摘要
低聚半乳糖(galacto-oligosaccharides, GOS)作为益生元可以调节肠道菌群,改善大脑发育;相反,抗生素可以通过干扰肠道菌群影响神经系统。然而,抗生素和低聚半乳糖如何调节大脑神经递质及动物行为尚不清楚。
目的
以断奶SD (Sprague-Dawley, SD)大鼠为试验动物,探究抗生素和低聚半乳糖干预对动物行为和神经递质的影响。
方法
选取40只3周龄雄性SD大鼠,分为4组:对照组(CON组)、抗生素组(ABX组)、低聚半乳糖组(GOS组)和抗生素+低聚半乳糖组(AG组)。对照组饮用灭菌水,其余三组饮用含有抗生素、低聚半乳糖或抗生素+低聚半乳糖的灭菌水,其中低聚半乳糖浓度为5 g/L,抗生素由氨苄青霉素、万古霉素、盐酸环丙沙星、亚胺培南、甲硝唑组成,试验为期16 d。
结果
与GOS组相比,ABX组大鼠体重显著下降低(P<0.05);ABX、GOS、AG三组肝脏指数显著低于CON组(P<0.05);大鼠行为分析显示,与CON组相比,ABX组趋光性指数(明暗箱试验中明箱时间占比)和理毛次数显著降低(P<0.05),GOS组理毛次数显著低于CON组(P<0.05)。AG组在旷场的静止时间显著高于其他三组(P<0.05),运动距离、时间和运动速度显著低于ABX和GOS两组(P<0.05)。与CON组相比,ABX组海马体去甲肾上腺素的浓度显著增加,左旋多巴浓度显著降低(P<0.05);与CON组相比,含有低聚半乳糖的GOS和AG两组去甲肾上腺素浓度显著增加(P<0.05),而左旋多巴和肾上腺素浓度显著下降(P<0.05)。与CON组相比,ABX和AG组的微生物多样性下降(P<0.05),Escherichia_Shigella是ABX、AG两组的优势菌,GOS组的Chao1指数显著低于对照组(P<0.05),GOS组优势菌主要是厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidota);与ABX组相比,AG组乳杆菌属(Lactobacillus)显著增加(P<0.05)。
结论
与对照组相比,抗生素会减少焦虑样行为,同时降低海马神经递质左旋多巴胺、增加去甲肾上腺素,并增加潜在致病菌;低聚半乳糖改善了大鼠生长,对大鼠行为无明显影响,但增加了Lactobacillus丰度,并减少海马左旋多巴胺和肾上腺素;联合使用抗生素和低聚半乳糖降低大鼠运动能力,增加焦虑样行为。
低聚半乳糖是一种复杂的碳水化合物,能够到达后肠,并诱导后肠碳水化合物降解菌的丰度改
抗生素和低聚半乳糖常被添加在饲料或者动物饮水中,用来治疗和预防动物疾病。抗生素和低聚半乳糖首先进入胃肠道,调节肠道生理功能。胃肠道的微生物种类复
为了研究早期肠道菌群改变与动物神经行为变化之间的关系,本研究选用断奶的SD (Sprague-Dawley)大鼠作为试验对象。在断奶1周后,这些大鼠饮用含低聚半乳糖和抗生素的灭菌水,通过分析大鼠的社交行为、运动行为和焦虑行为,并结合海马神经递质分析,旨在阐明低聚半乳糖和抗生素干预对大鼠行为表现以及神经递质合成产生的影响。
1 材料与方法
1.1 试验动物和分组
试验动物购自北京维通利华实验动物技术有限公司,共40只雄性3周龄SD大鼠,于南京农业大学动物医学院试验动物中心饲养,适应1周后按体重平均分配到4个组。(1) CON组;(2) ABX组,包含氨苄青霉素1 g/L、万古霉素500 mg/L、盐酸环丙沙星20 mg/L、亚胺培南250 mg/L、甲硝唑1 g/L,选用多种类型抗生
1.2 旷场测试(open field test, OFT)
在第1天和第13天进行旷场测试。旷场测试是一种评估啮齿动物运动能力和焦虑水平的技术手段,广泛应用于精神疾病药物研发,动物在24 h内有其活动周期,试验均在白天(12 h内)进行。测试使用白色中空板制作的60 cm×60 cm×40 cm的旷场试验箱,在安静自然光照条件下,试验前使用酒精喷洒并用纸巾擦拭试验箱,确保干净无异味,大鼠提前放于试验箱适应一段时间。将大鼠置于旷场试验箱中心,在安静环境下采集10 min行为视
1.3 明暗箱测试(light-dark test, LDT)
试验在第2天和第12天进行,采用2个50 cm×50 cm×30 cm的试验箱(黑色和白色)连接组成,中间隔板开一扇门,允许大鼠自由通过,暗箱用盖板遮光,允许大鼠适应10 min。然后将大鼠放置在明箱中央,在安静环境下采集第2天和第12天的视频进行行为分析。
1.4 三箱社交试验(three-chamber sociability test)
试验在第3天和第13天进行,三室是由3个60 cm×40 cm×40 cm的矩形盒子组成,中间两块透明隔板,底部各有一扇门允许大鼠通过,两边的盒子放各放一铁丝网小笼,试验主要分3个阶段。第一阶段适应期:测试大鼠放于中间盒子10 min,此时小门关闭记录大鼠理毛行为;第二阶段社交测试:一侧的小笼放入一只陌生大鼠1,另一侧小笼空置,小门打开使大鼠自由探索10 min;第三阶段社交偏好测试:在第二阶段空置的小笼放入陌生大鼠2,让中间测试大鼠自由探索10 min,采集每个阶段录制的视频进行分析。
1.5 样品采集及处理
在第16天试验结束后,采用二氧化碳麻醉,然后断颈处死,在肝静脉使用针管抽取血液,用于测定血糖浓度,剩余血液静置1-2 h后,以3 000 r/min离心15 min,吸取上层血清并保存于-80 ℃冰箱中,收集大鼠器官组织样品称重,并采集部分样品进行保存,对海马体组织样品于冰上采集后,立即于-80 ℃冰箱保存。
1.6 血清生化指标测定方法
使用血糖仪[雅培贸易(上海)有限公司]测定静脉血糖浓度,于肝静脉采集的血液经离心后取部分血清,使用AU5800全自动生化分析仪(Beckman Coulter有限公司)测定血清生化指标。
1.7 结肠食糜微生物16S rRNA基因测序
使用EZN
1.8 海马体神经递质检测
海马体神经递质采用Xu
1.9 统计分析
数据经过Excel计算整理后,使用GraphPad Prism 9软件进行数据分析和可视化,分析方法采用单因素方差分析,LSD法进行事后多重比较,使用Kruskal-Wallis检验对细菌相对丰度进行分析,P<0.01 (**)表示差异极显著,P<0.05 (*)表示差异显著,为了显示具有显著差异趋势结果,将0.05<P<0.1的数据在图中标注具体P值。
2 结果与分析
2.1 体重和器官指数的变化
抗生素和低聚半乳糖对断奶大鼠体重和器官指数的影响如

图1 动物试验和大鼠体重、器官指数变化。A:体重变化;B:平均日增重;C:心脏指数;D:肝脏指数;E:脾脏指数;F:大脑指数。所有数值均为平均值±SEM,进行了单因素方差分析和费歇尔LSD检验的多重比较。星号表示差异具有统计学意义,*:P<0.05;**:P<0.01。CON:对照组;ABX:抗生素;GOS:低聚半乳糖;AG:抗生素+低聚半乳糖组;含量见试验设计,下同。
Figure 1 Animal testing and changes in body weight and organ indices in rats. A: Body weight change; B: Average daily weight gain; C: Heart index; D: Liver index; E: Spleen index; F: Brain index. All values are means±SEM. One-way ANOVA and Fisher’s LSD test for multiple comparisons were performed. Asterisks indicate statistically significant differences. *: P<0.05; **: P<0.01. CON: Control group; ABX: Antibiotics; GOS: Galacto-oligosaccharides; AG: Antibiotics+GOS group; See experimental design for content, the same below.
2.2 血清生化指标和血糖
血清生化测定结果显示(图

图2 抗生素和低聚半乳糖对大鼠常规血清生化指标的影响。A:天冬氨酸氨基转移酶,AST;B:丙氨酸氨基转移酶,ALT;C:葡萄糖,GLU;D:钙,Ca;E:尿素,Urea;F:第16天肝静脉血糖;G、H:分别为第4天、第9天尾尖静脉血糖。
Figure 2 Effect of antibiotics and GOS on routine serum biochemical indices in rats. A: Aspartate aminotransferase, AST; B: Alanine aminotransferase, ALT; C: Glucose, GLU; D: Calcium, Ca; E: Urea; F: Hepatic vein glucose on day 16; G, H: Tail-tip vein glucose on day 4, day 9, respectively.
2.3 旷场试验
在试验第1天发现,4个组之间的运动距离和平均运动速度均无显著差异(图

图3 旷场试验。预试验:A:总移动距离;B:平均移动速度。正式试验:C:总移动距离;D:平均移动速度;E:运动时间;F:休息时间;G:运动热图。
Figure 3 Open field test. Pre-experiment: A: Total distance traveled; B: Average speed of movement. Formal experiment: C: Total distance traveled; D: Average moving speed; E: Exercise time; F: Resting time; G: Exercise heat map.
2.4 明暗箱和三箱社交试验
明暗箱试验中,试验处理的第2天发现,各组大鼠穿越明暗箱的频率和趋光性指数(大鼠停留在明箱和暗箱的时间比值)无显著的差异(P>0.05,图

图4 明暗箱试验。预试验:A:穿越频率;B:趋光性指数。正式试验:C:穿越频率;D:趋光性指数;三箱社交测试-E:理毛频率;F:理毛时间;G:社交指数;H:社会偏好指数。
Figure 4 Light and dark box tests. Pre-experiment: A: Crossing frequency; B: Phototropic index. Formal test: C: Crossing frequency; D: Phototropic index; Three-box socialization test-E: Self-grooming frequency; F: Self-grooming time; G: Socialization index; H: Social preference index.
2.5 海马体神经递质
大鼠海马体神经递质测定结果显示,ABX组和低聚半乳糖处理组对酪氨酸均无明显的影响(P>0.05,

图5 海马体神经递质。A:酪氨酸;B:酪胺;C:左旋多巴;D:去甲肾上腺素;E:肾上腺素;F:乙酰胆碱。
Figure 5 Hippocampal neurotransmitters. A: Tyrosine; B: Tyramine; C: Levodopa; D: Norepinephrine; E: Epinephrine; F: Acetylcholine.
2.6 结肠食糜微生物组成分析
对16S rRNA基因测序结果进行分析显示,与CON组相比,含抗生素的ABX组和AG组Chao1指数、
Shannon指数(图

图6 结肠微生物16S rRNA基因测序。A:Chao1指数;B:Shannon指数;C:非度量多维尺度分析NMDS;D:门水平上的结肠菌群堆积条形图;E:属水平上的结肠菌群堆积条形图;F:前20丰度差异菌属。
Figure 6 16S rRNA gene sequencing of colonic microorganisms. A: Chao1 index; B: Shannon index; C: Non-metric multidimensional scaling analysis NMDS; D: Colonic enterobacterial colony stacked bars at the phylum level; E: Colonic enterobacterial colony stacked bars at the genus level; F: Top 20 abundance-differentiated genera.
3 讨论
3.1 抗生素和低聚半乳糖影响大鼠生长状况和血清生化指标影响
在本研究中,相较于GOS组,抗生素降低了大鼠体重和日增重,同时降低肝脏器官指数;低聚半乳糖则增加了大鼠的体重,并降低了大鼠的肝脏指数。研究发现,大鼠摄入的食物在肠胃中吸收消化不完全,会导致其体重下
抗生素和低聚半乳糖对葡萄糖代谢的影响较弱。Canfora
3.2 早期抗生素和低聚半乳糖干预对焦虑抑郁样行为的影响
本研究结果显示,抗生素和低聚半乳糖都具有一定的抗焦虑作用。相较于抗生素和低聚半乳糖的单独效应,联合使用这两者显著降低了大鼠的运动距离和运动速度,而在明暗箱试验中,仅抗生素组表现了对光暴露区域的回避行为,这提示抗生素可能会导致大鼠对光敏感性的改变。同时,抗生素和低聚半乳糖均降低了大鼠的理毛频率,表明它们具有一定的抗焦虑样行为作用。Desbonnet
3.3 抗生素和低聚半乳糖对海马体神经递质的影响
抗生素和低聚半乳糖可能通过改变肠道微生物,进而影响机体功能。本研究结果显示,抗生素和低聚半乳糖增加了大鼠海马体中的去甲肾上腺素。有研究表明,微生物和植物体内含有的去甲肾上腺素和多巴胺含量通常高于动物体
3.4 抗生素和低聚半乳糖对结肠食糜微生物组成的影响
抗生素和低聚半乳都可以影响胃肠道微生物群
4 结论
综上所述,使用抗生素和低聚半乳糖对大鼠进行治疗干预时,抗生素会减少大鼠的焦虑样行为,同时降低海马神经递质左旋多巴胺的含量,增加去甲肾上腺素的含量,并增加潜在致病菌的丰度;而低聚半乳糖能够改善大鼠的生长状况,对大鼠行为无明显影响,但会增加Lactobacillus的丰度,并伴减少左旋多巴胺和肾上腺素的含量。此外,联合使用抗生素和低聚半乳糖也会降低大鼠运动能力,增加焦虑抑郁样行为。
作者贡献声明
韩水兵:试验设计、试验数据收集和分析、论文撰写等;刘晓英:试验和数据分析;刘子昱:试验和数据分析;潘龙:论文撰写和审核;慕春龙:试验方案设计、试验数据收集和协助分析以及论文修改;朱伟云:试验指导、论文审核修改等。
利益冲突
公开声明
参考文献
van TRIJP MPH, RÖSCH C, ANR, KESHTKAR S, LOGTENBERG MJ, HERMES GDA, ZOETENDAL EG, SCHOLS HA, HOOIVELD GJEJ. Fermentation kinetics of selected dietary fibers by human small intestinal microbiota depend on the type of fiber and subject[J]. Molecular Nutrition & Food Research, 2020, 64(20): e2000455. [百度学术]
AZCARATE-PERIL MA, ALTERMANN E, GOH YJ, TALLON R, SANOZKY-DAWES RB, PFEILER EA, O’FLAHERTY S, BUCK BL, DOBSON A, DUONG T, MILLER MJ, BARRANGOU R, KLAENHAMMER TR. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism[J]. Applied and Environmental Microbiology, 2008, 74(15): 4610-4625. [百度学术]
MCVEY NEUFELD KA, O’MAHONY SM, HOBAN AE, WAWORUNTU RV, BERG BM, DINAN TG, CRYAN JF. Neurobehavioural effects of Lactobacillus rhamnosus GG alone and in combination with prebiotics polydextrose and galacto-oligosaccharide in male rats exposed to early-life stress[J]. Nutritional Neuroscience, 2019, 22(6): 425-434. [百度学术]
ARNOLD JW, ROACH J, FABELA S, MOORFIELD E, DING SL, BLUE E, DAGHER S, MAGNESS S, TAMAYO R, BRUNO-BARCENA JM, AZCARATE-PERIL MA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut[J]. Microbiome, 2021, 9(1): 31. [百度学术]
HAO WZ, LI XJ, ZHANG PW, CHEN JX. A review of antibiotics, depression, and the gut microbiome[J]. Psychiatry Research, 2020, 284: 112691. [百度学术]
GÎLCĂ-BLANARIU GE, ȘCHIOPU CG, ȘTEFĂNESCU G, MIHAI C, DIACONESCU S, AFRĂSÂNIE VA, LUPU VV, LUPU A,BOLOȘ A, ȘTEFĂNESCU C. The intertwining roads between psychological distress and gut microbiota in inflammatory bowel disease[J]. Microorganisms, 2023, 11(9): 2268. [百度学术]
RAJILIĆ-STOJANOVIĆ M, de VOS WM. The first 1 000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiology Reviews, 2014, 38(5): 996-1047. [百度学术]
GILL SR, POP M, DEBOY RT, ECKBURG PB, TURNBAUGH PJ, SAMUEL BS, GORDON JI, RELMAN DA, FRASER-LIGGETT CM, NELSON KE. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778): 1355-1359. [百度学术]
QIN JJ, LI RQ, RAES J, ARUMUGAM M, BURGDORF KS, MANICHANH C, NIELSEN T, PONS N, LEVENEZ F, YAMADA T, MENDE DR, LI JH, XU JM, LI SC, LI DF, CAO JJ, WANG B, LIANG HQ, ZHENG HS, XIE YL,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. [百度学术]
BUROKAS A, ARBOLEYA S, MOLONEY RD, PETERSON VL, MURPHY K, CLARKE G, STANTON C, DINAN TG, CRYAN JF. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice[J]. Biological Psychiatry, 2017, 82(7): 472-487. [百度学术]
LYNCH CMK, COWAN CSM, BASTIAANSSEN TFS, MOLONEY GM, THEUNE N, van de WOUW M, FLORENSA ZANUY E, VENTURA-SILVA AP, CODAGNONE MG, VILLALOBOS-MANRÍQUEZ F, SEGALLA M, KOC F, STANTON C, ROSS P, DINAN TG, CLARKE G, CRYAN JF. Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment[J]. Brain, Behavior, and Immunity, 2023, 108: 309-327. [百度学术]
KANG DW, PARK JG, ILHAN ZE, WALLSTROM G, LABAER J, ADAMS JB, KRAJMALNIK-BROWN R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children[J]. PLoS One, 2013, 8(7): e68322. [百度学术]
FORSYTH CB, SHANNON KM, KORDOWER JH, VOIGT RM, SHAIKH M, JAGLIN JA, ESTES JD, DODIYA HB, KESHAVARZIAN A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease[J]. PLoS One, 2011, 6(12): e28032. [百度学术]
MU CL, NIKPOOR N, TOMPKINS TA, CHOUDHARY A, WANG M, MARKS WN, RHO JM, SCANTLEBURY MH, SHEARER J. Targeted gut microbiota manipulation attenuates seizures in a model of infantile spasms syndrome[J]. JCI Insight, 2022, 7(12): e158521. [百度学术]
BERCIK P, COLLINS SM, VERDU EF. Microbes and the gut-brain axis[J]. Neurogastroenterology and Motility, 2012, 24(5): 405-413. [百度学术]
LIU ZY, LING YD, PENG Y, HAN SB, REN YT, JING YJ, FAN WL, SU Y, MU CL, ZHU WY. Regulation of serotonin production by specific microbes from piglet gut[J]. Journal of Animal Science and Biotechnology, 2023, 14(1): 111. [百度学术]
XU J, XU HM, PENG Y, ZHAO C, ZHAO HL, HUANG WQ, HUANG HL, HE J, DU YL, ZHOU YJ, ZHOU YL, NIE YQ. The effect of different combinations of antibiotic cocktails on mice and selection of animal models for further microbiota research[J]. Applied Microbiology and Biotechnology, 2021, 105(4): 1669-1681. [百度学术]
TAO CL, ZHANG Q, ZENG WJ, LIU GL, SHAO HW. The effect of antibiotic cocktails on host immune status is dynamic and does not always correspond to changes in gut microbiota[J]. Applied Microbiology and Biotechnology, 2020, 104(11): 4995-5009. [百度学术]
HOBAN AE, MOLONEY RD, GOLUBEVA AV, MCVEY NEUFELD KA, O’SULLIVAN O, PATTERSON E, STANTON C, DINAN TG, CLARKE G, CRYAN JF. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat[J]. Neuroscience, 2016, 339: 463-477. [百度学术]
WONG KR, SGRO M, YAMAKAWA GR, LI C, MCDONALD SJ, SUN MJ, SHULTZ SR, BRADY RD, MYCHASIUK R. Gut microbiome depletion and repetitive mild traumatic brain injury differentially modify bone development in male and female adolescent rats[J]. Bone Reports, 2021, 15: 101123. [百度学术]
HONG KB, KIM JH, KWON HK, HAN SH, PARK Y, SUH HJ. Evaluation of prebiotic effects of high-purity galacto-oligosaccharides in vitro and in vivo[J]. Food Technology and Biotechnology, 2016, 54(2): 156-163. [百度学术]
JANTSCHER-KRENN E, MARX C, BODE L. Human milk oligosaccharides are differentially metabolised in neonatal rats[J]. The British Journal of Nutrition, 2013, 110(4): 640-650. [百度学术]
XU HR, WANG ZR, ZHU L, SUI ZY, BI WC, LIU R, BI KS, LI Q. Targeted neurotransmitters profiling identifies metabolic signatures in rat brain by LC-MS/MS: application in insomnia, depression and Alzheimer’s disease[J]. Molecules, 2018, 23(9): 2375. [百度学术]
MENG C, FENG SY, HAO ZK, DONG C, LIU H. Antibiotics exposure attenuates chronic unpredictable mild stress-induced anxiety-like and depression-like behavior[J]. Psychoneuroendocrinology, 2022, 136: 105620. [百度学术]
MacFARLANE NG. Digestion and absorption[J]. Anaesthesia & Intensive Care Medicine, 2018, 19(3): 125-127. [百度学术]
GE XL, DING C, ZHAO W, XU LZ, TIAN HL, GONG JF, ZHU MS, LI JS, LI N. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility[J]. Journal of Translational Medicine, 2017, 15(1): 13. [百度学术]
SILVA RSD, MENDONÇA IP, PAIVA IHR, SOUZA JRB, PEIXOTO CA. Fructo-oligosaccharides and galacto-oligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation[J]. International Journal of Food Sciences and Nutrition, 2023, 74(7): 760-780. [百度学术]
WANG J, TIAN SY, WANG J, ZHU WY. Early galacto-oligosaccharide intervention alters the metabolic profile, improves the antioxidant capacity of mitochondria and activates the AMPK/Nrf2 signaling pathway in suckling piglet liver[J]. Food & Function, 2020, 11(8): 7280-7292. [百度学术]
CANFORA EE, van der BEEK CM, HERMES GDA, GOOSSENS GH, JOCKEN JWE, HOLST JJ, van EIJK HM, VENEMA K, SMIDT H, ZOETENDAL EG, DEJONG CHC, LENAERTS K, BLAAK EE. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals[J]. Gastroenterology, 2017, 153(1): 87-97.e3. [百度学术]
DESBONNET L, CLARKE G, TRAPLIN A, O’SULLIVAN O, CRISPIE F, MOLONEY RD, COTTER PD, DINAN TG, CRYAN JF. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour[J]. Brain, Behavior, and Immunity, 2015, 48: 165-173. [百度学术]
CHAMPAGNE-JORGENSEN K, MIAN MF, KAY S, HANANI H, ZIV O, MCVEY NEUFELD KA, KOREN O, BIENENSTOCK J. Prenatal low-dose penicillin results in long-term sex-specific changes to murine behaviour, immune regulation, and gut microbiota[J]. Brain, Behavior, and Immunity, 2020, 84: 154-163. [百度学术]
PEREZ-BURGOS A, WANG BX, MAO YK, MISTRY B, MCVEY NEUFELD KA, BIENENSTOCK J, KUNZE W. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2013, 304(2): G211-G220. [百度学术]
LEMOINE A, TOUNIAN P, ADEL-PATIENT K, THOMAS M. Pre-, pro-, syn-, and postbiotics in infant formulas: what are the immune benefits for infants?[J]. Nutrients, 2023, 15(5): 1231. [百度学术]
HARSHAW C, KOJIMA S, WELLMAN CL, DEMAS GE, MORROW AL, TAFT DH, KENKEL WM, LEFFEL JK, ALBERTS JR. Maternal antibiotics disrupt microbiome, behavior, and temperature regulation in unexposed infant mice[J]. Developmental Psychobiology, 2022, 64(6): e22289. [百度学术]
ROSHCHINA VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells[J]. Advances in Experimental Medicine and Biology, 2016, 874: 25-77. [百度学术]
TAJ A, JAMIL N. Bioconversion of tyrosine and tryptophan derived biogenic amines by neuropathogenic bacteria[J]. Biomolecules, 2018, 8(1): 10. [百度学术]
NANKOVA BB, AGARWAL R, MacFABE DF, La GAMMA EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells: possible relevance to autism spectrum disorders[J]. PLoS One, 2014, 9(8): e103740. [百度学术]
MacFABE DF, CAIN NE, BOON F, OSSENKOPP KP, CAIN DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder[J]. Behavioural Brain Research, 2011, 217(1): 47-54. [百度学术]
GAO K, PI Y, PENG Y, MU CL, ZHU WY. Time-course responses of ileal and fecal microbiota and metabolite profiles to antibiotics in cannulated pigs[J]. Applied Microbiology and Biotechnology, 2018, 102(5): 2289-2299. [百度学术]
高仁, 田时祎, 汪晶, 朱伟云. 低聚半乳糖对脂多糖刺激哺乳仔猪盲肠微生物区系、肠道炎症和屏障功能的影响[J]. 动物营养学报, 2022, 34(1): 177-189. [百度学术]
GAO R, TIAN SY, WANG J, ZHU WY. Effects of galacto-oligosaccharides on cecal microflora, intestinal inflammation and barrier function of suckling piglets stimulated by lipopolysaccharides[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 177-189 (in Chinese). [百度学术]
田时祎, 王珏, 汪晶, 朱伟云. 早期低聚半乳糖干预对哺乳仔猪回肠形态、功能发育相关基因及回肠菌群的影响[J]. 南京农业大学学报, 2018, 41(5): 917-924. [百度学术]
TIAN SY, WANG J, WANG J, ZHU WY. The effect of early intervention with galacto-oligosaccharides on the morphological structure, functional development, and microbial community in ileum of suckling piglets[J]. Journal of Nanjing Agricultural University, 2018, 41(5): 917-924 (in Chinese). [百度学术]
VICKERS NJ. Animal communication: when I’m calling you, will you answer too?[J]. Current Biology, 2017, 27(14): R713-R715. [百度学术]
WANG HX, WANG YP. Gut microbiota-brain axis[J]. Chinese Medical Journal, 2016, 129(19): 2373-2380. [百度学术]
XIE T, JIA XK, CHEN MB. Gut mobility attenuation induced by antibiotics is associated with overactivation of enteric glial cells in mice[J]. Chinese Journal of Cellular and Molecular Immunology, 2019, 35(3): 199-205. [百度学术]
ERNY D, HRABĚ de ANGELIS AL, JAITIN D, WIEGHOFER P, STASZEWSKI O, DAVID E, KEREN-SHAUL H, MAHLAKOIV T, JAKOBSHAGEN K, BUCH T, SCHWIERZECK V, UTERMÖHLEN O, CHUN E, GARRETT WS, McCOY KD, DIEFENBACH A, STAEHELI P, STECHER B, AMIT I, PRINZ M. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nature Neuroscience, 2015, 18: 965-977. [百度学术]
RÍOS-COVIÁN D, RUAS-MADIEDO P, MARGOLLES A, GUEIMONDE M, de LOS REYES-GAVILÁN CG, SALAZAR N. Intestinal short chain fatty acids and their link with diet and human health[J]. Frontiers in Microbiology, 2016, 7: 185. [百度学术]
VULEVIC J, DRAKOULARAKOU A, YAQOOB P, TZORTZIS G, GIBSON GR. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers[J]. The American Journal of Clinical Nutrition, 2008, 88(5): 1438-1446. [百度学术]
SEELBINDER B, CHEN JR, BRUNKE S, VAZQUEZ-URIBE R, SANTHAMAN R, MEYER AC, de OLIVEIRA LINO FS, CHAN KF, LOOS D, IMAMOVIC L, TSANG CC, LAM RPK, SRIDHAR S, KANG K, HUBE B, WOO PCY, SOMMER MOA, PANAGIOTOU G. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria[J]. Microbiome, 2020, 8(1): 133. [百度学术]