网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

腾格里沙漠东南缘沙蒿根际与非根际土壤微生物群落结构及其多样性变化特征  PDF

  • 陈嘉鑫 1,2,3
  • 申建香 1,2,3
  • 王磊 1,2,3
  • 李虎 1,2,3
  • 金涛 4
  • 李欣宇 1,2,3
  • 张波 5
  • 牛金帅 5
1. 宁夏大学 生态环境学院,宁夏 银川; 2. 西北土地退化与生态系统恢复国家重点实验室培育基地,宁夏 银川; 3. 西北退化生态系统恢复与重建教育部重点实验室,宁夏 银川; 4. 宁夏大学 农学院,宁夏 银川; 5. 宁夏中卫沙坡头国家级自然保护区管理局,宁夏 中卫

最近更新:2025-06-05

DOI: 10.13343/j.cnki.wsxb.20250028

CSTR: 32112.14.j.AMS.20250028

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

沙蒿(Artemisia desertorum)是腾格里沙漠的优势沙生植物,具有显著的抗旱、耐盐碱和固沙能力。

目的

通过探究腾格里沙漠东南缘宁夏沙坡头自然保护区内沙蒿根际与非根际土壤微生物群落多样性,并分析优势菌属与植物之间的潜在关系,为荒漠生态治理提供理论依据。

方法

以固沙42年的沙蒿根际和非根际土壤为研究对象,并以20 cm深且无植物覆盖的流沙为对照,运用高通量测序技术分析其真菌和细菌群落特征,并对其土壤理化性质进行分析。

结果

根际和非根际土壤的全氮(total nitrogen, TN)、碱解氮(alkali-hydrolyzable nitrogen, AN)、速效钾(available potassium, AK)均显著高于流沙区域(P<0.05)。根际土壤的速效磷(available phosphorus, AP)、速效钾(AK)、有机质(organic matter, OM)和电导率(electrical conductivity, EC)显著高于非根际土壤(P<0.05);尽管根际土壤的全氮(TN)、全磷(total phosphorus, TP)、碱解氮(AN)和pH (potential of hydrogen)值略高于非根际土壤,但差异不显著。根际土壤的细菌多样性和丰度低于非根际土壤,而真菌多样性和丰度较高。根际与非根际土壤的特有微生物操作分类单元(operational taxonomic unit, OTU)均多于流沙,其中根际土壤的真菌OTUs多于非根际土壤,细菌OTUs则较少。共有优势真菌门包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、Unclassified fungal phyla和罗兹菌门(Rozellomycota),主要优势真菌属为假丝酵母菌属(Candida)、异茎点霉菌属(Paraphoma)、链格孢霉菌属(Alternaria)、未分类菌属Unclassified fungal genera和青霉菌属(Penicillium);优势细菌门包括放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、绿屈挠菌门(Chloroflexi)和酸杆菌门(Acidobacteria),主要优势细菌属为节杆菌属(Arthrobacter)、类诺卡氏菌属(Nocardioides)、链霉菌属(Streptomyces)、农霉菌属(Agromyces)和鞘氨醇单胞菌属(Sphingomonas)。线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)分析显示,根际土壤中212个细菌类群和25个真菌类群显著区别于非根际土壤,关键类群分别为子囊菌门和变形菌门。冗余分析(redundancy analysis, RDA)表明,有机质(OM)是土壤微生物群落结构的主要影响因子,与担子菌门、酸杆菌门、绿屈挠菌门和Unclassified fungal phyla呈正相关,与子囊菌门、罗兹菌门、放线菌门、变形菌门和拟杆菌门呈负相关。

结论

在腾格里沙漠东南边缘,种植沙蒿显著提升了根际土壤养分水平及真菌群落的多样性与丰度,从而增强了土壤生态系统的稳定性。本研究为区域生态修复提供了理论支持,并为沙蒿生态恢复效果的优化与可持续管理提供了科学依据。

腾格里沙漠作为典型的干旱地区,其自然环境长期受到水资源匮乏、极端气候、强烈风蚀和气温升高的影响,这些因素加剧了沙漠化过[

1-2]。同时,人类活动的过度开发和不合理的放牧行为也加剧了生态环境的恶化。为应对这一挑战,腾格里沙漠地区实施了大规模植被恢复,种植了沙蒿(Artemisia desertorum)、柠条锦鸡儿(Caragana korshinskii)、猪毛菜(Salsola collina)和花棒(Hedysarum scoparium)等抗旱、耐寒、耐贫瘠、抗风沙的沙生植[2-3]。这些植物具有强适应性,能有效防风固沙,推动沙漠生态环境的改[3]。腾格里沙漠独特的地理和环境条件使其成为多个研究领域的重点,尤其在植被恢复中,关于土壤生物结[1-2]、土壤理化性[3-4]、动物群落多样[5-6]和种子生态过[7-9]的研究已取得初步进展。尽管宁夏沙坡头自然保护区已建立40余年,并取得了显著的防沙成效,但由于生态承载力的限制,仍需探索创新的生态建设方[10]

当前研究主要集中于宏观层面,例如评估沙坡头自然保护区植被覆盖变[

11]、人类活动干[12]和碳储量变[13]。然而,关于微生物群落,尤其是固沙植物根际微生物的研究仍较为匮乏。段晓敏[14]和李靖宇[15]从微生物角度分析了恢复后结皮菌种的多样性,但沙漠植被恢复中植物根际微生物群落的作用尚未得到足够关注。沙生植物在防治荒漠化中至关重要,研究表明大规模植被恢复和重建是提升生态环境质量的关键措[16]。沙生植物生长与土壤微生物密切相关,微生物不仅参与土壤物质循环和植物营养吸收,还通过多种机制影响植物生长和生态系统演变。它们在维持生态平衡、改善土壤环境和促进生物修复中发挥着重要作[17]

沙蒿(Artemisia desertorum)是腾格里沙漠的主要沙生植物,具备抗旱、耐盐碱和固沙能力,广泛分布于内蒙古、新疆、甘肃、宁夏和陕西等干旱地区。沙蒿因其优异的生态功能,在防风固沙和植被恢复中具有重要应用价[

18]。此外,沙蒿的根际微生物群落在植物生长和抗逆性中发挥着重要作用。根际微生物通过固氮、溶磷解钾提升养分利用率,还通过产生抗生素抑制病原微生物,促进植物合成生长激素,增强其抗旱和耐盐能力。常见的根际优势菌种包括假单胞菌(Pseudomonas)、芽孢杆菌(Bacillus)、农杆菌(Agrobacterium)和子囊菌门(Ascomycota)等,它们在植物生长和环境适应性提高中发挥重要作[19-20]

随着气候变化和环境恶化,腾格里沙漠的蒸发量增加,土壤可用水分急剧减少,水盐胁迫加剧。与森林和草原生态系统相比,沙漠生态系统中的微生物群落研究较少,需要进一步探讨其在荒漠化防治和植被恢复中的作用。因此,本研究旨在系统分析沙坡头腾格里沙漠东南缘人工防沙林中沙蒿的根际和非根际微生物的数量、群落结构及多样性,筛选具有生态功能的优势菌种,为沙漠化治理和植被恢复提供理论支持,并为未来生态防沙治沙工程的创新提供科学依据。

1 材料与方法

1.1 研究区概况

采样地点位于中国西北部的干旱区域,具体位置在腾格里沙漠的东南边缘,地理坐标为37°26′06″N-37°37′25″N,104°55′42″E-105°11′54″E。该地点位于宁夏沙坡头国家自然保护区内,平均海拔高度为1 339 m,处于草原与荒漠的过渡地带。这里的气候属于典型的温带大陆性气候,该气候下的地区降水量少、蒸发量大,降水主要集中在每年的6-8月,年均降水量约为186 mm,而蒸发量高达3 000 mm。该地区阳光充足,温差大,年平均气温约为9.6 ℃,每年平均有约59 d的沙尘暴天气。土壤类型主要包括沙质土壤,主要植被类型有乔木(如胡杨等)、灌木(如柠条锦鸡儿、沙蒿、花棒等)和草本(如猪毛菜、沙米等)。

1.2 样品采集

2022年6月,在固沙42年的人工固沙林内采集土壤样品。选取以沙蒿为主要固沙植物的健康、大小均匀、生长状况一致的植株作为样本。清除表面枯枝落叶等杂质后,用经过乙醇消毒的铁锹从植物基部逐层挖取上层土壤,直至暴露根系。通过摇晃根部掉落非根际土,与附着在根际表面的土壤分离。无植物覆盖的流沙区域(深20 cm)作为对照样本。分别从3个平行样品中均匀混合取样,将根际土和非根际土置于密封袋中,标注取样时间、地点和编号,并迅速存放于含有干冰的冷冻保温箱中。将所有土壤样品分为2部分存放在实验室内:一部分进行自然风干,测定土壤理化性质;剩下部分过2 mm筛后,冻存于-80 ℃冰箱备用。

1.3 土壤理化性质测定

使用pH计和电导率仪分别以1:5的土壤和去离子水溶液测定pH和电导率(electrical conductivity, EC);采用半微量开氏法测定全氮(total nitrogen, TN);采用碱解扩散法测定碱解氮(alkaline-hydrolyzable nitrogen, AN);采用氢氧化钠熔融-钼锑抗比色法测定全磷(total phosphorus, TP);采用中碱性土壤的0.5 mol/L NaHCO3法测定速效磷(available phosphorus, AP);采用醋酸铵-火焰光度法测定速效钾(available potassium, AK)以及重铬酸钾法容量-外加热法测定有机质(organic matter, OM)[

21-22]

1.4 土壤微生物多样性测定

使用DNeasy Power Soil Kit (Qiagen公司)从土壤样本中提取总基因组DNA,用NanoDrop分光光度计(ThermoFisher Scientific公司)测定DNA的吸光值得到DNA的浓度,以1%的琼脂糖凝胶电泳评估DNA的质量和完整性。将调整至50 ng/µL浓度的DNA溶液保存在-20 ℃冰箱中。对细菌16S rRNA基因的V3-V4高变区及真菌ITS1区进行扩增,引物序列为338F (5′-ACTCCTACGGGAGGCAGCAG-3′)和806R (5′-GGACTACHVGGGTWTCTAAT-3′);ITS1F (5′-CTGGTCATTTAGAGGAAGAAAA-3′)和ITS1R (5′-GCTGCGCTTTCATCGATGC-3′)。PCR由上海美吉生物医药科技有限公司完成,并使用Illumina MiSeq测序平台进行土壤微生物多样性测定。

1.5 数据统计及分析

原始数据已提交至NCBI数据库(https://www. ncbi.nlm.nih.gov/),并使用SRA Toolkit在线工具(https://github.com/ncbi/sra-tools)进行处理,获得登录号为PRJNA1227252。在对Illumina测序数据进行拼接、筛选、剔除非特异性嵌合序列后,获得了高质量的基因片段。在此基础上,以高达97%的序列相似度为基础,对其进行操作分类单元(operational taxonomic unit, OTU)分割。利用SPSS软件对样本数据进行单因子变异数分析,Duncan方法对样本数据进行处理,并对数据进行均值±标准差表达,以及α多样性差异性分析。利用Python 3.12对多层次物种分化鉴别(LDA效应尺度) [线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)]进行验证。用Circos v0.69-9绘制了样品-物种的图表。利用VIF (2.4.3)软件包和Canoco 5.0软件进行冗余分析。

2 结果与分析

2.1 土壤理化性质分析

表1所示,沙蒿根际、非根际土壤和流沙区域的理化性质指标存在差异。根际土壤和非根际土壤的全氮(TN)、碱解氮(AN)、速效钾(AK)均显著高于流沙区域(P<0.05);根际土有效磷、速效钾、有机质、电导率都比非根际土高(P<0.05),而根际土全氮、全磷、碱解氮、pH值虽然比非根际土高,但差异不显著(P>0.05)。

表1  沙蒿各处理土壤理化性质
Table 1  Soil physical and chemical characteristics of different groups of Artemisia desertorum field
ItemLSFGG
TN 0.011±0.007b 0.024±0.005a 0.025 8±0.004 0a
TP 0.193±0.017a 0.200±0.012a 0.206±0.004a
AN 0.728±0.425b 2.072±0.546a 2.128±0.730a
AP 0.022±0.003b 0.022±0.013b 0.041±0.009a
AK 83.788±2.265c 101.714±2.004b 127.408±5.448a
OM 2.447±1.591b 1.791±0.263b 6.867±2.977a
PH 7.340±0.140a 7.340±0.120a 7.390±0.130a
EC 42.080±2.720b 48.280±4.150b 65.040±13.840a

FG:非根际土;G:根际土;LS:流沙土,下同。表中字母“a-c”表示两两比较是否有显著差异,字母相同的表示无显著差异。

FG: Non-rhizosphere soil; G: Rhizosphere soil; LS: Sandy soil, the same as below. In the table, the letters “a-c” indicate whether there are significant differences between each pair of comparisons. Letters that are the same indicate no significant difference, while letters that are different indicate a significant difference.

2.2 土壤生物群落丰度和多样性分析

2.2.1 α多样性指数组间差异分析

表2所示,所有土壤样品都具有超过98%的排序深度指数,表明测序深度足以覆盖土样中的细菌和真菌群落结构,测序结果真实有效。对于细菌群落,沙蒿根际和非根际土壤的α多样性指数均高于流沙区域,表明根际和非根际土细菌群落的多样性和丰度均高于流沙区域。除Simpson指数外,二者群落多样性和丰度的差异显著(P<0.05)。沙蒿非根际土壤的α多样性指数大多高于根际土壤,但除Chaol和Sobs指数差异显著(P<0.05),其余指数差异不显著(P>0.05)。对于真菌群落,沙蒿根际和非根际土壤真菌的α多样性指数均高于流沙区域,且丰度指数和Sobs指数差异显著(P<0.05)。根际土壤真菌的α多样性指数高于非根际土壤,但差异不显著(P>0.05),表明根际土壤真菌群落的多样性和丰度高于非根际土壤。

表2  不同土壤中微生物群落α多样性比较
Table 2  The alpha diversity of the bacterial and fungal communities in different soils

微生物

Microbial

土壤类型

Soil style

丰度指数

Abundance index

多样性指数

Diversity index

覆盖率

Coverage (%)

SobsACEChaolSimpsonShannon

真菌

Fungi

LS 55.00±12.00b 55.93±12.00b 55.07±12.00b 0.130±0.113a 2.920±0.560a 0.999 98±0.000 01
G 294.80±48.00a 326.17±56.00a 322.25±56.00a 0.130±0.061a 3.360±0.530a 0.999 06±0.000 10
FG 241.80±91.00a 250.23±98.00a 251.39±100.00a 0.093±0.048a 2.290±0.520a 0.999 67±0.000 40

细菌

Bacteria

LS 1 641.00±189.00c 1 760.35±210.00b 1 786.34±216.00c 0.008±0.005a 5.630±0.220b 0.995±0.001
G 2 213.60±258.00b 2 899.42±366.00a 2 827.61±342.00b 0.010±0.010a 6.020±0.210a 0.985±0.002
FG 2 741.60±270.00a 3 319.87±417.00a 3 304.20±387.00a 0.010±0.005a 6.220±0.127a 0.980±0.003

2.2.2 土壤OTU丰度分析

基于OTUs分类结果绘制Venn图显示(图1A),根际、非根际和流沙土壤中真菌共有的OTUs数为55个,非根际特有的OTUs数为276个,占总OTUs数的23.65%;根际特有的OTUs数为340个,占总OTUs数的29.13%。对细菌而言(图1B),根际、非根际和流沙土壤共有的OTUs数为1 444个,非根际特有的OTUs数为1 343个,占总OTUs数的18.73%;根际特有的OTUs数为1 009个,占总OTUs数的14.07%。结果表明,根际和非根际土壤中专有的细菌和真菌的OTUs数均高于流沙土壤,而根际土壤的细菌OTUs数低于非根际土壤,真菌OTUs数相反。

fig

图1  沙蒿根际、非根际和流沙土壤真菌(A)和细菌(B)Venn

Figure 1  Venn diagrams of fungal (A) and bacterial (B) communities in the rhizosphere, non-rhizosphere and sandy soils.

2.3 根际与非根际土壤微生物的群落结构差异

2.3.1 真菌群落结构

在门水平上,子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、Unclassified fungal phyla和罗兹菌门(Rozellomycota)是优势类群,共占所有分类单元序列的98.24%-99.48% (图2A)。子囊菌门在根际土壤中的相对丰度比非根际土壤高(9.55%),担子菌门在根际土壤中的相对丰度比非根际土壤低(1.87%)。在属水平上(图2B),真菌群落相对丰度排名前5的分别为假丝酵母菌属(Candida, 15.08%-18.07%)、异茎点霉菌属(Paraphoma, 3.60%-23.62%)、链格孢霉菌属(Alternaria, 3.25%-8.95%)、Unclassified fungal genera (1.21%-9.05%)和青霉菌属(Penicillium, 3.52%-6.12%)。非根际土壤中链格孢霉菌属(Alternaria)和Unclassified fungal genera的相对丰度高于根际土壤,而根际土壤中假丝酵母菌属(Candida)、异茎点霉菌属(Paraphoma)和青霉菌属(Penicillium)的相对丰度高于非根际土壤。

fig

图2  沙蒿根际与非根际土壤真菌Circos样本与物种关系图。A:门水平;B:属水平。

Figure 2  Circos sample and species relationship of the rhizosphere and non-rhizosphere soil fungi of Artemisia desertorum. A: Phylum level; B: Genus level.

2.3.2 细菌群落结构

在门水平上,放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、绿屈挠菌门(Chloroflexi)和酸杆菌门(Acidobacteria)是优势类群,共占所有分类单元序列的80.35%-89.70% (图3A)。放线菌门在根际土壤中的相对丰度比非根际土壤高(8.00%),变形菌门在根际土壤中的相对丰度比非根际土壤高(13.40%),而绿屈挠菌门和酸杆菌门在根际土壤中的相对丰度分别比非根际土壤低5.67%和5.87%。在属水平上(图3B),细菌群落相对丰度排名前5的分别为节杆菌属(Arthrobacter, 7.39%-8.12%)、类诺卡氏菌属(Nocardioides, 2.25%-6.19%)、链霉菌属(Streptomyces, 1.31%-3.80%)、农霉菌属(Agromyces, 0.71%-3.52%)和鞘氨醇单胞菌属(Sphingomonas, 1.05%-3.04%)。根际土壤中类诺卡氏菌属(Nocardioides)、链霉菌属(Streptomyces)、农霉菌属(Agromyces)和鞘氨醇单胞菌属(Sphingomonas)的相对丰度高于非根际土壤,而非根际土壤中节杆菌属(Arthrobacter)的相对丰度高于根际土壤。

fig

图3  沙蒿根际与非根际土壤细菌Circos样本与物种关系图。A:门水平;B:属水平。

Figure 3  Circos sample and species relationship of the rhizosphere and non-rhizosphere soil bacteria of Artemisia desertorum. A: Phylum level; B: Genus level.

2.4 土壤微生物群落的LEfSe分析

沙蒿根际土壤与非根际土壤之间共有25个真菌分类群存在显著差异(P<0.05, LDA>3)。非根际(FG)中真菌群落的优势类群是Unclassified fungal phyla,而根际(G)中的优势类群为子囊菌门(Ascomycota) (图4A)。在细菌分类群中,共有212个分类群存在显著差异(P<0.05, LDA>3)。非根际(FG)中的优势类群包括厚壁菌门(Firmicutes)、浮霉菌门(Planctomycetota)、绿屈挠菌门(Chloroflexi)、出芽单胞菌门(Gemmatimonadota)、蓝细菌门(Cyanobacteria)、硬单胞菌门(Armatimonadota)、酸杆菌门(Acidobacteriota)、黏球菌门(Myxococcota)、蛭弧菌门(Bdellovibrionota)、Methylomirabilota门和Unclassified bacteria phyla,而根际(G)处理中的关键类群为变形菌门(Proteobacteria) (图4B)。

fig

图4  沙蒿根际与非根际土壤真菌(A)和细菌(B)LEfSe分析进化分支图(从门到属水平)

Figure 4  Evolutionary branch graph of LEfSe analysis of the rhizosphere and non-rhizosphere soil fungi (A) and bacteria (B) of Artemisia desertorum (from phylum to genus level).

2.5 土壤微生物群落结构与土壤理化因子间的关系

通过VIF分析(表3),将具有强自相关性的 pH、AP、AK因子剔除后(VIF>10),选取了有代表性的环境因子,并采用RDA进行分析。结果发现(图5),第一轴解释率为54.80%,第二轴解释率为11.72%,累计解释率为66.52%,说明本图能较好地反映土壤环境因子与土壤微生物群落的相关性。对沙蒿根际和非根际土壤微生物群落结构具有重要影响的土壤指标为OM (P<0.05)。环境因子对沙蒿土壤优势菌群的驱动程度大小为OM>TP>TN>AN>EC。其中,OM是影响沙蒿根际微生物群落最重要的调节因子,与担子菌门、酸杆菌门、绿屈挠菌门和未分类菌门呈正相关,与子囊菌门、罗兹菌门、放线菌门、变形菌门和拟杆菌门呈负相关。TP、EC、TN同样与担子菌门、酸杆菌门、绿屈挠菌门和未分类菌门呈正相关,而AN则与担子菌门、罗兹菌门、拟杆菌门和放线菌门呈正相关。

表3  VIF方差膨胀因子分析
Table 3  VIF variance inflation factor analysis

土壤理化

Soil physicochemical properties

VIF值

Variance inflation factor

pH 13.238 280
EC 4.162 495
TN 5.194 918
TP 2.334 204
AN 3.201 243
AP 19.953 530
AK 26.549 330
OM 5.704 615
fig

图5  沙蒿根际与非根际土壤优势真菌门与土壤环境因子冗余分析。优势真菌门:Asc (子囊菌门)、Bas (担子菌门)、unclassify (未分类菌门)、Roz (罗兹菌门);优势细菌门:Act (放线菌门)、Pro (变形菌门)、Bac (拟杆菌门)、Chll (绿屈挠菌门)、Aci (酸杆菌门)。

Figure 5  RDA and soil environment factors of Artemisia desertorum. The blue arrows represent fungi and the red arrows represent quantitative environmental factors. Dominant fungi at phylum level: Asc (Ascomycota), Bas (Basidiomycota), unclassify (unclassified fungal phyla), Roz (Rozellomycota); Dominant bacteria at phylum level: Act (Actinobacteriota), Pro (Proteobacteria), Bac (Bacteroidota), Chl (Chloroflexi), Aci (Acidobacteria).

3 讨论

本研究表明,沙蒿根际土壤的全氮(TN)、全磷(TP)、碱解氮(AN)、有效磷(AP)、速效钾(AK)、有机质(OM)、pH值及电导率均显著高于流沙土和非根际土壤(P<0.05)。由于植物根际富含土壤微生物,植物凋落物和分泌物促进了土壤养分的积累,所以土壤微生物在保持水分和养分以及促进生态系统恢复中起关键作[

23]。此外,根际土壤中的有机质(OM)和有效磷(AP)显著高于非根际土壤。这种“根际效应”在马铃薯、毛锦杜鹃、七叶一枝花和油茶等植物中也有明显表[24-27]。有效磷含量的显著增加实际上是根际微生物与有效磷相互作用的结果。有效磷是驱动真菌群落组成的关键因[28],沙生植物根系发达,具有强烈的有效磷吸收和积累能力。此外,根际区较高的微生物活动可引起磷元素在土壤中的迁移速率及营养元素间的竞争,进而影响可利用磷的含[29]。本研究中,根际土壤的有机质(OM)和pH值均高于非根际土壤,且电导率显著更高。这可能是由于有机物在分解时生成的可溶盐,进而影响了电导[30]。此外,pH值的变化会影响土壤中离子的活跃程度和溶解度,从而进一步影响电导率。土壤电导率与土壤盐分含量直接相关。电导率的上升通常意味着土壤中可溶性盐离子浓度的增加。盐分含量是衡量土壤肥力的关键指标,因此,电导率是衡量土壤肥力的一个直观指标。与本研究结果不同,盛玉珍[31]在芦笋试验中发现,非根际土壤的速效钾(AK)含量高于根际土壤。这可能由于物种间的差异,沙蒿在吸收钾离子方面具有特定的“化感效应”,从而增强了其生存竞争力并促进种群扩展。对于全氮(TN)、全磷(TP)和碱解氮(AN)的含量,根际土壤中较高,但在非根际土壤中差异不显著。这可能是因为随着种植年限的增加,这些含量逐渐趋于平稳。

土壤微生物是土壤生态系统不可或缺的组成部分。其种类多样性和丰度是评估土壤质量和肥力的重要间接指[

32]。众多研究[33-35]发现根系环境以细菌为主。基于OTUs分类结果可知,根际、非根际和流沙土壤细菌共有的OTUs数为1 444个,远高于真菌。植物根系对微生物具有选择性富集和筛选功能。细菌数量和多样性远超真菌,主要是因为植物富集了大量有益细菌,并过滤了某些病原真菌。本研究中,真菌的丰度和多样性在根际土壤中高于非根际土壤中。结果与Li等关于黑枸杞的研[36]形成对比,表明植物种类可能显著影响根际微生物的数量和多样性,需要在不同科属的植物上进行深入研究以进一步证实这一点。

测序结果表明,沙蒿根际土壤中的子囊菌门是主要的真菌类群,其在根际土壤中的相对丰度比非根际土壤高出9.55%。子囊菌门是真菌界中种类最丰富的门类,占真菌总数的约40%。Suleiman[

37]的研究发现在科威特沙漠中Vachellia pachyceras的根际土壤中子囊菌门相对丰度较高,其主要为腐生生物,是土壤中的主要分解者,对养分循环至关重[38-39]。子囊菌是沙漠中一种特殊的真菌类群,在提高沙蒿适应沙漠生态系统碳、氮循环中起着重要的作用。随着C、N水平的升高,子囊菌的数量明显增多,且在养分充足的情况下,相对丰度也明显增高。这表明种植沙蒿不仅有助于提高土壤养分水平,还可能通过促进子囊菌门的增长增强土壤生态功能。子囊菌门与沙蒿形成了互利共生关系。本研究发现,子囊菌门与土壤有机质和pH等养分呈负相关,这与孙美美[40]对沙棘的研究结果不一致。其原因可能包括子囊菌门能够降解土壤中的可溶性有机底[41]。本研究发现,放线菌门(Actinobacteriota)和变形菌(Proteobacteria)为优势类群,其根际丰度明显高于非根际丰度,这与Bi[42]和Yu[43]的研究结果一致。放线菌门(Actinobacteria)有助于缓解植物受到的非生物胁迫,如干旱、盐碱和重金属污染等,它们通过产生渗透质、植物激素和酶,维持植物细胞的渗透压平衡,提高养分利用[44]。变形菌门(Proteobacteria)属于r型策略细菌,能高度适应不稳定的碳源,能够在大多数环境中存活和繁殖,成为优势菌。它们对环境有着较强的适应性和抗逆能力。

在优势真菌群落中,假丝酵母菌属(Candida)及青霉菌属(Penicillium)在根际土壤中的相对丰度较高,且高于非根际土壤。研究表明,这两类真菌能够参与土壤污染物修[

45-48],具备耐盐碱性,能够改良土壤并提高肥[46,49]。在优势细菌群落中,节杆菌属(Arthrobacter)相对丰度较高,这与多位学[50-52]的研究结果一致,进一步证实了节杆菌属通过调节植物根系的内皮层扩散屏障和激素分布,进而影响根系结构和功能,增强植物抗逆性。先前的研究表明,土壤理化性质的改变显著影响真菌群落的多样[53-58]。本研究表明,有机物质(OM)是影响沙蒿根际和非根际区真菌多样性的重要因子,与其他研究结果一[40,59-60]。有机质含量直接或间接影响根际和非根际土壤真菌群落的生长、繁殖和结构。通常,有机物质含量的提高会引起真菌多样性的提高,而降低则会引起多样性的降低。此外,土壤微生物群落的多样性不仅受全氮、有效磷、有机质和pH等理化性质调控,还可能受到气候、水分和种植年限等因素的影[33,40,61]

4 结论

在腾格里沙漠东南边缘,沙蒿的种植提高了真菌群落的多样性和丰度,也提高了非根际土壤细菌群落的数量和多样性,从而增强了土壤生态系统的稳定性。同时,沙蒿的种植显著提升了根际土壤养分水平。土壤有机质对沙蒿根际真菌群落的组成有重要影响。综上所述,沙蒿的种植有利于提高干旱胁迫下植物的抗逆性和荒漠生态系统的稳定性,为保护生物多样性提供了依据,促进了该地区生态环境的恢复,并为沙蒿生态恢复效果的优化与可持续管理奠定了基础。

作者贡献声明

陈嘉鑫:提出概念、数据分析、撰写文章;申建香:数据收集监管;王磊:项目监督管理、文章审阅;李虎:文章编辑与审阅;金涛:协助实验操作;李欣宇:执行调研;张波:提供资源;牛金帅:提供资源。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. [百度学术] 

JIN XY, ZHANG XC, JIN D, CHEN Y, LI JY. Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger Desert[J]. Biodiversity Science, 2020, 28(6): 718-726 (in Chinese). [百度学术] 

2

谢婷, 李云飞, 李小军. 腾格里沙漠东南缘固沙植被区生物土壤结皮及下层土壤有机碳矿化特征[J]. 生态学报, 2021, 41(6): 2339-2348. [百度学术] 

XIE T, LI YF, LI XJ. Organic carbon mineralization of biological soil crusts and subsoils in the revegetated areas of the southeast fringe of the Tengger Desert[J]. Acta Ecologica Sinica, 2021, 41(6): 2339-2348 (in Chinese). [百度学术] 

3

常海涛, 刘任涛, 刘佳楠, 赵娟, 罗雅曦, 张静, 马继. 草方格造林固沙过程中土壤性质变化及分形特征: 以腾格里沙漠东南缘为例[J]. 水土保持学报, 2018, 32(6): 58-65, 165. [百度学术] 

CHANG HT, LIU RT, LIU JN, ZHAO J, LUO YX, ZHANG J, MA J. Change of soil properties and related fractal features during forestation and sand fixation by straw checkerboard: a case study in southeast edge of Tengger desert[J]. Journal of Soil and Water Conservation, 2018, 32(6): 58-65, 165 (in Chinese). [百度学术] 

4

王文帆, 刘任涛, 郭志霞, 冯永宏, 蒋嘉瑜. 腾格里沙漠东南缘固沙灌丛林土壤理化性质及分形维数[J]. 中国沙漠, 2021, 41(1): 209-218. [百度学术] 

WANG WF, LIU RT, GUO ZX, FENG YH, JIANG JY. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Dseart[J]. Journal of Desert Research, 2021, 41(1): 209-218 (in Chinese). [百度学术] 

5

陈应武, 陈庆霄, 杨昊天. 腾格里沙漠陆生野生脊椎动物多样性及区系[J]. 中国沙漠, 2020, 40(4): 171-182. [百度学术] 

CHEN YW, CHEN QX, YANG HT. Diversity and fauna of terrestrial wild vertebrate in Tengger Desert[J]. Journal of Desert Research, 2020, 40(4): 171-182 (in Chinese). [百度学术] 

6

杨敏, 刘任涛, 曾飞越, 吉雪茹, 方进, 赵文智. 腾格里沙漠东南缘人工固沙植被演替地面节肢动物群落多样性分布特征[J]. 生态学报, 2024, 44(1): 428-439. [百度学术] 

YANG M, LIU RT, ZENG FY, JI XR, FANG J, ZHAO WZ. Distribution of ground-active arthropod community diversity during the succession of artificial sand-fixing vegetation in the southeastern Tengger Desert[J]. Acta Ecologica Sinica, 2024, 44(1): 428-439 (in Chinese). [百度学术] 

7

孙瑜硕, 常选选, 张雪, 王磊, 曲文杰, 秦伟春, 张波, 牛金帅. 腾格里沙漠东南缘不同植被类型土壤种子库多样性[J]. 应用生态学报, 2022, 33(9): 2356-2362. [百度学术] 

SUN YS, CHANG XX, ZHANG X, WANG L, QU WJ, QIN WC, ZHANG B, NIU JS. Diversity of soil seed banks under different vegetation types in the southeastern margin of the Tengger Desert, China[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2356-2362 (in Chinese). [百度学术] 

8

王家辉. 腾格里沙漠东南缘柠条种子生态学过程研究[D]. 银川: 宁夏大学, 2023. [百度学术] 

WANG JH. Study on the ecological process of Caragana korshinskii seed in the southeast edge of Tengger desert[D]. Yinchuan: Ningxia University, 2023 (in Chinese). [百度学术] 

9

王家辉, 曲文杰, 屈建军, 杨新国, 王磊, 杨悦, 秦伟春, 张波, 牛金帅. 腾格里沙漠东南缘柠条(Caragana korshinskii)种子风力再传播过程及其影响因素[J]. 中国沙漠, 2023, 43(5): 108-115. [百度学术] 

WANG JH, QU WJ, QU JJ, YANG XG, WANG L, YANG Y, QIN WC, ZHANG B, NIU JS. The process and influencing factors of wind retransmission of Caragana korshinskii seeds in the southeast edge of Tengger Desert[J]. Journal of Desert Research, 2023, 43(5): 108-115 (in Chinese). [百度学术] 

10

闫晋钰. 基于生态承载力提升的沙漠景观规划设计研究[D]. 北京: 北京林业大学, 2022. DOI:10.26949/d.cnki.gblyu.2022.001014. [百度学术] 

11

郭佳诚, 赵星莹, 常青, 庞海威, 张玉, 郑彩之, 侯森, 耿琪康, 边振, 侯瑞萍. 宁夏沙坡头国家级自然保护区植被覆盖时空变化及其与气候因子的关系[J]. 济南大学学报(自然科学版), 2024, 38(4): 383-390. [百度学术] 

GUOJIA C, ZHAO XY, CHANG Q, PANG HW, ZHANG Y, ZHENG CZ, HOU S, GENG QK, BIAN Z, HOU RP. Temporal and spatial variation of vegetation cover and its relationship with climatic factors in Ningxia Shapotou national nature reserve[J]. Journal of University of Jinan (Science and Technology), 2024, 38(4): 383-390 (in Chinese). [百度学术] 

12

骆蒙蒙. 自然保护区人类活动干扰状况遥感监测研究: 以宁夏沙坡头自然保护区为例[D]. 西安: 西安科技大学, 2020. [百度学术] 

LUO MM. Remote sensing monitoring of human disturbance in nature reserves[D]. Xi’an: Xi’an University of Science and Technology, 2020 (in Chinese). [百度学术] 

13

郑彩之, 黄雅茹, 麻建雪, 牛志明, 庞海威, 张玉, 郭佳诚, 侯森, 耿琪康, 边振, 刘建康. 基于土地利用数据研究宁夏沙坡头国家自然保护区碳储量变化[J]. 济南大学学报(自然科学版), 2025, 39(2): 159-166. [百度学术] 

ZHENG CZ, HUANG YR, MA JX, NIU ZM, PANG HW, ZHANG Y, GUOJIA C, HOU S, GENG QK, BIAN Z, LIU JK. Analysis on carbon storage changes in Shapotou national nature reserve of Ningxia based on land use data[J]. Journal of University of Jinan (Science and Technology), 2025, 39(2): 159-166 (in Chinese). [百度学术] 

14

段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 96-109. [百度学术] 

DUAN XM, LI JJ, LI JY, LI YN, YUAN CX, WANG YN, LIU JL. Microbial community diversity among different soil particle sizes of mossy biocrusts-soil continuum in the southeastern Tengger Desert[J]. Biodiversity Science, 2023, 31(9): 96-109 (in Chinese). [百度学术] 

15

李靖宇, 张肖冲, 陈韵, 靳新影, 马志山, 金多, 苏亮文. 腾格里沙漠东南缘藻结皮与藓结皮放线菌多样性及其潜在代谢功能[J]. 生态学报, 2020, 40(5): 1590-1601. [百度学术] 

LI JY, ZHANG XC, CHEN Y, JIN XY, MA ZS, JIN D, SU LW. Potential functions of Actinobacteria diversity in cyanobacteria and moss crusts in the southeastern Tengger Desert[J]. Acta Ecologica Sinica, 2020, 40(5): 1590-1601 (in Chinese). [百度学术] 

16

ALA MS, JIANG DM, NIU CY. The applicable density of sand-fixing shrub plantation in Horqin Sand Land of Northeastern China[J]. Ecological Engineering, 2014, 64: 250-254. [百度学术] 

17

蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979-988. [百度学术] 

JIANG J, SONG MH. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979-988 (in Chinese). [百度学术] 

18

李易珺, 郭树江, 杨自辉. 盐、干旱胁迫对沙蒿种子萌发与幼苗生理特性的影响[J]. 草原与草坪, 2023, 43(5): 113-119. [百度学术] 

LI YJ, GUO SJ, YANG ZH. Effect of salt and drought stresses on seed germination and seedling physiological characteristics of Artemisia desertorum[J]. Grassland and Turf, 2023, 43(5): 113-119 (in Chinese). [百度学术] 

19

WANG XX, HUANG P, MA MH, SHAN K, WU SJ. Effects of riparian pioneer plants on soil aggregate stability: Roles of root traits and rhizosphere microorganisms[J]. Science of The Total Environment, 2024, 940: 173584. [百度学术] 

20

赵树栋, 陈建坤, 黄才成, 王超, 杨晓蕾, 李建宏. 植物根际促生菌对高原早熟禾根际土壤氮素及固氮微生物的影响[J]. 草原与草坪, 2022, 42(4): 133-138. [百度学术] 

ZHAO SD, CHEN JK, HUANG CC, WANG C, YANG XL, LI JH. Effects of plant growth-promoting rhizobacteria on nitrogen and nitrogen-fixing microorganisms in rhizosphere soil of Poa alpigena[J]. Grassland and Turf, 2022, 42(4): 133-138 (in Chinese). [百度学术] 

21

鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 101-103. [百度学术] 

BAO SD. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 101-103 (in Chinese). [百度学术] 

22

中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 76-78. [百度学术] 

23

郭二果, 张树礼, 蔡煜, 李静, 闫文慧, 杨力鹏, 李永胜, 张颖, 张波. 草原区露天煤矿开发对土壤环境质量的影响[J]. 露天采矿技术, 2012, 27(1): 93-97. [百度学术] 

GUO EG, ZHANG SL, CAI Y, LI J, YAN WH, YANG LP, LI YS, ZHANG Y, ZHANG B. Impact of the open-pit coal mine on soil environment quality in grassland[J]. Opencast Mining Technology, 2012, 27(1): 93-97 (in Chinese). [百度学术] 

24

葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. [百度学术] 

GE YL, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 141-148 (in Chinese). [百度学术] 

25

彭金根, 龚金玉, 范玉海, 张华, 张银凤, 白宇清, 王艳梅, 谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. [百度学术] 

PENG JG, GONG JY, FAN YH, ZHANG H, ZHANG YF, BAI YQ, WANG YM, XIE LJ. Diversity of soil microbial communities in rhizosphere and non-rhizosphere of Rhododendron moulmainense[J]. Scientia Silvae Sinicae, 2022, 58(2): 89-99 (in Chinese). [百度学术] 

26

郑梅霞, 陈宏, 朱育菁, 苏海兰. 七叶一枝花根际与非根际土壤细菌群落多样性[J]. 福建农业学报, 2020, 35(12): 1357-1367. [百度学术] 

ZHENG MX, CHEN H, ZHU YJ, SU HL. Microbial diversity in rhizosphere and non-rhizosphere soils of Paris polyphylla var. chinensis plants[J]. Fujian Journal of Agricultural Sciences, 2020, 35(12): 1357-1367 (in Chinese). [百度学术] 

27

ZHANG P, CUI ZY, GUO MQ, XI RC. Characteristics of the soil microbial community in the forestland of Camellia oleifera[J]. PeerJ, 2020, 8: e9117. [百度学术] 

28

WU N, LI Z, MENG S, WU F. Soil properties and microbial community in the rhizosphere of Populus alba var. pyramidalis along a chronosequence[J]. Microbiological Research, 2021, 250: 126812. [百度学术] 

29

向明珠, 李佳君, 黄海梅, 李昌航, 肖纳, 尤业明, 招礼军, 黄雪蔓. 杉木林改造成阔叶林对根际和非根际土壤磷组分和转化的影响[J/OL]. 广西植物, 2024: 1-14. (2024-03-08). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=GXZW20240305003&dbname=CJFD& dbcode=CJFQ. [百度学术] 

30

OMONODE RA, VYN TJ. Spatial dependence and relationships of electrical conductivity to soil organic matter, phosphorus, and potassium[J]. Soil Science, 2006, 171(3): 223-238. [百度学术] 

31

盛玉珍, 黄玲, 叶鹏盛, 赖佳, 刘勇, 张骞方, 刘佳, 李丰山, 韦树谷. 芦笋根际与非根际土壤微生物群落结构及多样性特征[J]. 四川农业大学学报, 2024, 42(2): 330-338. [百度学术] 

SHENG YZ, HUANG L, YE PS, LAI J, LIU Y, ZHANG QF, LIU J, LI FS, WEI SG. Rhizosphere and non-rhizosphere soil microbial community structure and diversity Asparagus officinalis L.[J]. Journal of Sichuan Agricultural University, 2024, 42(2): 330-338 (in Chinese). [百度学术] 

32

WANG XJ, PENG CY, LIANG JS, LIANG QD, XU CL, GUO W. The complete chloroplast genome of Paris polyphylla var. chinensis, an endemic medicinal herb in China[J]. Mitochondrial DNA Part B, 2019, 4(2): 3888-3889. [百度学术] 

33

张钰, 蔡学飞, 徐涛, 李国四, 陈创博, 夏桐, 孙奕, 吴丽娟, 韩邦兴, 易善勇. 不同生态环境及生长年限对多花黄精品质及其根际微生物的影响[J/OL]. 特产研究, 2024: 1-8. (2024-05-18). https://link.cnki.net/doi/10.16720/j.cnki.tcyj.2024.075. [百度学术] 

ZHANG Y, CAI XF, XU T, LI GS, CHEN CB, XIA T, SUN Y, WU LJ, HAN BX, YI SY. Effects of different ecological environment and growth years on the fine quality and rhizosphere microorganisms of Polygonatum cyrtonema Hua[J/OL]. Special Wild Economic Animal and Plant Research, 2024: 1-8. (2024-05-18). https://link.cnki.net/doi/10.16720/j.cnki.tcyj.2024.075(in Chinese). [百度学术] 

34

MAARASTAWI SA, FRINDTE K, LINNARTZ M, KNIEF C. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays[J]. Frontiers in Microbiology, 2018, 9: 1295. [百度学术] 

35

YANG S, XING S, LIU C, DU Z, WANG H, XU Y. Effects of root pruning on the vegetative growth and fruit quality of Zhanhuadongzao trees[J]. Horticultural Science, 2010, 37(1): 14-21. [百度学术] 

36

LI Y, HE XM, YANG XD, ZHANG XN, LÜ GH. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats[J]. Acta Ecologica Sinica, 2018, 38(17): stxb201711082002. [百度学术] 

37

SULEIMAN MK, DIXON K, COMMANDER L, NEVILL P, QUORESHI AM, BHAT NR, MANUVEL AJ, SIVADASAN MT. Assessment of the diversity of fungal community composition associated with Vachellia pachyceras and its rhizosphere soil from Kuwait Desert[J]. Frontiers in Microbiology, 2019, 10: 63. [百度学术] 

38

孙倩, 吴宏亮, 陈阜, 康建宏. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11): 2963-2972. [百度学术] 

SUN Q, WU HL, CHEN F, KANG JH. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11): 2963-2972 (in Chinese). [百度学术] 

39

张淼, 陈裕凤, 陈龙, 黄飘玲, 韦露玲. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J]. 生物技术通报, 2020, 36(9): 167-179. [百度学术] 

ZHANG M, CHEN YF, CHEN L, HUANG PL, WEI LL. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum (roxb.) DC in different regions[J]. Biotechnology Bulletin, 2020, 36(9): 167-179 (in Chinese). [百度学术] 

40

孙美美, 田丽, 乔紫薇, 张雪雅, 高泽文. 内蒙古砒砂岩地区沙棘根际和非根际土壤理化性质及真菌群落特征[J]. 微生物学报, 2024, 64(6): 1747-1765. [百度学术] 

SUN MM, TIAN L, QIAO ZW, ZHANG XY, GAO ZW. Physicochemical properties and fungal community characteristics of rhizosphere and non-rhizosphere soils of Hippophae rhamnoides in Pisha sandstone area of Inner Mongolia[J]. Acta Microbiologica Sinica, 2024, 64(6): 1747-1765 (in Chinese). [百度学术] 

41

范祎玮, 信秀丽, 钟新月, 杨娇, 朱安宁, 邹洪涛. 玉米豆科覆盖作物间作对潮土酶活性和真菌群落特征的影响[J]. 土壤, 2021, 53(6): 1236-1243. [百度学术] 

FAN YW, XIN XL, ZHONG XY, YANG J, ZHU AN, ZOU HT. Effects of intercropping of maize and legume cover crops on enzyme activities and fungal community characteristics in fluvo-aquic soil[J]. Soils, 2021, 53(6): 1236-1243 (in Chinese). [百度学术] 

42

BI BY, ZHANG H, YUAN Y, WU ZH, WANG Y, HAN FP. Dynamic changes of soil microbial community in Pinus sylvestris var. mongolica plantations in the Mu Us Sandy Land[J]. Journal of Environmental Management, 2021, 287: 112306. [百度学术] 

43

YU J, LIU F, TRIPATHI BM, STEINBERGER Y. Changes in the composition of soil bacterial and fungal communities after revegetation with Caragana microphylla in a desertified semiarid grassland[J]. Journal of Arid Environments, 2020, 182: 104262. [百度学术] 

44

RAO MPN, LOHMANEERATANA K, BUNYOO C, THAMCHAIPENET A. Actinobacteria-plant interactions in alleviating abiotic stress[J]. Plants, 2022, 11(21): 2976. [百度学术] 

45

孙妩娟, 王琴婷, 王历历, 柯从玉, 张群正, 王嗣昌. 热带假丝酵母菌对含油污泥的修复潜力研究[J]. 石油与天然气化工, 2022, 51(4): 113-118. [百度学术] 

SUN WJ, WANG QT, WANG LL, KE CY, ZHANG QZ, WANG SC. Study on remediation potential of oily sludge by Candida tropicalis[J]. Chemical Engineering of Oil & Gas, 2022, 51(4): 113-118 (in Chinese). [百度学术] 

46

王新, 侯佳文, 宋磊, 柳文睿, 张亚楠, 葛玲. 植物-微生物联合修复化学农药污染土壤的研究进展[J]. 生物安全学报, 2022, 31(3): 217-223. [百度学术] 

WANG X, HOU JW, SONG L, LIU WR, ZHANG YN, GE L. Research progress on plant-microbe remediation of soils contaminated by chemical pesticides[J]. Journal of Biosafety, 2022, 31(3): 217-223 (in Chinese). [百度学术] 

47

向春雨, 罗栋源, 郭莉, 杜军艳, 刘世宾, 蒲生彦. 植物-微生物联合修复化学退化土壤研究进展[J]. 土壤通报, 2024, 55(1): 288-300. [百度学术] 

XIANG CY, LUO DY, GUO L, DU JY, LIU SB, PU SY. Advances in plant-microbial combined remediation of chemically-degraded soils[J]. Chinese Journal of Soil Science, 2024, 55(1): 288-300 (in Chinese). [百度学术] 

48

LEITÃO AL. Potential of Penicillium species in the bioremediation field[J]. International Journal of Environmental Research and Public Health, 2009, 6(4): 1393-1417. [百度学术] 

49

ZHANG Y, HAO XL, GARCIA-LEMOS AM, NUNES I, NICOLAISEN MH, NYBROE O. Different effects of soil fertilization on bacterial community composition in the Penicillium canescens hyphosphere and in bulk soil[J]. Applied and Environmental Microbiology, 2020, 86(10): e02969-19. [百度学术] 

50

FENG QR, LUO Y, LIANG M, CAO YG, WANG LS, LIU C, ZHANG XY, REN LY, WANG YF, WANG DJ, ZHU YT, ZHANG YF, XIAO B, LI NN. Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil[J]. Nature Communications, 2025, 16: 1684. [百度学术] 

51

NIU SQ, LI T, LIU L, BAO XW, YANG XM, SONG HR, LI Y, BAI J, HE LY, WANG QH, LIU SJ, GUO JL. Mechanistic study on the mitigation of cadmium accumulation in Ligusticum sinense cv. Chuanxiong through plant growth-promoting rhizobacteria Arthrobacter sp. CX-2[J]. Plant Stress, 2025, 15: 100748. [百度学术] 

52

LYU HQ, YU AZ, CHAI Q, WANG F, WANG YL, WANG PF, SHANG YP, YANG XH. Enhancing soil quality and crop yield by increasing dominant bacterial abundance and reducing bacterial diversity under no-tillage with total green manure incorporation[J]. Agriculture, Ecosystems & Environment, 2025, 378: 109303. [百度学术] 

53

董心亮, 王金涛, 田柳, 娄泊远, 张雪佳, 刘彤, 刘小京, 孙宏勇. 盐渍化土壤团聚体和微生物与有机质关系研究进展[J]. 中国生态农业学报(中英文), 2023, 31(3): 364-372. [百度学术] 

DONG XL, WANG JT, TIAN L, LOU BY, ZHANG XJ, LIU T, LIU XJ, SUN HY. Review of relationships between soil aggregates, microorganisms and soil organic matter in salt-affected soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 364-372 (in Chinese). [百度学术] 

54

贺辉, 陈建博, 王涛, 唐楚煜, 梁静, 曹正飞, 肖梦君, 何敏, 李玉玲, 李秀璋. 青海冬虫夏草不同产区土壤理化性质对微生物多样性的影响[J]. 西南农业学报, 2024, 37(4): 824-834. [百度学术] 

HE H, CHEN JB, WANG T, TANG CY, LIANG J, CAO ZF, XIAO MJ, HE M, LI YL, LI XZ. Influence of soil physicochemical properties on microbial diversity in different production areas of Chinese Cordyceps in Qinghai province[J]. Southwest China Journal of Agricultural Sciences, 2024, 37(4): 824-834 (in Chinese). [百度学术] 

55

江其朋, 余佳敏, 王金峰, 刘东阳, 龚杰, 江连强, 张淑婷, 余祥文, 李石力, 杨亮, 刘晓姣, 王悦, 王勇, 丁伟. 土壤理化性质驱动烤烟根际细菌群落的组配及其共现性网络互作[J]. 微生物学报, 2023, 63(3): 1168-1184. [百度学术] 

JIANG QP, YU JM, WANG JF, LIU DY, GONG J, JIANG LQ, ZHANG ST, YU XW, LI SL, YANG L, LIU XJ, WANG Y, WANG Y, DING W. Soil properties affect bacterial community assembly and co-occurrence network in tobacco rhizosphere[J]. Acta Microbiologica Sinica, 2023, 63(3): 1168-1184 (in Chinese). [百度学术] 

56

马学兰, 周连玉, 孙文娟, 王龙瑞, 刘钰, 马云. 青海不同区域农田作物土壤细菌多样性及群落结构分析[J]. 微生物学报, 2024, 64(4): 1142-1161. [百度学术] 

MA XL, ZHOU LY, SUN WJ, WANG LR, LIU Y, MA Y. Comparison of soil bacterial diversity and community structure in different regions of Qinghai Province[J]. Acta Microbiologica Sinica, 2024, 64(4): 1142-1161 (in Chinese). [百度学术] 

57

王竹, 刘扬, 王芳, 王义成. 黑河上游不同植被类型土壤细菌群落多样性、功能及季节动态[J]. 环境科学, 2023, 44(11): 6339-6353. [百度学术] 

WANG Z, LIU Y, WANG F, WANG YC. Effects of vegetation types and seasonal dynamics on the diversity and function of soil bacterial communities in the upper reaches of the Heihe River[J]. Environmental Science, 2023, 44(11): 6339-6353 (in Chinese). [百度学术] 

58

张慧菊, 田敏, 杨明愈, 刘海怡, 林原, 柳蓉, 秦玉芝, 熊兴耀, 胡新喜. 种植方式对马铃薯生长及根区土壤细菌群落结构的影响[J]. 湖南农业大学学报(自然科学版), 2024, 50(3): 17-26, 40. [百度学术] 

ZHANG HJ, TIAN M, YANG MY, LIU HY, LIN Y, LIU R, QIN YZ, XIONG XY, HU XX. Effects of planting patterns on potato growth and soil bacterial community structure in root zone[J]. Journal of Hunan Agricultural University (Natural Sciences), 2024, 50(3): 17-26, 40 (in Chinese). [百度学术] 

59

马建军, 李青丰, 张树礼. 沙棘与不同类型植被配置下土壤微生物、养分特征及相关性研究[J]. 干旱区资源与环境, 2007, 21(6): 163-167. [百度学术] 

MA JJ, LI QF, ZHANG SL. The correlation among soil microorganism and soil nutrient in different types of mixed stands of Hippophae rhamnoides[J]. Journal of Arid Land Resources and Environment, 2007, 21(6): 163-167 (in Chinese). [百度学术] 

60

杨盼, 翟亚萍, 赵祥, 王绍明, 刘红玲, 张霞. AM真菌和根瘤菌互作对苜蓿根际土壤真菌群落结构的影响及功能预测[J]. 草业科学, 2020, 37(9): 1669-1680. [百度学术] 

YANG P, ZHAI YP, ZHAO X, WANG SM, LIU HL, ZHANG X. Effect of arbuscular mycorrhizal fungi and Rhizobium inoculation on soil fungal community structure and function in the rhizosphere of Medicago sativa[J]. Pratacultural Science, 2020, 37(9): 1669-1680 (in Chinese). [百度学术] 

61

朱媛, 王亚鑫, 覃方锉, 孟森, 王胜坤, 陆俊锟. 不同林龄桉树根际及非根际土壤微生物群落结构及功能[J]. 生态学报, 2024, 44(18): 8409-8422. [百度学术] 

ZHU Y, WANG YX, QIN FC, MENG S, WANG SK, LU JK. Composition and function of soil microbial community in rhizosphere soil and bulk soil of Eucalyptus plantation across different stand ages[J]. Acta Ecologica Sinica, 2024, 44(18): 8409-8422 (in Chinese). [百度学术]