶藻效果
Figure 7 Algicidal effects of J75 on different red tide algae.
2.5 溶藻菌J75的溶藻机制研究
2.5.1 溶藻效果的显微观察
通过细胞形态观察可以直观地了解溶藻菌J75分泌的溶藻物质对藻细胞的损伤情况。在光学显微镜下观察藻细胞形态变化(

图8 中肋骨条藻细胞形态变化
Figure 8 Cell morphology variation of Skeletonema costatum. A: Algal cell morphology in control group observed under an optical microscope; B: Algal cell morphology in treatment group observed under an optical microscope; C: Algal cell morphology in control group observed under a scanning electron microscope (SEM); D: Algal cell morphology in treatment group observed under a scanning electron microscope (SEM).
2.5.2 溶藻菌J75对中肋骨条藻光合系统的影响
为了探讨J75上清液对中肋骨条藻光合作用的影响,研究了藻细胞叶绿素a含量、Fv/Fm、α和rETRmax的变化。如

图9 溶藻细菌J75对光合系统的影响
Figure 9 Effects of the strain J75 on photosynthetic system. A: Changes in Chlorophyll a concentration in algal cells; B: Changes in Fv/Fm in algal cells; C: Changes in α in algal cells; D: Changes in rETRmax in algal cells.
2.5.3 藻细胞活性氧及丙二醛含量
活性氧(ROS)作为细胞内的重要信号分子,在光合生物中主要由光合作用和呼吸作用等代谢过程产生,包括超氧自由基、过氧化氢及其下游产物(如过氧化物和羟化物等),是氧化应激的主要介质,ROS的异常积累可引发细胞氧化损

图10 中肋骨条藻活性氧和丙二醛含量变化
Figure 10 MDA content and ROS content variation of Skeletonema costatum. A: Changes in ROS levels in algal cells; B: Changes in MDA content in algal cells. **: P<0.01.
2.5.4 藻细胞抗氧化酶活性分析
随着J75上清液浓度的增加,中肋骨条藻中每毫克蛋白(mg prot)中含的SOD、CAT、POD、GSH酶活性均明显上升(

图11 中肋骨条藻抗氧化酶活性
Figure 11 Antioxidative enzyme activities of Skeletonema costatum cells. A: Changes in SOD content in algal cells; B: Changes in POD content in algal cells; C: Changes in CAT content in algal cells; D: Changes in GSH content in algal cells. **: P<0.01.
3 讨论与结论
随着赤潮事件的频繁发生,赤潮已成为最常见的海洋灾害之一。赤潮不仅对海洋环境造成严重危害,还给海水养殖业和海洋渔业带来巨大的经济损失,同时也会威胁人类健康甚至危及生命,因此寻找行之有效的方法治理赤潮迫在眉
一般来说,溶藻细菌的溶藻方式主要有2种:直接溶藻和间接溶藻。直接溶藻是指在溶藻过程中,溶藻细菌直接接触藻细胞使藻细胞死亡,即直接攻击宿
光合作用是藻细胞中的重要代谢过程之一,为藻细胞提供有机物质和能量。光合作用系统容易受到不利环境因素的影
细胞内ROS的生成和清除通常处于平衡状态,但外界条件的刺激可打破这种平衡而使细胞产生过量的ROS,从而引起脂质过氧化,对藻细胞膜造成氧化损伤,破坏藻细胞膜的完整性与通透
SOD是一种存在于生物体内的抗氧化金属酶,能够催化超氧阴离子自由基歧化生成氧气和过氧化氢,在机体氧化与抗氧化平衡中发挥着至关重要的作
综上所述,溶藻细菌Pseudoalteromonas sp. J75是一株高效的海洋溶藻菌,对中肋骨条藻有显著的杀灭作用。菌株J75通过分泌胞外溶藻物质杀灭藻细胞,其溶藻物质具有广泛的温度和pH适应性,对多种赤潮藻类均表现出良好的杀藻能力。菌株J75破坏了中肋骨条藻的细胞结构和光合系统,同时导致藻细胞内ROS和MDA含量增加,藻细胞抗氧化酶活性升高但无法清除过量的ROS,最终导致细胞死亡。
作者贡献声明
金宇阳:方案实施,论文撰写;贾阳:实验设计,数据处理,论文撰写;徐汉卿:实验材料提供,论文修改;林立东:样品采集,论文修改;赵敏:研究构思与设计;马增岭:实验设计,论文修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
MARAMPOUTI C, BUMA AGJ, de BOER MK. Mediterranean Alien harmful algal blooms: origins and impacts[J]. Environmental Science and Pollution Research International, 2021, 28(4): 3837-3851. [百度学术]
姚玉芳, 吴在兴, 袁涌铨, 贺立燕, 曹西华, 宋秀贤, 俞志明. 短凯伦藻高效溶藻菌Pseudoalteromonas shioyasakiensis SE3的分离、鉴定及溶藻作用研究[J]. 海洋与湖沼, 2024, 55(4): 896-904. [百度学术]
YAO YF, WU ZX, YUAN YQ, HE LY, CAO XH, SONG XX, YU ZM. Isolation and identification of an algicidal bacterium Pseudoalteromonas shioyasakiensis SE3 and its algicidal effects on Karenia brevis[J]. Oceanologia et Limnologia Sinica, 2024, 55(4): 896-904 (in Chinese). [百度学术]
LANDSBERG JH. The effects of harmful algal blooms on aquatic organisms[J]. Reviews in Fisheries Science, 2002, 10(2): 113-390. [百度学术]
黄洪辉, 韩贝贝, 张书飞, 吴风霞. 海洋溶藻菌的研究进展[J]. 南方水产科学, 2019, 15(5): 126-132. [百度学术]
HUANG HH, HAN BB, ZHANG SF, WU FX. Advance in marine algicidal bacteria research[J]. South China Fisheries Science, 2019, 15(5): 126-132 (in Chinese). [百度学术]
LIU DY, SUN J, ZOU JZ, ZHANG J. Phytoplankton succession during a red tide of Skeletonema costatum in Jiaozhou Bay of China[J]. Marine Pollution Bulletin, 2005, 50(1): 91-94. [百度学术]
FENG Y, XIONG YL, HALL-SPENCER JM, LIU KL, BEARDALL J, GAO KS, GE JK, XU JT, GAO G. Shift in algal blooms from micro- to macroalgae around China with increasing eutrophication and climate change[J]. Global Change Biology, 2024, 30(1): e17018. [百度学术]
HAN MS, FURUYA K, NEMOTO T. Species-specific productivity of Skeletonema costatum (Bacillariophyceae) in the inner part of Tokyo Bay[J]. Marine Ecology Progress Series, 1991, 79: 267-273. [百度学术]
YOO JS. Monitoring of algal bloom at Seomjin River estuary, southern coast of Korea[J]. Algae, 2003, 18(4): 361-363. [百度学术]
KIFLE D, PURDIE DA. The seasonal abundance of the phototrophic ciliate Mesodinium rubrum in Southampton Water, England[J]. Journal of Plankton Research, 1993, 15(7): 823-833. [百度学术]
MALLIN MA. Phytoplankton ecology of North Carolina estuaries[J]. Estuaries, 1994, 17(3): 561-574. [百度学术]
RAMANAN R, KIM BH, CHO DH, OH HM, KIM HS. Algae-bacteria interactions: evolution, ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1): 14-29. [百度学术]
LI DX, ZHANG H, CHEN XH, XIE ZX, ZHANG Y, ZHANG SF, LIN L, CHEN F, WANG DZ. Metaproteomics reveals major microbial players and their metabolic activities during the blooming period of a marine dinoflagellate Prorocentrum donghaiense[J]. Environmental Microbiology, 2018, 20(2): 632-644. [百度学术]
KIM JD, KIM JY, PARK JK, LEE CG. Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041[J]. Marine Biotechnology, 2009, 11(4): 463-472. [百度学术]
陈佳欢. 海洋溶藻菌Arenibacter sp. 6A1基因组特性及其VBNC状态研究[D]. 深圳: 深圳大学硕士学位论文, 2022. [百度学术]
CHEN JH. Genomic characteristics and VBNC state of marine algicidal bacterium Arenibacter sp. 6A1[D]. Shenzhen: Master’s Thesis of Shenzhen University, 2022 (in Chinese). [百度学术]
童晶. 一株高效溶藻菌的筛选及其溶藻作用机理的研究[D]. 深圳: 深圳大学硕士学位论文, 2019. [百度学术]
TONG J. Screening of a highly effective algicidal bacteria and studying its algicidal mechanism[D]. Shenzhen: Master’s Thesis of Shenzhen University, 2019 (in Chinese). [百度学术]
REN SG, JIN YP, MA JN, ZHENG NN, ZHANG J, PENG XY, XIE B. Isolation and characterization of algicidal bacteria from freshwater aquatic environments in China[J]. Frontiers in Microbiology, 2023, 14: 1156291. [百度学术]
YU Y, ZENG YD, LI J, YANG CY, ZHANG XH, LUO F, DAI XZ. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously[J]. Science of the Total Environment, 2019, 650: 34-43. [百度学术]
HOU XP, YAN YY, WANG YQ, JIANG T, ZHANG XH, DAI XZ, IGARASHI Y, LUO F, YANG CY. An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species[J]. Chemosphere, 2023, 310: 136767. [百度学术]
WANG JY, YIN XY, XU MY, CHEN YF, JI NJ, GU HF, CAI YF, SHEN X. Isolation and characterization of a high-efficiency algicidal bacterium Pseudoalteromonas sp. LD-B6 against the harmful dinoflagellate Noctiluca scintillans[J]. Frontiers in Microbiology, 2022, 13: 1091561. [百度学术]
YANG K, CHEN QL, ZHANG DY, ZHANG HJ, LEI XQ, CHEN ZR, LI Y, HONG YL, MA XH, ZHENG W, TIAN Y, ZHENG TL, XU H. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa[J]. Scientific Reports, 2017, 7: 7750. [百度学术]
LI Y, LEI XQ, ZHU H, ZHANG HJ, GUAN CW, CHEN ZR, ZHENG W, FU LJ, ZHENG TL. Chitinase producing bacteria with direct algicidal activity on marine diatoms[J]. Scientific Reports, 2016, 6: 21984. [百度学术]
BANIN E, KHARE SK, NAIDER F, ROSENBERG E. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae[J]. Applied and Environmental Microbiology, 2001, 67(4): 1536-1541. [百度学术]
唐水水. 放线菌L74溶藻物质的分离纯化及溶藻机理的初步研究[D]. 广州: 华南理工大学硕士学位论文, 2011. [百度学术]
TANG SS. Isolation and preliminary algicidal mechanisms of the algicidal components from Actinomycete strain L74[D]. Guangzhou: Master’s Thesis of South China University of Technology, 2011 (in Chinese). [百度学术]
GUO XL, LIU XL, PAN JL, YANG H. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa[J]. Scientific Reports, 2015, 5: 14720. [百度学术]
WANG XL, GONG LY, LIANG SK, HAN XR, ZHU CJ, LI YB. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa[J]. Harmful Algae, 2005, 4(2): 433-443. [百度学术]
ZHANG BH, DING ZG, LI HQ, MOU XZ, ZHANG YQ, YANG JY, ZHOU EM, LI WJ. Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology[J]. Applied and Environmental Microbiology, 2016, 82(17): 5132-5143. [百度学术]
SHI XG, ZOU YZ, ZHENG WH, LIU LM, XIE YP, MA RJ, CHEN JF. A novel algicidal bacterium and its effects against the toxic dinoflagellate Karenia mikimotoi (Dinophyceae)[J]. Microbiology Spectrum, 2022, 10(3): e00429-22. [百度学术]
ZHANG B, YANG Y, HE W, LIU W. Algicidal process and mechanisms of Enterobacter hormaechei F2 revealed by an integrated transcriptomic and metabolomic approach[J]. Genomics, 2023, 115(2): 110586. [百度学术]
ZENG GM, GAO P, WANG JL, ZHANG JX, ZHANG ML, SUN D. Algicidal molecular mechanism and toxicological degradation of Microcystis aeruginosa by white-rot fungi[J]. Toxins, 2020, 12(6): 406. [百度学术]
GUILLARD RR, RYTHER JH. Studies of marine planktonic diatoms: 1. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran[J]. Canadian Journal of Microbiology, 1962, 8: 229-239. [百度学术]
LU XH, ZHOU B, XU LL, LIU L, WANG GY, LIU XD, TANG XX. A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5131-5139. [百度学术]
DeLONG EF. Archaea in coastal marine environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5685-5689. [百度学术]
BAI F, JIA YL, LI J, WU ZX, LI L, SONG LR. Paraquat induces different programmed cell death patterns in Microcystis aeruginosa and Chlorella luteoviridis[J]. Ecotoxicology and Environmental Safety, 2023, 249: 114429. [百度学术]
SHA J, XIONG HY, LI CJ, LU ZY, ZHANG JC, ZHONG H, ZHANG W, YAN B. Harmful algal blooms and their eco-environmental indication[J]. Chemosphere, 2021, 274: 129912. [百度学术]
GUILLOTIN S, DELCOURT N. Marine Neurotoxins’ effects on environmental and human health: an OMICS overview[J]. Marine Drugs, 2022, 20(1): 18. [百度学术]
SHI JL, WANG WJ, WANG F, LEI S, SHAO SB, WANG C, LI GY, AN TC. Efficient inactivation of harmful algae K. mikimotoi by a novel algicidal bacterium via a rare direct contact pathway: performances and mechanisms[J]. Science of the Total Environment, 2023, 892: 164401. [百度学术]
LYU P, LI HL, ZHENG XX, ZHANG H, WANG C, QIN Y, XIA B, WANG DS, XU SJ, ZHUANG XL. Oxidative stress of Microcystis aeruginosa induced by algicidal bacterium Stenotrophomonas sp. KT48[J]. Applied Microbiology and Biotechnology, 2022, 106(11): 4329-4340. [百度学术]
LI TT, XU LQ, LI WX, WANG CX, GIN KYH, CHAI XL, WU BR. Dissolved organic carbon spurs bacterial-algal competition and phosphorus-paucity adaptation: boosting Microcystis’ phosphorus uptake capacity[J]. Water Research, 2024, 255: 121465. [百度学术]
DING N, WANG YB, CHEN JF, MAN SY, LAN F, WANG C, HU LJ, GAO PK, WANG RJ. Biochemical and physiological responses of harmful Karenia mikimotoi to algicidal bacterium Paracoccus homiensis O-4[J]. Frontiers in Microbiology, 2021, 12: 771381. [百度学术]
COYNE KJ, WANG YF, JOHNSON G. Algicidal bacteria: a review of current knowledge and applications to control harmful algal blooms[J]. Frontiers in Microbiology, 2022, 13: 871177. [百度学术]
LIU F, FENG SR, AL-HAIMI AANM, ZHU SN, CHEN HJ, FENG PZ, WANG ZM, QIN L. Discovery of two novel bioactive algicidal substances from Brevibacillus sp. via metabolomics profiling and back-validation[J]. Journal of Hazardous Materials, 2024, 469: 133985. [百度学术]
LI DP, KANG X, CHU LL, WANG YF, SONG XS, ZHAO XX, CAO X. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: antioxidant response, photosynthetic system damage and microcystin degradation[J]. Environmental Pollution, 2021, 287: 117644. [百度学术]
GUIDI L, LO PICCOLO E, LANDI M. Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species?[J]. Frontiers in Plant Science, 2019, 10: 174. [百度学术]
NI LX, RONG SY, GU GX, HU LL, WANG PF, LI DY, YUE FF, WANG N, WU HQ, LI SY. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases[J]. Chemosphere, 2018, 212: 654-661. [百度学术]
SALLEH S, McMINN A. The effects of temperature on the photosynthetic parameters and recovery of two temperate benthic microalgae, Amphora cf. coffeaeformis and Cocconeis cf. sublittoralis (Bacillariophyceae)[J]. Journal of Phycology, 2011, 47(6): 1413-1424. [百度学术]
VANDEN DRIESSCHE T, DUJARDIN E, MAGNUSSON A, SIRONVAL C. Acetabulaira mediterranea: circadian rhythms of photosynthesis and associated changes in molecular structure of the thylakoid membranes[J]. International Journal of Chronobiology, 1976, 4(2): 111-124. [百度学术]
ZHANG FX, FAN YX, ZHANG DY, CHEN SS, BAI X, MA XH, XIE Z, XU H. Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense[J]. Environmental Pollution, 2020, 263: 114475. [百度学术]
CHEN X, WANG DY, WANG YQ, SUN PF, MA SH, CHEN TT. Algicidal effects of a high-efficiency algicidal bacterium Shewanella Y1 on the toxic bloom-causing dinoflagellate Alexandrium pacificum[J]. Marine Drugs, 2022, 20(4): 239. [百度学术]
WU DH, YANG CY, ZHANG X, HOU XP, ZHANG SQ, DAI XZ, ZHANG XH, IGARASHI Y, LUO F. Algicidal effect of tryptoline against Microcystis aeruginosa: excess reactive oxygen species production mediated by photosynthesis[J]. Science of the Total Environment, 2022, 806: 150719. [百度学术]
ZHANG S, ZHENG W, WANG H. Physiological response and morphological changes of Heterosigma akashiwo to an algicidal compound prodigiosin[J]. Journal of Hazardous Materials, 2020, 385: 121530. [百度学术]
ZHANG Q, SONG Q, WANG C, ZHOU C, LU CS, ZHAO MR. Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations[J]. Science of the Total Environment, 2017, 575: 513-518. [百度学术]
LU QQ, ZHOU XZ, LIU RD, SHI GJ, ZHENG NN, GAO GH, WANG YY. Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety, 2023, 249: 114451. [百度学术]
LI XF, XIA ZY, WANG B, LAI LW, WANG J, JIANG LH, LI TC, WU JH, WANG LY. Malformin C, an algicidal peptide from marine fungus Aspergillus species[J]. Ecotoxicology, 2021, 30(5): 996-1003. [百度学术]
马双慧, 白洁, 孙鹏飞, 王登宇, 相壮壮, 李辉, 晨曦. 一株溶藻菌Zobellella sp. B307对太平洋亚历山大藻的溶藻特性及作用机制研究[J]. 中国海洋大学学报(自然科学版), 2024, 54(5): 63-70. [百度学术]
MA SH, BAI J, SUN PF, WANG DY, XIANG ZZ, LI H, CHEN X. The algicidal characteristics and mechanism of an algicidal bacterium Zobellella sp. B307 on Alexanderium pacificum[J]. Periodical of Ocean University of China, 2024, 54(5): 63-70 (in Chinese). [百度学术]
PETERS LP, CARVALHO G, MARTINS PF, DOURADO MN, VILHENA MB, PILEGGI M, AZEVEDO RA. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria[J]. PLoS One, 2014, 9(11): e112271. [百度学术]
SRINIVASAN R, HAN HS, SUBRAMANIAN P, MAGESWARI A, KIM SH, TIRUMANI S, MAURYA VK, MUTHUKALIANNAN GK, RAMYA M. Lipid ROS- and iron-dependent ferroptotic cell death in unicellular algae Chlamydomonas reinhardtii[J]. Cells, 2023, 12(4): 553. [百度学术]
KWOK CT, van de MERWE JP, CHIU JMY, WU RSS. Antioxidant responses and lipid peroxidation in gills and hepatopancreas of the mussel Perna viridis upon exposure to the red-tide organism Chattonella marina and hydrogen peroxide[J]. Harmful Algae, 2012, 13: 40-46. [百度学术]
LIU F, QIN L, ZHU SN, CHEN HJ, AL-HAIMI AANM, XU J, ZHOU WZ, WANG ZM. Applications-oriented algicidal efficacy research and in-depth mechanism of a novel strain Brevibacillus sp. on Microcystis aeruginosa[J]. Environmental Pollution, 2023, 330: 121812. [百度学术]
LU L, NIU XJ, ZHANG DQ, MA JL, ZHENG XX, XIAO HP, HUANG XY, LIN Z, HU HJ. The algicidal efficacy and the mechanism of Enterobacter sp. EA-1 on Oscillatoria dominating in aquaculture system[J]. Environmental Research, 2021, 197: 111105. [百度学术]