网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

土壤丛枝菌根真菌准离体培养体系的建立  PDF

  • 何俊良 1
  • 和展梅 1
  • 何辰辰 1
  • 黄心铷 1
  • 谢贤安 1,2
1. 华南农业大学 林学与风景园林学院,广东省森林植物种质创新与利用重点实验室,广东 广州; 2. 山东省农业科学院,养分资源高效利用全国重点实验室,山东 济南

最近更新:2025-04-09

DOI: 10.13343/j.cnki.wsxb.20240731

CSTR: 32112.14.j.AMS.20240731

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

目的

丛枝菌根(arbuscular mycorrhizal, AM)真菌是植物根围微生物群的关键组成部分,能与72%的陆生植物形成共生体。然而,AM真菌属于植物专性共生土壤真菌,难以进行富集分离和人工纯培养。本研究旨在建立一种基于添加根系分泌物的非植物共生培养体系,以解决AM真菌难以离体培养的问题。

方法

利用 “多层三明治” 夹膜培养体系,对土壤AM真菌孢子进行非植物共生的准离体培养,并采用分子系统学方法对培养的AM真菌进行鉴定。

结果

利用 “多层三明治” 夹膜培养体系对土壤AM真菌进行非植物共生的准离体培养,发现紫云英的根系分泌物能有效促进AM真菌的菌丝生长。与培养30 d和45 d相比,在培养60 d时产生大量的次生孢子,数量为(951±45)个。进一步的孢子回接试验表明,该培养产生的次生孢子能侵染紫云英幼苗根系。使用分子鉴定法鉴定出适用于 “多层三明治” 夹膜培养体系的2种AM真菌,分别为摩西斗管囊霉(Funneliformis mosseae)和隐类球囊霉(Paraglomus occultum)。使用模拟紫云英根系分泌物成分配制的营养液对AM真菌孢子进行 “多层三明治” 夹膜离体培养,结果表明添加根系分泌物显著促进AM真菌菌丝生长。

结论

在植物培护的 “多层三明治” 夹膜培养体系中,紫云英根系分泌物能持续诱导AM真菌在非共生条件下产生菌丝体和具有侵染宿主植物能力的次生孢子。本研究为进一步解决AM真菌离体培养和分离鉴定等问题提供了新方法。

丛枝菌根(arbuscular mycorrhizal, AM)真菌是一类古老且重要的陆生植物根系内生菌根真菌,是植物根围微生物群的重要组成部[

1]。AM共生是AM真菌与72%的陆生植物根系建立的互利共生关[2],能够促进植物生长、养分吸收,以及增强植物对生物或非生物胁迫的耐受性,对生物地球化学循环和微生物群落稳态具有重要作[3-6]

AM真菌属于植物专性共生真[

7],归因于AM真菌在与宿主植物共同进化过程中编码参与脂肪酸从头合成以及蔗糖和硫胺素代谢相关酶的基因丢[8-9]。因此,AM真菌完成其生命周期需要依赖宿主植物提供的有机碳,包括糖类和脂肪[10-13],这一特性导致AM真菌在非宿主植物共生的情况下难以像其他丝状真菌一样进行富集分离和人工纯培养。尽管如此,先前对AM真菌根内根孢囊霉(Glomus intraradices,现拉丁名为Rhizophagus intraradices)和强壮类芽孢杆菌(Paenibacillus validus)细菌菌株的共培养研究表明,细菌分泌物能够有效诱导AM真菌菌丝生长,并促进次生孢子的产[14]。此外,近年来的研究发现,外源脂肪酸(如棕榈酸和肉豆蔻酸)可以刺激AM真菌的菌丝萌发,并产生具有侵染宿主植物能力的次生孢[15-16]。在外源脂肪酸和有机氮存在下,植物激素(如独脚金内酯和茉莉酸酯)的添加进一步促进了AM真菌的产孢过[17]。这些研究结果表明,在人工培养条件下,提供合理的AM真菌必需营养物质能够激发AM真菌独立于宿主植物的生长和产孢潜力。然而,与植物共培养产生的次生孢子相比,通过纯培养方法获得的AM真菌数量及其对宿主植物根系的定殖能力仍表现出一定的局限性。

植物根系分泌物是植物与土壤微生物相互作用的重要媒介,其成分中富含各种营养物质和信号分子。根系分泌物的主要组成成分包括高分子量的蛋白质和黏液,以及多样化的低分子量化合物。后者包括广泛的初级代谢物(如氨基酸、糖和羧酸盐)[

18-20]和次级代谢物(如脂肪酸和类黄酮)[21]。AM真菌在纯培养过程中所需的营养物质与植物根系分泌物中的次级代谢物部分种类非常相似,这表明根系分泌物能够为AM真菌的生长和繁殖提供必要的营养支持,促进其菌丝萌发与产孢。因此,建立一种非植物共生的培养方法,通过提供植物根系分泌物或类似根系分泌物成分的营养液来培育AM真菌,对于促进其萌发和产孢具有重要的研究意义。这一研究不仅有助于深入理解植物与微生物之间的相互作用,也为AM真菌资源的开发与利用提供了新的思路。

本研究采用 “多层三明治” 夹膜培养体系,对土壤中的AM真菌菌种进行非植物共生培养,并通过添加豆科植物紫云英根系分泌物,诱导AM真菌在离体条件下产生菌丝和次生孢子。这一方法为AM真菌的基础与应用研究提供了一种更加简便和可行的扩繁途径。此外,本研究对适用于 “多层三明治” 夹膜培养体系的土壤AM真菌进行了分子生物学鉴定,以期丰富亚热带地区AM真菌的种质资源库,并为AM真菌在农林业生产中的研究与应用提供可行的方法。

1 材料与方法

1.1 样品采集

为获取AM真菌材料,选取广州市天河区华南农业大学树木园作为采样区域,该区域土壤类型为花岗岩发育的中性或弱酸性赤红壤。采样方法如下:在采样区域内选取5个华南地区乡土树种的根区土壤采样点,参照周小勤[

22]的方法进行根区土壤样品采集。每个采样点的有效磷含量、土壤pH值和宿主植物详见表1。待土样自然风干后,采用湿筛倾析-蔗糖离心[23]分离AM真菌孢子,并将孢子收集于无菌培养皿中,在体式显微镜(Nikon公司)下挑取AM真菌孢子。

表1  根区土壤采样信息
Table 1  Sampling information of root-zone soils

采样点

Sampling point

经纬度

Longitude and latitude

宿主植物

Host plants

土壤pH

pH of the soil

有效磷含量

Phosphate content (mg/kg)

平行样

Duplicates

平均值±SD

Mean±SD

1

23°9′43″N

113°21′13″E

菠萝蜜

Artocarpus heterophyllus Lam.

6.4 53 57.0±3.7
56
62
2

23°9′134″N

113°21′12″E

构树

Broussonetia papyrifera (Linn.) L'Hér. ex Vent.

7.1 56 52.7±2.5
52
50
3

23°9′36″N

113°21′16″E

阴香

Cinnamomum burmanni (Nees & T. Nees) Blume

6.2 52 51.0±4.5
45
56
4

23°19′35″N

113°22′17″E

阳桃

Averrhoa carambola L.

6.8 52 58.7±4.8
61
63
5

23°15′22″N

113°25′33″E

龙眼

Dimocarpus longan Lour.

7.0 70 76.7±8.7
71
89

1.2 供试植物材料

供试植物为紫云英(Astragalus sinicus),种子来源于华中农业大学农业微生物资源挖掘与利用全国重点实验室生物固氮分室。

对紫云英种子进行灭菌处理和萌发,步骤如下:将紫云英种子浸入15%次氯酸钠(NaClO)溶液进行表面灭菌20 min,充分吸干次氯酸钠溶液后,用无菌水漂洗种子5次,每次5 min;随后加入75%乙醇浸泡20 min,继续用无菌水洗去残留的乙醇溶液。之后将种子浸泡在无菌水中,置于25 ℃暗处吸胀24 h。将吸胀的种子点播于Murashige-Skoog (MS)固体培养基(Coolaber公司)上,于25 ℃暗处培养2 d使其萌发,再将培养基置于光照培养室内继续培养14 d。随后,紫云英幼苗可用于 “多层三明治” 夹膜法作为培护植物,也可用于次生孢子回接试验的宿主植物。

1.3 “多层三明治” 夹膜法培养AM真菌

挑取大小一致、无萌发管的AM真菌孢子进行表面消毒处理。以每份20个孢子的数量注射到直径为50 mm、孔径尺寸为0.8 µm的微孔过滤膜(天津津腾科技有限公司)上,用另一张相同规格的微孔过滤膜将其覆盖,形成夹心结[

24]。在夹心结构的两外侧分别放置2株紫云英幼苗(紫云英萌发情况如1.2节所述),将紫云英幼苗的侧根展开并以覆盖状形式铺在微孔滤膜的孢子层外侧,再用2张滤膜夹住紫云英幼苗,形成多层 “三明治夹心” 装置,并将其竖直插入到含石英砂的方形花盆中央,将滤膜的1/5曝露在外(图1A、1B)。用改良的Long Ashon (mLA)培养[25](含30  μmol/L NaH2PO4和250 μmol/L NaNO3)浇灌 “多层三明治” 夹膜培养体系,每3 d浇灌1次,培养35 d以上,随后抽出盆栽中孢子层夹膜,观察并记录菌丝的长度及统计次生孢子数量。

fig

图1  “多层三明治” 夹膜法培养AM真菌孢子示意图。A和B分别为添加植物培护的 “多层三明治” 夹膜法示意图和实物图;C和D分别为添加模拟根系分泌物营养液的 “多层三明治” 夹膜法示意图和实物图。

Figure 1  Schematic diagram of the “multi-layer sandwich” method for cultivation of AM fungal spores. A and B: Schematic diagram and physical image of the plant-assisted “multi-layer sandwich” method; C and D: Schematic diagram and physical image of the “multi-layer sandwich” method adding nutrient solutions that simulate root exudates.

将另一份AM真菌孢子注射到上述 “三明治夹心” 结构中,并将 “多层三明治” 夹膜培养体系垂直插入方形花盆中央,使约1/5的过滤膜直径曝露在外(图1C、1D)。用模拟根系分泌物成分的营养液(自行配制)或mLA营养液进行营养管理,每盆隔天注射1次模拟根系分泌物成分营养液或mLA营养液到中间含孢子的夹膜中,每次用量1 mL,培养35 d以上,随后抽出盆栽中孢子层夹膜,观察并记录菌丝长度及次生孢子数量。

1.4 AM真菌菌丝长度和次生孢子直径测定

在体视显微镜(Nikon公司)下观察AM真菌菌丝生长情况并记录次生孢子数量,使用图像处理软件Scion Image测量菌丝长度。所得实验数据用SPSS 26.0软件进行统计分析。分析采用邓肯(Duncan)多重比较法,数据以不同生物学重复的mean±SE表示。不同字母表示各数据间存在显著性差异(P<0.05)。

1.5 孢子回接试验

使用无菌的微型注射器针头,去除附着在 “多层三明治” 夹膜法实验滤膜上的母孢子(mother spore,直径约为100 µm,孢子颜色深黄褐色,孢子壁较厚)。将萌发并培养14 d的紫云英幼苗根系放置在含有次生孢子(直径约为15-30 µm,浅白色,孢子壁较薄,着生于分枝菌丝末端)的滤膜上,每份滤膜上放置2株大小一致、长势相近的幼苗。从同一储备样品中挑出等数量的休眠孢子(也称母孢子)放置于新的微孔过滤膜上,每份使用同样大小且长势一致的2株紫云英幼苗进行盆栽培养。侵染紫云英根系28 d后,测定菌根侵染率。

1.6 AM真菌侵染率测定

收集紫云英根样置于离心管内,加入10%的KOH溶液(0.1 g/mL),放置于90 °C水浴中1 h,随后加入2% HCl (0.55 mol/L)浸泡10 min,用无菌水清洗3次。使用0.5 g/L台盼蓝和5 μg/mL荧光麦胚凝集素488 (wheat germ agglutinin 488, WGA488)对紫云英根段进行染色,参照Trouvelot[

25]的方法统计菌根真菌侵染紫云英根系的水平。

1.7 AM真菌的分子生物学鉴定

采用单孢PCR方[

23]对 “多层三明治” 夹膜培养法扩繁后的母孢子进行分子鉴定。AM真菌孢子表面灭菌方法参考Xie[26]。以含有孢子DNA的内含物直接作为扩增模板,利用GeoA2/Geo11[27]和AML1/AML2[28]引物对进行巢式PCR扩增。回收扩增片段后,进行T/A克隆转化。次日挑取转化子进行测序,将测序获得的AM真菌特异性序列提交至NCBI网站进行同源序列搜索,选取相似性较高的序列作为参考序列,与测序获得的目的序列一同在MEGA 11软[29]中采用邻接法(neighbor-joining method)构建系统发育树。

2 结果与分析

2.1 “多层三明治” 夹膜法促进AM真菌菌丝生长和产生次生孢子

“多层三明治” 夹膜培养体系依靠微孔滤膜将植株根部与AM真菌孢子分隔,在非植物共生培养条件下,AM真菌通过摄取紫云英渗透到滤膜的根系分泌物,促进菌丝生长以及形成次生孢[

24]。为明确在不同培养时间段AM真菌孢子产生次生孢子的情况,分别对培养30、45和60 d的次生孢子数量及大小进行统计。培养30 d时,AM真菌母孢子仅产生少量次生孢子(图2A-2C),数量为(6±2)个;培养45 d时,母孢子产生次生孢子的数量明显增加,数量为(118±18)个(图2D-2F),并显著多于培养30 d时产生的次生孢子。与培养30 d和45 d相比,AM真菌在分隔培养60 d时产生了大量次生孢子(图2G-2I),数量为(951±45)个,显著高于培养30 d和45 d时产生的次生孢子(图2J)。由此可见,在非植物共生培养条件下,随着培养时间的增加,AM真菌母孢子能产生更多数量的次生孢子。

fig

图2  紫云英根系分泌物诱导土壤AM真菌产生次生孢子及数量统计示意图。A-I:添加紫云英根系分泌物培养30 d (A-C)、45 d (D-F)和60 d (G-I)后AM真菌次生孢子的生长情况。J:紫云英根系分泌物处理下AM真菌次生孢子在30 d、45 d和60 d时的数量比较。橙色箭头表示母孢子,黄色箭头表示次生孢子;图中比例尺为100 μm。根据邓肯多重比较计算显著性,柱状图中不同字母表示显著性差异,P<0.05。

Figure 2  Schematic diagram of secondary spore production and counts of indigenous AM fungi induced by root exudates of Astragalus sinicus in vitro. A-I: The growth of AM fungus secondary spores after 30 d (A-C), 45 d (D-F), and 60 d (G-I) culture with addition of root exudates of A. sinicus. J: Comparison of the number of AM fungal secondary spores at 30 d, 45 d, and 60 d under the treatment with root exudates of A. sinicus. Orange arrows indicate mother spores and yellow arrows indicate secondary spores. The scale bar in the figure is 100 μm. Significance was calculated based on Duncan’s multiple comparisons, and different letters in the bar graphs indicate significant differences at P<0.05.

为观察AM真菌菌丝的生长情况,对菌丝进行台盼蓝染色。培养30 d时,观察到分枝菌丝结构(图3A、3B),此时菌丝长度为(33.80±18.74) mm。培养45 d时,菌丝长度为(109.30±10.02) mm,相较于培养30 d时显著增加(图3J),并产生大量分枝菌丝结构,该结构可以促进AM真菌吸收来自紫云英一侧的根系分泌物并延伸形成游走菌丝。培养60 d时,菌丝长度为(188.07±2.69) mm,此时产生大量菌丝,菌丝顶端膨大形成直径较小的次生孢子,并形成高度分枝的菌丝-孢子结构网络(图3H、3I)。

fig

图3  紫云英根系分泌物诱导土壤AM真菌菌丝生长及菌丝长度统计示意图。A-I:添加紫云英根系分泌物培养30 d (A-C)、45 d (D-F)和60 d (G-I)后AM真菌菌丝生长情况;J:紫云英根系分泌物处理下AM真菌菌丝在30 d、45 d和60 d时的长度比较。橙色箭头表示母孢子,黄色箭头表示次生孢子,蓝色箭头表示菌丝。图中比例尺为100 μm。根据邓肯多重比较计算显著性,柱状图中不同字母表示显著性差异,P<0.05。

Figure 3  Statistical diagram of hyphal growth and hyphal length of soil AM fungi induced by root exudates of Astragalus sinicus. A-I: The growth of hyphae after 30 d (A-C), 45 d (D-F), and 60 d (G-I) culture with addition of root exudates of A. sinicus; J: Comparison of the length of AM fungal hyphae at 30 d, 45 d and 60 d under the treatment with root exudates of A. sinicus. Orange arrows indicate mother spores, yellow arrows indicate secondary spores, and blue arrows indicate hyphae. The scale bar in the figure is 100 μm. Significance was calculated based on Duncan’s multiple comparisons, and different letters in the bar graphs indicate significant differences at P<0.05.

为证实土壤AM真菌产生的次生孢子是由紫云英根系分泌物诱导产生,对培护植株的紫云英根段进行染色并观察。结果显示,在3个培护培养时间段(30、45和60 d)内(图4A-4C),AM真菌均未侵染紫云英根段,表明AM真菌的孢子萌发及次生孢子的产生所需的营养来源于根系分泌物。

fig

图4  培护植物紫云英的台盼蓝染色根段

Figure 4  The root segments of trypan blue from the companion plant Astragalus sinicus. A: 30 d; B: 45 d; C: 60 d. The scale bar in the figure is 100 μm.

2.2 模拟根系分泌物营养液促进土壤AM真菌菌丝生长

利用豆科植物紫云英培护的 “多层三明治” 夹膜培养实验结果表明,紫云英的根系分泌物可以促进AM真菌菌丝生长及产生次生孢子。为进一步探究土壤AM真菌的离体培养条件,建立了无植物培护的 “多层三明治” 夹膜离体培养体系。在mLA培养基的基础上,添加脂类(肉豆蔻酸钾和茉莉酸甲酯)、植物激素(独脚金内酯类似物GR24)以及有机氮(蛋白胨)等物质,并使用该培养基溶液对AM真菌进行离体培养。

培养60 d时,观察到AM真菌孢子的连孢菌丝有萌发且伸长现象(图5D-5F),使用台盼蓝染色后发现,土壤AM真菌出现菌丝伸长现象,但菌丝较短,未形成菌丝网络结构,且无次生孢子产生(图5G-5I)。利用mLA营养液作为对照进行培养,在30 d (图5A)、45 d (图5B)以及60 d (图5C)时,均未观察到土壤AM真菌明显的菌丝生长。由此可见,添加模拟根系分泌物营养液的培养方法对土壤AM真菌的生长发育具有促进作用,这表明在 “三明治” 夹膜离体培养条件下,培养基中的脂类(茉莉酸甲酯和肉豆蔻酸钾)、植物激素(独脚金内酯类似物GR24)和有机氮(蛋白胨)能被AM真菌吸收利用。

fig

图5  模拟根系分泌物营养液诱导土壤AM真菌菌丝生长。A-C:添加mLA营养液培养30 d (A)、45 d (B)和60 d (C)后AM真菌菌丝生长情况;D-F:添加模拟根系分泌物营养液60 d后AM真菌菌丝生长情况;G-I:添加模拟根系分泌物营养液60 d后,在台盼蓝染色观察下的AM真菌菌丝生长情况。橙色箭头表示母孢子,蓝色箭头表示菌丝。图中比例尺为100 μm。

Figure 5  Simulated root exudates nutrient solution induces hyphae production by indigenous AM fungi. A-C: The growth of hyphae after 30 d (A), 45 d (B), and 60 d (C) culture with addition of mLA nutrient solution; D-F: The growth of AM fungal hyphae after 60 d culture with addition of simulated root exudates nutrient solution; G-I: After adding simulated root exudates nutrient solution for 60 d, the growth of AM fungi was observed under trypan blue staining. Orange arrows indicate parent spores and blue arrows indicate hyphae. The scale bar in the figure is 100 μm.

2.3 “多层三明治” 夹膜培养中产生的次生孢子对紫云英有侵染能力

为确定 “多层三明治” 夹膜培养体系产生的次生孢子具有侵染植物的能力,将次生孢子和AM真菌母孢子回接到草本植物紫云英根系。使用WGA488对分别由AM真菌次生孢子和母孢子侵染的紫云英根段进行染色观察。结果发现,紫云英根段存在菌丝(图6B)和泡囊(图6A)结构,表明母孢子和次生孢子都具有侵染植物的能力。对紫云英根段总侵染率进行统计,发现母孢子组的侵染率为21%,次生孢子组的侵染率为13% (图6C),次生孢子的侵染率较母孢子略低,表明次生孢子的侵染能力略弱于母孢子。

fig

图6  AM真菌次生孢子和母孢子的侵染能力比较。A:AM真菌次生孢子与紫云英根系共生28 d时的菌根定殖情况;B:AM真菌母孢子与紫云英根系共生28 d时的菌根定殖情况;C:紫云英根系在接种次生孢子和母孢子28 d后的总侵染率比较。v:泡囊;ih:根内菌丝。图中比例尺为100 μm。

Figure 6  Comparison of colonization capacity between secondary spores and mother spores of AM fungi. A: Mycorrhizal colonization of AM fungal secondary spores at 28 d of symbiosis with A. sinicus roots; B: Mycorrhizal colonization of AM fungal mother spores at 28 d of symbiosis with A. sinicus roots; C: Comparison of total frequency of colonization in A. sinicus roots after inoculation with secondary spores and mother spores for 28 d. v: Vesicle; ih: Intraradical hyphae. The scale bar in the figure is 100 μm.

2.4 土壤AM真菌孢子的分子系统学鉴定

挑取样品中的母孢子进行单孢测序,其中一种单孢测序序列同源搜索结果显示,该序列与摩西斗管囊霉(Funneliformis mosseae)的18S rRNA基因序列(登录号为FR750227.1)相似性高达99.88% (图7),表明该AM真菌为F. mosseae。另一种孢子根据系统发育树结果显示,其与隐类球囊霉(Paraglomus occultum)的18S rRNA基因被聚类为同一分支(图7),表明该AM真菌为P. occultum。上述结果表明,“多层三明治” 夹膜法培养体系适用于AM真菌摩西斗管囊霉和隐类球囊霉。

fig

图7  基于18S rRNA基因序列构建的AM真菌系统发育树。利用MEGA 11软件的邻接法构建系统发育树,树枝名称由真菌名称及其18S rRNA基因序列登录号构成;标尺代表进化距离。

Figure 7  Phylogenetic tree of AM fungi constructed based on the 18S rRNA gene sequences. Tree was constructed using the neighbor-joining method of the MEGA 11 software, and the names of the branches consisted of the fungi species and their 18S rRNA gene sequence accession numbers. The scale bar represents the evolutionary distances.

3 讨论

长期以来,AM真菌被认为是专性共生体,依赖宿主植物提供有机碳[

7]。这一特性限制了AM真菌的培养方法,从而影响了其资源的开发与利用。目前,AM真菌的培养方法种类有限,其中,盆栽培养法是生产菌根根段和孢子最常用的方[30]。此外,随着学者们对AM真菌脂质吸收机制的揭[10-11],研究者们成功开发了一种添加脂肪酸和植物激素的培养方法,从而实现了少数几种模式AM真菌的离体培[14-16]。然而,该方法产生的孢子数量和质量仍难以满足当前基础与应用基础研究以及生产实践的大量需求。本研究采用 “多层三明治” 夹膜培养体系,将紫云英幼苗置于其外围,利用微孔滤膜将AM真菌和植物分隔,以进行非共生的准离体培养。研究表明,紫云英根系所产生的分泌物能够持续诱导AM真菌产生菌丝体和次生孢子(图2A-2I)。相较于土壤盆栽法和培养基培养法,添加培护植物的 “多层三明治” 夹膜培养体系的培养时间更短,成本更低。

此外,本研究发现模拟根系分泌物营养液(表2)的处理仅有效促进了AM真菌的孢子萌发及菌丝分枝(图5),并未发现次生孢子的产生。相较于土壤中的AM真菌(F. mosseaeP. occultum),前期研究表明,对AM真菌异形根孢囊霉(Rhizophagus irregularis)的相同营养液处理则有效促进了次生孢子的产[

24]。2种AM真菌对模拟根系分泌物诱导所表现出的响应差异,可能源于它们对不同外源脂肪酸、植物激素或氮源等养分的有效利用存在差异。

表2  模拟根系分泌物的营养液配方
Table 2  Nutrient solution formulations for simulated root exudates

营养成分

Nutrient composition

含量

Content

MgSO4·7H2O 731.000 0 mg/L
KNO3 80.000 0 mg/L
KCl 65.000 0 mg/L
KH2PO4 4.800 0 mg/L
Ca(NO3)2·4H2O 288.000 0 mg/L
Fe(Ⅲ)-EDTA 8.000 0 mg/L
MnCl2·4H2O 3.000 0mg/L
ZnSO4·7H2O 1.300 0 mg/L
H3BO3 1.500 0 mg/L
KI 0.750 0 mg/L
CuSO4·5H2O 0.065 0 mg/L
Na2MoO4·2H2O 0.001 2 mg/L
2-morpholinoethanesulfonic acid monohydrate (MES) 1.952 0 mg/L
Glucose 1.00 g/L
Glycine 3.000 0 mg/L
Pyridoxine-HCl 0.100 0 mg/L
Nicotinic acid 0.500 0 mg/L
Myo-inositol 50.000 0 mg/L
Thiamine-HCl 10.000 0 mg/L
Peptone 1.00 g/L
NaCl 6.70 g/L
C6H8O7·H2O 1.47 g/L
KH2PHO4 250.000 0 mg/L
NaOH 500.000 0 mg/L
Potassium myristate (Myr-k) 100 nmol/L
Strigolactone analogue (GR24) 10-5 mmol/L
Methyl jasmonate (MeJA) 10-3 mmol/L

人工配制的模拟根系分泌物营养液无法完全复现植物根系分泌物中天然成分,另一项实验证实了这一[

24]。在不含活体植物的培养体系中,仅添加提取的紫云英根系分泌物有效促进了R. irregularis的产孢。相较于模拟根系分泌物营养液的处理,由根系分泌物诱导产生的R. irregularis次生孢子直径更[24]。尽管培养液诱导产生的次生孢子大小仍不如植物共生体系产生的AM真菌孢子,但这些次生孢子已具备一定的宿主植物侵染能力。这表明在非共生条件下,提供根系分泌物和脂肪酸等营养物质能够实现土壤AM真菌的离体培养。

总而言之,本研究提供了一种更简便的AM真菌分离培养方法,并为AM真菌资源的开发与利用提供了一定的技术支撑。

4 结论

本研究表明,在 “多层三明治” 夹膜培养体系中,紫云英根系分泌物能持续诱导AM真菌在非共生条件下产生菌丝体和具有侵染宿主植物能力的次生孢子。本研究提供了一种在准离体条件下培养土壤AM真菌的简便方法,但目前仍需要依赖活体植物为AM真菌生长繁殖提供所需的营养物质。因此,亟须优化AM真菌培养基的营养种类及配比,使得AM真菌即使在无宿主植物存在的条件下仍具有高效生产菌丝体和次生孢子的能力。不同AM真菌菌种对不同脂肪酸和根系分泌的生长因子等的吸收可能具有差异性,因此,寻找和合成适合不同土壤AM真菌的人工培养基将有助于创制种类更多的优质AM真菌菌剂。

作者贡献声明

何俊良:数据分析、数据可视化、论文写作及编辑;和展梅:方案设计、试验操作、数据管理、数据可视化;何辰辰:试验操作、数据管理;黄心铷:方案设计、试验操作、数据管理;谢贤安:方案设计、项目管理、试验指导、论文审查及编辑。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

CHIALVA M, LANFRANCO L, BONFANTE P. The plant microbiota: composition, functions, and engineering[J]. Current Opinion in Biotechnology, 2022, 73: 135-142. [百度学术] 

2

GENRE A, LANFRANCO L, PEROTTO S, BONFANTE P. Unique and common traits in mycorrhizal symbioses[J]. Nature Reviews Microbiology, 2020, 18(11): 649-660. [百度学术] 

3

WENG WF, YAN J, ZHOU ML, YAO X, GAO AN, MA C, CHENG JP, RUAN JJ. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases[J]. Microorganisms, 2022, 10(7): 1266. [百度学术] 

4

PARIHAR M, RAKSHIT A, MEENA VS, GUPTA VK, RANA K, CHOUDHARY M, TIWARI G, MISHRA PK, PATTANAYAK A, BISHT JK, JATAV SS, KHATI P, JATAV HS. The potential of arbuscular mycorrhizal fungi in C cycling: a review[J]. Archives of Microbiology, 2020, 202(7): 1581-1596. [百度学术] 

5

SHI JC, WANG XL, WANG ET. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74: 569-607. [百度学术] 

6

ZHANG L, ZHOU JC, GEORGE TS, LIMPENS E, FENG G. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science, 2022, 27(4): 402-411. [百度学术] 

7

BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nature Communications, 2010, 1: 48. [百度学术] 

8

TISSERANT E, MALBREIL M, KUO AL, KOHLER A, SYMEONIDI A, BALESTRINI R, CHARRON P, DUENSING N, FREY NFD, GIANINAZZI-PEARSON V, GILBERT LB, HANDA Y, HERR JR, HIJRI M, KOUL R, KAWAGUCHI M, KRAJINSKI F, LAMMERS PJ, MASCLAUX FG, MURAT C, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(50): 20117-20122. [百度学术] 

9

MALAR CM, KRÜGER M, KRÜGER C, WANG Y, STAJICH JE, KELLER J, CHEN ECH, YILDIRIR G, VILLENEUVE-LAROCHE M, ROUX C, DELAUX PM, CORRADI N. The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis[J]. Current Biology, 2021, 31(7): 1570-1577. [百度学术] 

10

JIANG YN, WANG WX, XIE QJ, LIU N, LIU LX, WANG DP, ZHANG XW, YANG C, CHEN XY, TANG DZ, WANG ET. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343): 1172-1175. [百度学术] 

11

LUGINBUEHL LH, MENARD GN, KURUP S, van ERP H, RADHAKRISHNAN GV, BREAKSPEAR A, OLDROYD GED, EASTMOND PJ. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant[J]. Science, 2017, 356(6343): 1175-1178. [百度学术] 

12

AN JY, ZENG T, JI CY, de GRAAF S, ZHENG ZJ, XIAO TT, DENG XX, XIAO SY, BISSELING T, LIMPENS E, PAN ZY. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2019, 224(1): 396-408. [百度学术] 

13

ZHENG LS, ZHAO SP, ZHOU YF, YANG GL, CHEN A, LI XX, WANG JX, TIAN J, LIAO H, WANG XR. The soybean sugar transporter GmSWEET6 participates in sucrose transport towards fungi during arbuscular mycorrhizal symbiosis[J]. Plant, Cell & Environment, 2024, 47(4): 1041-1052. [百度学术] 

14

HILDEBRANDT U, OUZIAD F, MARNER FJ, BOTHE H. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores[J]. FEMS Microbiology Letters, 2006, 254(2): 258-267. [百度学术] 

15

KAMEOKA H, TSUTSUI I, SAITO K, KIKUCHI Y, HANDA Y, EZAWA T, HAYASHI H, KAWAGUCHI M, AKIYAMA K. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids[J]. Nature Microbiology, 2019, 4(10): 1654-1660. [百度学术] 

16

SUGIURA Y, AKIYAMA R, TANAKA S, YANO K, KAMEOKA H, MARUI S, SAITO M, KAWAGUCHI M, AKIYAMA K, SAITO K. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25779-25788. [百度学术] 

17

TANAKA S, HASHIMOTO K, KOBAYASHI Y, YANO K, MAEDA T, KAMEOKA H, EZAWA T, SAITO K, AKIYAMA K, KAWAGUCHI M. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus[J]. Communications Biology, 2022, 5(1): 43. [百度学术] 

18

MOE LA. Amino acids in the rhizosphere: from plants to microbes[J]. American Journal of Botany, 2013, 100(9): 1692-1705. [百度学术] 

19

SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25-41. [百度学术] 

20

ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, Da ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUÉ D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3: 470-480. [百度学术] 

21

KUMAR GA, KUMAR S, BHARDWAJ R, SWAPNIL P, MEENA M, SETH CS, YADAV A. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions[J]. Frontiers in Plant Science, 2024, 14: 1297706. [百度学术] 

22

周小勤, 黄心铷, 何俊良, 谢鸿运, 李将永, 陈辉, 唐明, 谢贤安. 高磷土壤中丛枝菌根真菌的分离鉴定[J]. 微生物学通报, 2022, 49(11): 4659-4673. [百度学术] 

ZHOU XQ, HUANG XR, HE JL, XIE HY, LI JY, CHEN H, TANG M, XIE XA. Isolation and identification of arbuscular mycorrhizal fungi from high phosphate soils[J]. Microbiology China, 2022, 49(11): 4659-4673 (in Chinese). [百度学术] 

23

刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. [百度学术] 

LIU RJ, CHEN YL. Mycorrhizology[M]. Beijing: Science Press, 2007 (in Chinese). [百度学术] 

24

谢贤安, 黄心铷, 范晓宁, 唐明, 陈辉. 一种利用豆科植物根系分泌物诱导AM真菌离体产生菌丝体和次生孢子的培养方法: CN202310623580.9[P]. 2024-04-12. [百度学术] 

XIE XA, HUANG XR, FAN XN, TANG M, CHEN H. A culture method for inducing the production of mycelium and secondary spores from AM fungi in isolation using legume root secretions: CN202310623580.9[P]. 2024-04-12. [百度学术] 

25

TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V. Mesure du taux de mycorhization VA d’un système radiculaire. In Recherche de methods d’estimation ayant une signification fonctionnelle[M]. Paris, France: INRA Press, 1986: 217-221. [百度学术] 

26

XIE XA, LIN H, PENG XW, XU CR, SUN ZF, JIANG KX, HUANG AT, WU XH, TANG NW, SALVIOLI A, BONFANTE P, ZHAO B. Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont[J]. Molecular Plant, 2016, 9(12): 1583-1608. [百度学术] 

27

SCHWARZOTT D, SCHÜßLER A. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores[J]. Mycorrhiza, 2001, 10(4): 203-207. [百度学术] 

28

LEE J, LEE SS, PETER W YOUNG J. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Ecology, 2008, 65(2): 339-349. [百度学术] 

29

TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. [百度学术] 

30

GILMORE AE. Phycomycetous mycorrhizal organisms collected by open-pot culture methods[J]. Hilgardia, 1968, 39(4): 87-105. [百度学术]