网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

氮杂环卡宾银配合物SBC3靶向大肠杆菌TDRS杀菌的作用机制  PDF

  • 谭超 1,2
  • 伍中宝 1
  • 沈舒楚 1
  • 黎国春 3
  • Matthias Tacke 4
  • 王君 5
  • 邹黎黎 1
1. 三峡大学 基础医学院,肿瘤微环境与免疫治疗湖北省重点实验室&宜昌市感染与炎症损伤重点实验室, 湖北 宜昌; 2. 宜昌市中心人民医院,湖北 宜昌; 3. 宜昌市夷陵人民医院,湖北 宜昌; 4. School of Chemistry, University College Dublin, Dublin, Ireland; 5. 宜昌市第二人民医院,湖北省老年胃肠癌精准防治临床医学研究中心,湖北 宜昌

最近更新:2025-04-30

DOI: 10.13343/j.cnki.wsxb.20240746

CSTR: 32112.14.j.AMS.20240746

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

新型氮杂环卡宾银配合物(N-heterocyclic carbene silver, Ag-NHC)兼具优异的稳定性、水溶性和杀菌活性,是具有巨大应用前景的抗菌候选物。

目的

探讨合成的1,3-二苄基Ag-NHC [1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene silver (I) acetate, SBC3]对大肠杆菌的抗菌活性及作用机制。

方法

采用可见分光光度法检测SBC3的抗菌活性;使用透射电子显微镜观察SBC3处理后大肠杆菌DHB4菌株的形态学变化;通过5,5′-二硫代双(2-硝基苯甲酸) [5,5′-dithiobis-(2-nitrobenzoic acid), DTNB]实验检测SBC3处理后DHB4胞内硫氧还蛋白(thioredoxin, Trx)及硫氧还蛋白还原酶(thioredoxin reductase, TrxR)的活性和谷胱甘肽(glutathione, GSH)的含量;利用流式细胞术检测SBC3对DHB4胞内活性氧(reactive oxygen species, ROS)含量的影响,并通过还原剂二硫苏糖醇(dithiothreitol, DTT)进行挽救实验。通过在实验室连续传代,获得SBC3耐受性大肠杆菌菌株SBC3-resistant strains (SRSs)。其中SRS3、SRS4和SRS7菌株对SBC3的最小抑菌浓度(minimal inhibitory concentration, MIC)依次为24、32和56 μg/mL,分别为野生菌株MIC的3倍、4倍和7倍。将对应的菌株分别命名为SRS3、SRS4和SRS7,并使用这3种菌株复测上述指标;采用Western blotting检测SBC3对Trx1及S-谷胱甘肽化蛋白(S-glutathionylated proteins, S-PSSG)表达量的影响。

结果

SBC3对实验菌株的MIC为8.0-30.0 μg/mL;SBC3处理后的DHB4菌株发生肿胀,并伴有内容物流出;SBC3可显著抑制DHB4胞内Trx和TrxR的活性,明显降低GSH的含量,同时升高ROS水平。此外,SBC3处理后的SRS3、SRS4和SRS7菌株胞内Trx和TrxR的蛋白活性降低,GSH含量和S-PSSG的蛋白表达水平降低,但与DHB4菌株相比有不同程度的升高。

结论

SBC3通过靶向大肠杆菌的硫醇依赖的氧化还原系统(thiol-dependent redox system, TDRS)系统发挥其抗菌作用,为SBC3作为新型抗菌剂的开发设计提供了新思路。

抗生素应用于抗感染治疗已将近一个世纪,而抗生素的广泛使用甚至滥用加剧了细菌抗生素耐受性的获得性进[

1]。抗生素耐药基因在细菌间广泛传播,给临床抗感染治疗和全球公共卫生带来了巨大挑战。因此,开发新型抗菌药物与提高传统抗生素疗效成为了全球公共卫生领域的研究重点。

银离子(silver ion, Ag+)因其广谱抗菌、低毒性等特[

2],自古以来就被广泛应用于烧伤、创伤和细菌感染的治[3-4]。然而,Ag+耐受性细菌的出现使得临床感染性疾病的治疗面临着新的挑[5-6]。含Ag+化合物,如硝酸银和磺胺嘧啶银,虽被广泛应用,但存在用药部位留存浓度不足、影响皮肤正常屏障功能等缺点。因此,这些化合物在控制创面愈合方面往往无法及时发挥效用,选择更加理想的抗菌材料至关重[7]。为了提高Ag+的抗菌效能,研究人员尝试了多种改造方法,包括制备纳米银、氟化银和银基化合物[8-9]

氮杂环卡宾化合物(N-heterocyclic carbene, NHC)得益于其特殊的电子结构、较高的反应活性、形成配合物后的稳定性以及绿色环保可循环再利用性,被用于Ag+化合物的改造中。第一个被表征结构的氮杂环卡宾银复合物(Ag-NHC)由游离卡宾和银[

10]制备而成,并已应用于乙酸[11]、Ag2O[12]及Ag2CO3[13]等的合成中。Melaiye[14]研究发现,Ag-NHC对革兰氏阴性和革兰氏阳性细菌均有出色的抗菌效果,且其抗菌效果优于银[15]。Ag-NHC的稳定性、水溶性和杀菌活性使其在生物医药研究领域得到拓展应[16],其能够通过缓慢释放Ag+来持续发挥预防感染和促进伤口愈合的作[17]

本研究旨在阐述Matthias Tacke团队合成的Ag-NHC,即1,3-二苄基Ag-NHC (1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene silver (I) acetate, SBC3[

18-19])的抗菌机制,为临床治疗感染性疾病及抗菌药物设计提供参[20-21]。研究发现SBC3对常见实验室菌株具有良好抗菌作用,值得进一步探究其杀菌机制。已知Ag+可与细菌胞内的硫氧还蛋白还原酶(thioredoxin reductase,TrxR)/硫氧还蛋白(thioredoxin, Trx)活性位点发生不可逆结合,从而破坏TrxR和Trx的功能,影响细菌胞内的硫醇氧化还原稳[22]。硫醇依赖的氧化还原系统(thiol-dependent redox system, TDRS),即Trx与谷胱甘肽(glutathione, GSH)系统,是细菌胞内最重要的维持活性氧(reactive oxygen species, ROS)稳态的系[23-24]。近年来,靶向细菌胞内氧化还原系统的抗菌药物(如依布硒[25]、金诺[26])均展现出了优异的抗菌能力。

SBC3作为一种可通过快速释放Ag+而发挥抗菌活性的药[

27],据此推测它也可通过靶向TDRS发挥抗菌活性。在此基础上,本研究进一步通过实验室连续传代,获得了DHB4来源的SBC3耐受性大肠杆菌菌株(SBC3-resistant Escherichia coli strains, SRSs),包括SRS3、SRS4和SRS7,均已通过体外实验验证其表型稳定性。本研究拟以标准株DHB4和耐药株SRS3、SRS4、SRS7为模型,探究SBC3是否通过损伤细菌的TDRS导致氧化还原稳态失调,从而发挥其抗菌活性。这一研究将为理解Ag-NHC的抗菌机制提供新的视角,并有助于制定有效的抗菌策略。

1 材料与方法

1.1 材料

1.1.1 菌株

大肠杆菌DHB4、鲍曼不动杆菌ATCC-19606、阴沟肠杆菌ATCC-700323、肺炎克雷伯杆菌ATCC-700603、铜绿假单胞菌ATCC-27853和金黄色葡萄球菌ATCC-25923均购自中国普通微生物菌种保藏管理中心(China general Microbiological Culture Collection Center, CGMCC)。实验室连续传代获得以DHB4为来源的SBC3耐受性菌株SRS3、SRS4和SRS7。

本研究检测SBC3对菌株的最小抑菌浓度及菌落形成实验中所使用的细菌初始菌量均为OD600=0.4后按1:1 000的比例稀释混匀,其余实验初始菌量为OD600=0.4。因此,各实验中使用的SBC3浓度会根据起始菌量的差异而不同。

1.1.2 主要试剂和仪器

SBC3,Matthias Tacke团队合成;EbSe,Selleck Chemicals公司;BCA蛋白定量试剂盒,北京普利莱基因技术有限公司;2′,7′-二氯荧光素二乙酸酯、硫氧还蛋白、谷胱甘肽还原酶、二甲基亚砜,Sigma-Aldrich公司;二硫苏糖醇,生工生物工程(上海)股份有限公司;大肠杆菌属anti-glutathione单抗、anti-PSSG单抗,ViroGen公司;硫氧还蛋白还原酶、大肠杆菌属thioredoxin 1蛋白,IMOC Crop公司;山羊抗小鼠IgG,艾博抗(上海)贸易有限公司;兔抗绵羊IgG,北京百奥莱博科技有限公司。

全自动酶标仪,ThermoFisher Scientific公司;恒温摇床,上海捷呈实验仪器有限公司;台式高速离心机,Eppendorf公司;超声波细胞破碎仪,宁波新芝生物科技股份有限公司;电子恒温水浴锅,上海齐欣科学仪器有限公司;化学发光成像仪,上海勤翔科学仪器有限公司;电泳仪电源,北京市六一仪器厂;分析型流式细胞仪,Beckman Coulter公司;脱色摇床,海门市其林贝尔仪器制造有限公司;透射电子显微镜,Hitachi公司。

1.2 可见分光光度法检测SBC3的抗菌活性

可见分光光度法是根据被测菌液对可见波段范围单色光的吸收或反射光谱特性进行细菌定量分析的一种方法。在600 nm波长下,酶标仪(分光光度计)对浊度的反应较为灵敏。OD600是指在600 nm波长下测得的吸光值,本研究用于测量细菌生长情况或菌液密度。

大肠杆菌DHB4、鲍曼不动杆菌ATCC-19606、阴沟肠杆菌ATCC-700323、肺炎克雷伯杆菌ATCC-700603、铜绿假单胞菌ATCC-27853和金黄色葡萄球菌ATCC-25923于37 ℃、220 r/min培养过夜后,分别用LB液体培养基将培养至对数生长期(OD600=0.6-0.8)的菌液OD600调至0.4。按照1:1 000的比例稀释混匀后,用不同浓度的SBC3处理(环丙沙星作为阳性对照)。混匀后接种于96孔板,每孔200 μL,设置4个复孔。将96孔板置于37 ℃恒温培养箱中培养24 h,并在酶标仪上连续监测0、2、4、8、16、24 h的OD600

1.3 菌落形成实验检测SBC3DHB4菌株的杀伤效果

大肠杆菌DHB4于37 ℃、220 r/min培养12 h后,用LB液体培养基将培养至对数生长期(OD600=0.6-0.8)的菌液OD600调至0.4,按照1:1 000的比例稀释混匀。随后用不同浓度的SBC3处理(DMSO作为对照),置于37 ℃温箱静置16 h,孵育完毕后,将处理好的菌液依次倍比稀释至10-6,混合均匀后在LB固体培养基上进行菌液滴定,每次1 μL,之后将LB固体培养基置于37 ℃恒温培养箱中培养12 h,观察菌落形成情况。

1.4 透射电子显微镜观察SBC3DHB4菌株形态学的影响

将培养至对数生长期(OD600=0.6-0.8)的菌液用LB液体培养基调节其OD600为0.4,用不同浓度(48 μg/mL、54 μg/mL)的SBC3处理10 min,以0.8% DMSO 为对照。于4 ℃、4 000 r/min离心10 min获得细胞,弃去上清液后用PBS重悬清洗,去除胞外残留药物及LB培养基。清洗后再次离心获得细胞,继续清洗,重复3次后去除上清液,用PBS重悬细胞,并用2.5%戊二醛固定。在80 kV工作电压下,于透射电子显微镜下以7 000×、15 000×放大倍数观察E. coli形态在给药前后的变化。

1.5 流式细胞术检测SBC3DHB4胞内ROS产量的影响

大肠杆菌DHB4于37 ℃、220 r/min培养12 h后,利用LB液体培养基将培养至对数生长期(OD600=0.6-0.8)的菌液OD600调至0.4,用SBC3处理30 min;4 000 r/min离心10 min收集沉淀,用PBS重悬3次,最后重悬于800 μL PBS中,并用终浓度为10 mmol/L的H2DCF-DA在37 °C染色30 min。用流式细胞仪检测并记录FITC通道的平均荧光强度,最佳激发波长为488 nm,最佳发射波长为525 nm。

1.6 5,5′-二硫代双(2-硝基苯甲酸) [5,5′- dithio-bis-(2-nitrobenzoic acid), DTNB]法检测SBC3DHB4菌株TDRS的影响

TrxR/Trx与GSH活性测定中,TrxR催化还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate hydrogen, NADPH)还原DTNB生成2-硝基-5-巯基苯甲酸(5-mercapto-2-nitrobenzoic acid, TNB)和烟酰胺腺嘌呤二核苷磷酸(nicotinamide adenine dinucleotide phosphate, NADP+),谷胱甘肽(glutathione, GSH)与DTNB可反应生成TNB和谷胱甘肽二硫化物(glutathione disulfide, GSSG),OD412是TNB的最大吸收峰,为DTNB实验的特征产物检测波长。

1.6.1 细菌预处理

大肠杆菌DHB4于37 ℃、220 r/min培养12 h后,用LB液体培养基将培养至对数生长期(OD600=0.6-0.8)的菌液的OD600调至0.4。使用SBC3进行处理后混匀,37 ℃恒温孵育30 min。4 ℃、5 000 r/min离心3 min,用等体积的PBS重悬3次后弃去上清。

1.6.2 细菌蛋白制备

用150 μL 50 mmol/L Tris-HCl和2 mmol/L EDTA重悬细菌沉淀,加入10 μL蛋白酶抑制剂和40 μL 5 mmol/L溶菌酶混匀,置于37 ℃水浴锅中30 min。利用超声破碎仪裂解细菌(2 mm变幅杆,20%-25%功率,超声8 min),置于4 ℃、12 000 r/min离心15 min,吸取上清,进行蛋白定量。

1.6.3 Trx活性

取25 μg蛋白,用超纯水定容至20 μL,加入200 μmol/L NADPH、2 mmol/L DTNB、50 mmol/L Tris-HCl (pH 7.5)、2 mmol/L EDTA、100 nmol/L TrxR,于OD412处连续检测30 min。

1.6.4 TrxR活性

取25 μg蛋白,用超纯水定容至20 μL,加入200 μmol/L NADPH、2 mmol/L DTNB、50 mmol/L Tris-HCl (pH 7.5)、2 mmol/L EDTA、5 μmol/L Trx,于OD412处连续检测30 min。

1.6.5 GSH含量

取25 μg蛋白,用超纯水定容至20 μL,加入200 μmol/L NADPH、2 mmol/L DTNB、50 mmol/L Tris-HCl (pH 7.5)、2 mmol/L EDTA、50 nmol/L GR,于OD412处连续检测30 min。

1.7 耐药菌的筛选与培养

在实验室通过连续传代筛选以DHB4为基础的SBC3耐受性菌株,获得SRS3、SRS4、SRS7菌株,这3株菌对SBC3的MIC分别为DHB4的3倍、4倍和7倍。取少量菌液进行四区平板划线,于37 ℃培养过夜(12 h)后,挑取单克隆接种于装有2 mL液体培养基的EP管中,置于37 ℃、220 r/min恒温摇床中培养12 h至对数生长期用于后续实验。

1.8 流式细胞术检测SBC3SRSs胞内ROS产量的影响

大肠杆菌DHB4、SRS3、SRS4、SRS7 37 ℃培养过夜后,按照1.5节方法进行后续操作。

1.9 DTNB实验检测SBC3SRSs胞内TDRS的影响

大肠杆菌DHB4、SRS3、SRS4、SRS7 37 ℃培养过夜后,按照1.6节方法进行后续操作。

1.10 Western blotting检测SBC3DHB4SRSs菌株Trx1表达水平的影响

大肠杆菌DHB4与SRS3、SRS4、SRS7 37 ℃培养过夜后,按照1.6.1和1.6.2节方法进行细菌预处理与蛋白制备。

取25 μg蛋白,用超纯水定容至20 μL,加入5 μL 5×Loading Buffer混匀后,100 ℃煮沸10 min。在12%聚丙烯酰胺凝胶中进行分组加样,60 V恒压电泳30 min后,转为120 V继续电泳。180 mA恒流转膜60 min,取出PVDF膜置于5 g/L脱脂牛奶中封闭2 h,TBST清洗1次。一抗(Trx)在4 ℃、30 r/min孵育过夜,TBST洗膜3次,每次15 min;二抗(兔抗羊)室温、80 r/min孵育1 h,TBST洗膜3次,每次15 min。将PVDF膜置于ECL显影液中1 min后,于显影仪中进行Trx1蛋白显影并拍照。

1.11 Western blotting检测SBC3DHB4SRSs菌株S-PSSG表达量的影响

大肠杆菌DHB4与SRS3、SRS4、SRS7 37 ℃培养过夜后,按照1.6.1和1.6.2节方法进行细菌预处理与蛋白制备。

每组取25 μg蛋白,后续操作与1.10方法一致。封闭洗涤完成后,一抗(PSSG)在4 ℃、30 r/min孵育过夜,TBST洗膜3次,每次15 min;二抗(鼠抗羊)室温、80 r/min孵育1 h,TBST洗膜3次,每次15 min,将PVDF膜置于ECL显影液中1 min后,于显影仪中进行S-PSSG蛋白显影并拍照。

1.12 统计学方法

实验结果采用统计软件SPSS 20进行分析。数值以mean±SD表示,组间比较采用t检验(Student’s t-test);以P<0.05表示差异具有统计学意义。

2 结果与分析

2.1 SBC3具备良好的抗菌活性

为了评价SBC3的抗菌效果,首先检测了其抗菌活性,并以临床常用抗生素环丙沙星(ciprofloxacin, CIP)作为阳性对照。连续监测24 h发现(图1),SBC3可显著抑制大肠杆菌DHB4、鲍曼不动杆菌ATCC-19606、阴沟肠杆菌ATCC-700323、肺炎克雷伯菌ATCC-700603、铜绿假单胞菌ATCC-27853和金黄色葡萄球菌ATCC-25923的生长,其MIC值分别为8、20、25、30、25和16 μg/mL。这表明SBC3对上述实验室常见菌株均具有良好的抗菌活性。

fig

图1  SBC3抗菌活性。A:SBC3对大肠杆菌DHB4的抗菌效果;B:SBC3对鲍曼不动杆菌ATCC-19606的抗菌效果;C:SBC3对阴沟肠杆菌ATCC-700323的抗菌效果;D:SBC3对肺炎克雷伯菌ATCC-700603的抗菌效果;E:SBC3对铜绿假单胞菌ATCC-27853的抗菌效果;F:SBC3对金黄色葡萄球菌ATCC-25923的抗菌效果。P<0.05表示差异显著,Student’s t-test,n=4。

Figure 1  Antimicrobial activity of SBC3. A: Antibacterial effect of SBC3 against Escherichia coli DHB4; B: Antibacterial effect of SBC3 against Acinetobacter baumannii ATCC-19606; C: Antibacterial effect of SBC3 against Enterobacter cloacae ATCC-700323; D: Antibacterial effect of SBC3 against Klebsiella pneumoniae ATCC-700603; E: Antibacterial effect of SBC3 against Pseudomonas aeruginosa ATCC-27853; F: Antibacterial effect of SBC3 against Staphylococcus aureus ATCC-25923. P<0.05 indicates significant difference, Student’s t-test, n=4.

2.2 SBC3可破坏大肠杆菌细胞正常形态

大肠杆菌DHB4过夜培养后,调整OD600为0.4后进行菌落形成实验(图2A)。结果显示,与对照组相比,16 μg/mL的SBC3可抑制大肠杆菌生长,而18 μg/mL的SBC3抑制效果更强,推测其可能影响细菌的正常生理形态。

fig

图2  SBC3DHB4形态的影响。A:菌落形成实验评价SBC3对DHB4的杀伤效果;B:透射电子显微镜下观察SBC3对DHB4形态的影响。

Figure 2  Effect of SBC3 on the morphology of DHB4. A: Colony formation assay to evaluate the killing effect of SBC3 on DHB4; B:Transmission electron microscopy to observe the effect of SBC3 on the morphology of DHB4.

进一步通过透射电子显微镜观察(图2B),结果表明,对照组细菌表面光滑,边缘清晰可见;而经SBC3处理后的细菌发生肿胀,并伴有内容物流出。这表明SBC3可通过破坏大肠杆菌的正常结构来发挥抗菌活性。

2.3 SBC3可导致大肠杆菌胞内ROS产量升高

利用SBC3处理对数生长期的DHB4,通过H2DCF-DA荧光探针检测细菌胞内ROS水平变化。与对照组相比(图3),48 μg/mL的SBC3可使大肠杆菌胞内产生大量ROS (P<0.05)。二硫苏糖醇(dithiothreitol, DTT)是一种经典的细胞内ROS清除剂,与N-乙酰-l-半胱氨酸(N-acetyl-l-cysteine, NAC) 具有类似的清除效[

28-31]。加入小分子还原剂DTT进行“挽救”实验发现,与未加入DTT的组相比,加入DTT可使细菌胞内ROS含量显著下降,并恢复细菌活性(P<0.05)。这说明SBC3可导致大肠杆菌DHB4胞内氧化压力升高。

fig

图3  SBC3DHB4胞内活性氧含量的影响。A:流式细胞术检测SBC3对DHB4胞内ROS含量的影响;B:SBC3处理组与SBC3+DTT组的ROS含量的平均荧光强度(MFI)。P<0.05表示差异显著,Student’s t-test,n=4。

Figure 3  Effect of SBC3 on the intracellular ROS content of DHB4. A: Effect of SBC3 on ROS content in DHB4 in vivo detected by flow cytometry; B: Mean fluorescence intensity (MFI) of ROS content in SBC3-treated vs. SBC3+DTT groups. P<0.05 indicates significant difference, Student’s t-test, n=4.

2.4 SBC3可损伤大肠杆菌TDRS系统

TDRS系统是大肠杆菌胞内最重要的抵御氧化压力的硫醇依赖的氧化还原系统。通过DTNB法检测SBC3对DHB4胞内的Trx、TrxR活性和GSH含量的影响。如图4所示,与对照组相比,24 μg/mL的SBC3即可显著抑制Trx和TrxR的活性(P<0.05),并降低GSH的含量(P<0.05),表明SBC3可损伤大肠杆菌的TDRS系统。

fig

图4  SBC3对大肠杆菌TrxRTrx活性及GSH含量的影响。A:SBC3对DHB4胞内TrxR的影响;B:SBC3对DHB4胞内Trx的影响;C:SBC3对DHB4胞内GSH含量的影响。P<0.05表示差异显著,Student’s t-test,n=4。

Figure 4  Effect of SBC3 on TrxR and Trx activities and GSH content in E. coli. A: Effect of SBC3 on DHB4 intracellular TrxR; B: Effect of SBC3 on DHB4 intracellular Trx; C: Effect of SBC3 on DHB4 intracellular GSH content. P<0.05 indicates significant difference, Student’s t-test, n=4.

2.5 SRSsSBC3的耐受性相对于野生菌株显著增高

通过实验室连续定向传代,获得SBC3耐药性菌株SRSs。为了评价耐药株对SBC3的耐药性,通过96孔板实验检测了SBC3对耐药株的抗菌活性(图5)。结果显示,SBC3对SRS3、SRS4、SRS7的MIC分别为24.0、32.0和56.0 μg/mL,分别为野生株DHB4的MIC (8.0 μg/mL)的3倍、4倍和7倍。

fig

图5  SBC3作用下SRSs的生长曲线。A:SBC3对大肠杆菌DHB4的抗菌活性;B:SBC3对大肠杆菌耐药株SRS3的抗菌活性;C:SBC3对大肠杆菌耐药株SRS4的抗菌活性;D:SBC3对大肠杆菌耐药株SRS7的抗菌活性。P<0.05表示差异显著,Student’s t-test,n=4。

Figure 5  Growth curves of SRSs in the presence of SBC3. A: Antibacterial activity of SBC3 against E. coli DHB4; B: Antibacterial activity of SBC3 against SRS3; C: Antibacterial activity of SBC3 against SRS4; D: Antibacterial activity of SBC3 against SRS7. P<0.05 indicates a significant difference, Student’s t-test, n=4.

2.6 SBC3菌株SRSs胞内ROS含量更低

细菌胞内ROS基线水平是评价其抵御杀菌型抗生素抗菌能力的关键指标之一。使用H2DCFA荧光探针对SRS3、SRS4、SRS7进行染色后(图6A),流式细胞仪检测细菌胞内ROS含量(图6B)。SRSs胞内的ROS含量显著低于DHB4 (P<0.05),表明SRSs胞内ROS基线水平更低。

fig

图6  流式细胞术检测SRSs胞内ROS水平。A:流式细胞术检测DHB4及SRSs经SBC3处理后的胞内细菌数量和ROS含量;B:流式细胞术检测细菌胞内ROS含量的平均荧光强度。P<0.05表示差异显著,Student’s t-test,n=4。

Figure 6  Detection of intracellular ROS levels in SRSs by flow cytometry. A: Flow cytometry detection of intracellular bacterial counts and ROS levels of DHB4 and SRSs after treatment with SBC3; B: Flow cytometry detection of the mean fluorescence intensity of bacterial intracellular ROS levels. P<0.05 indicates a significant difference, Student’s t-test, n=4.

2.7 SBC3可影响耐SBC3菌株SRSs胞内TDRS活性

Trx系统作为大肠杆菌的抗氧化系统,可通过清除胞内多余的ROS避免氧化应激导致的细胞损伤。通过DTNB法检测SBC3对SRS3、SRS4、SRS7胞内的Trx/TrxR活性与GSH含量的影响,以DHB4为阳性对照(图7)。结果显示,与未处理组相比,54 μg/mL的SBC3可显著抑制SRS3的Trx和TrxR活性及GSH含量(P<0.05)。相比之下,菌株SRS4和SRS7对SBC3表现出较强的耐受性,SBC3处理前后Trx/TrxR活性与GSH含量均无显著变化。此结果进一步表明,SBC3对大肠杆菌的杀伤作用与其抑制TDRS系统活性密切相关。

fig

图7  SBC3作用后SRSsTDRS活性变化。A:SBC3对SRSs胞内Trx活性的影响;B:SBC3对SRSs胞内TrxR活性的影响;C:SBC3对SRSs胞内GSH含量的影响。P<0.05表示差异显著,反之为差异无统计学意义,常用无显著差异(no significance, ns)表示,当Student’s t-test,n=4。

Figure 7  Changes in TDRS activity in SRSs after the treatment of SBC3.A: Effect of SBC3 on SRSs’ intracellular Trx activity; B: Effect of SBC3 on SRSs’ intracellular TrxR activity; C: Effect of SBC3 on SRSs’ intracellular GSH content. P<0.05 indicates significant difference, and the ns indicates that difference is not statistically significant, Student’s t-test, n=4.

2.8 SBC3SRSs蛋白表达的影响

通过Western blotting检测发现(图8),54 μg/mL SBC3处理后,大肠杆菌DHB4和SRS3、SRS4、SRS7胞内Trx1蛋白表达量与未处理组相比均无明显差异(P>0.05),表明SBC3并不影响Trx1蛋白的表达,仅影响其活性。

fig

图8  SBC3Trx1蛋白表达量的影响。A:统计Western blotting检测的细菌胞内Trx1表达水平;B:Western blotting检测的细菌胞内Trx1表达水平;C:SDS-PAGE结果图作为上样内参(考马斯蓝染色)。ns为差异无统计学意义,Student’s t-test,n=3。

Figure 8  Effect of SBC3 on Trx1 protein expression level. A: Statistics of bacterial intracellular Trx1 expression level detected by Western blotting; B: Bacterial intracellular Trx1 expression level detected by Western blotting; C: SDS-PAGE result graphs were used as the internal reference for up-sampling (stained with Kaomas blue). ns indicates that difference is not statistically significant, Student’s t-test, n=3.

2.9 SBC3可降低耐SBC3菌株SRSs胞内S-PSSG水平

GSH系统是与大肠杆菌Trx系统相互支撑的抗氧化系统。谷胱甘肽与反应性蛋白半胱氨酸共价结合,这一过程称为S-谷胱甘肽化(PSSG)。通过观察每条泳道蛋白的整体表达水平来评价细菌胞内蛋白发生S-PSSG修饰的水平。结果显示(图9),与对照组相比,54 μg/mL SBC3处理可显著下调DHB4、SRS3、SRS4、SRS7胞内S-PSSG蛋白表达水平(P<0.05)。此结果进一步表明,SBC3对大肠杆菌的杀伤作用与其抑制GSH系统活性密切相关。

fig

图9  SBC3S-PSSG蛋白表达量的影响。A:统计Western blotting检测的细菌胞内S-PSSG表达水平;B:Western blotting检测的细菌胞内S-PSSG表达水平;C:SDS-PAGE结果图作为上样内参(考马斯蓝染色)。P<0.05表示差异显著,Student’s t-test,n=3。

Figure 9  Effect of SBC3 on the expression of S-PSSG protein. A: Statistics of bacterial intracellular S-PSSG expression level detected by Western blotting; B: Bacterial intracellular S-PSSG expression level detected by Western blotting; C: SDS-PAGE result graphs were used as the internal reference for up-sampling (stained with Kaomas blue). P<0.05 indicates significant difference, Student’s t-test, n=3.

3 讨论与结论

本研究探讨了SBC3的抗菌作用及其机制。ROS是细胞内重要的信号分子,但过量的ROS可导致氧化应激,进而引发细胞损伤。在调节氧化还原平衡的众多系统中,大肠杆菌主要通过TDRS,即Trx和GSH系统,来维持胞内ROS稳态。本研究发现,SBC3可通过显著抑制Trx和TrxR的活性、降低GSH含量和S-PSSG表达水平,导致大肠杆菌DHB4胞内ROS水平上升,破坏细菌的氧化还原平衡,从而发挥抗菌活性。

本研究阐述了SBC3对耐药性的影响。通过实验室连续传代筛选得到的SBC3耐药性大肠杆菌菌株SRS3、SRS4和SRS7,显示出对SBC3的耐药性。耐药株的ROS含量明显低于敏感株DHB4,且SBC3处理后耐药株SRS4和SRS7的Trx/TrxR活性与GSH含量以及Trx1表达量无明显变化,而S-PSSG表达量显著下调。这表明即使在细菌具有较高耐药性时,SBC3仍可作用于GSH系统发挥抗菌作用,在处理多重耐药性革兰氏阴性菌时更具优势,进一步证实了TDRS系统是SBC3抗菌作用的靶标。

本研究进一步评估了SBC3的抗菌潜力。目前,具有抗菌活性的Ag-NHC已被证实具有用于新型药物设计的潜[

32]。例如,静电纺丝经过封装Ag-NHC后,其抗微生物能力显著增强,且Ag-NHC相较于磺胺嘧啶银或硝酸银具有更快的杀灭速率和更高的银生物利用[33-34]。Esarev[35]最近也发现,不同元素配位而成的Ag-NHC对革兰氏阴性菌具有广谱的抗菌活性,不但能够抑制生物膜形成,还能抑制细菌胞内GR和TrxR[36]。SBC3作为一种新型含银化合物,可充分发挥银的抗菌效能。与传统抗生素不同,SBC3靶向TDRS的抗菌机制涉及破坏细菌的氧化还原平衡,杀菌作用强且不易产生耐药性,具有广泛的应用前景。此外,本研究结果证实,SBC3可抑制大肠杆菌野生株胞内的Trx/TrxR活性和GSH含量,使细菌体内ROS产量升高,通过氧化应激发挥杀菌作用。这一结果与本课题组Zou等的长期观察结果一[37-40];同时,ROS作为杀菌型抗生素的作用机制也得到了Chakraborty[41]、Carvalho[42]和Song[43]的确认。进一步观察发现,SBC3处理下耐药株SRSs的胞内抗氧化系统活性并无显著变化,这可能是因为其在连续的药物压力下发生了选择性突变(靶点修饰或改变),受体数目减少,同时SBC3失去或降低了与靶点的亲和力,导致敏感性和反应性降低。由于细菌体内的抗氧化系统能够正常发挥功能,ROS处于低水平,因此不影响细菌的正常生长和代谢。

总之,本研究深入探讨了新型Ag-NHC配合物SBC3对大肠杆菌的抗菌机制。鉴于抗生素耐药性日益严峻的问题,新型抗菌药物的开发显得尤为迫切。SBC3因其优异的稳定性、水溶性和杀菌活性成为潜在的抗菌候选物。Zou[

44]研究证实,依布硒啉可靶向TrxR,破坏细菌胞内氧化还原稳态;进一步发现,当依布硒啉与Ag+联用时抗菌效果更为显著,这依赖于Ag+诱导的高水平ROS增加了细菌的抗氧化负担。这一抗菌机制为我们将TDRS系统作为先导筛选其他抗菌药物奠定了基础。NHC作为多功能配体,与过渡金属结合后形成的配合物不仅降低了金属在体内的毒性,而且发挥了更强的抗菌活性。SBC3靶向大肠杆菌的TDRS系统的抗菌机制涉及破坏细菌的氧化还原平衡,杀菌作用强且不易产生耐药性,具有广泛的应用前景。从材料特性来看,Ag-NHC比银盐表现出更强的抗菌活性。鉴于目前应用较广的是硝酸银,Ag-NHC有望成为更理想的替代品。在应用过程中,获得性耐药是细菌在连续低浓度药物处理后产生的一种防御机制。因此,需要综合考虑使用浓度及其本身的毒理作用来评估细菌产生耐药的可能性。如有耐药情况发生,应避免长期多次使用SBC3;还可联合靶向细菌TrxR/Trx的药物(如依布硒啉)以增强抑菌效果和细菌敏感[44-45]。由于SBC3本身对GSH系统具有更直接的靶向效果,对耐药株已表现出一定的抑菌能力。其对耐药菌株SRSs的作用机制在GSH系统得到了初步阐释,耐药株体内的低ROS水平以及药物处理后的Trx与GSH系统功能差异也为理解其深层调节网络和应对耐药性提供了重要信息。本研究不仅为SBC3的临床应用提供了科学依据,也为新型抗菌药物的开发提供了新思路。

尽管本研究证实SBC3可靶向TDRS发挥杀菌作用,但其具体分子机制仍然未知。因此,本课题组对已获得的SRSs进行了全基因组测序(whole genome sequencing, WGS),期望能发现一些新的氧化还原网络相关分子。初步的WGS结果分析发现,编码三甲胺-N-氧化还原酶特异性伴侣蛋白的torD发生了AGC→AAC的突变,编码环氧辫苷还原酶的queG发生了GTC→GTT和TTC→TTT的突变。然而,由于氧化还原家族成员众多且功能互为替补,要准确判断参与其中的新分子,仍需进一步的实验验证。我们期望在后续研究中取得突破,并及时进行报道。

作者贡献声明

谭超:研究构思和设计、数据收集和处理、论文撰写和修改;伍中宝:协助实验操作、论文撰写和修改、论文讨论;沈舒楚:协助实验操作、数据收集和处理;黎国春:论文讨论;Matthias Tacke:提供技术支持;王君:参与论文讨论、提供技术支持;邹黎黎:研究构思和设计、参与论文讨论、论文撰写和修改。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

JIAN ZH, ZENG L, XU TJ, SUN S, YAN SX, YANG L, HUANG Y, JIA JJ, DOU TF. Antibiotic resistance genes in bacteria: occurrence, spread, and control[J]. Journal of Basic Microbiology, 2021, 61(12): 1049-1070. [百度学术] 

2

MEDICI S, PEANA M, NURCHI VM, ZORODDU MA. Medical uses of silver: history, myths, and scientific evidence[J]. Journal of Medicinal Chemistry, 2019, 62(13): 5923-5943. [百度学术] 

3

RAI M, YADAV A, GADE A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances, 2009, 27(1): 76-83. [百度学术] 

4

CHOUDHURY H, PANDEY M, LIM YQ, LOW CY, LEE CT, MARILYN TCL, LOH HS, LIM YP, LEE CF, BHATTAMISHRA SK, KESHARWANI P, GORAIN B. Silver nanoparticles: advanced and promising technology in diabetic wound therapy[J]. Materials Science and Engineering: C, 2020, 112: 110925. [百度学术] 

5

MURAKAMI S, OKADA U, van VEEN HW. Tripartite transporters as mechanotransmitters in periplasmic alternating-access mechanisms[J]. FEBS Letters, 2020, 594(23): 3908-3919. [百度学术] 

6

HENDRY AT, STEWART IO. Silver-resistant Enterobacteriaceae from hospital patients[J]. Canadian Journal of Microbiology, 1979, 25(8): 915-921. [百度学术] 

7

BELL TA, GRAYSTON JT, KROHN MA, KRONMAL RA. Randomized trial of silver nitrate, erythromycin, and no eye prophylaxis for the prevention of conjunctivitis among newborns not at risk for gonococcal Ophthalmitis. eye prophylaxis study group[J]. Pediatrics, 1993, 92(6): 755-760. [百度学术] 

8

ZHANG LQ, WANG WX. Dominant role of silver ions in silver nanoparticle toxicity to a unicellular Alga: evidence from luminogen imaging[J]. Environmental Science & Technology, 2019, 53(1): 494-502. [百度学术] 

9

ALVES-BARROCO C, RIVAS-GARCÍA L, FERNANDES AR, BAPTISTA PV. Light triggered enhancement of antibiotic efficacy in biofilm elimination mediated by gold-silver alloy nanoparticles[J]. Frontiers in Microbiology, 2022, 13: 841124. [百度学术] 

10

ARDUENGO AJ III, RASIKA DIAS HV, CALABRESE JC, DAVIDSON F. Homoleptic carbene-silver (I) and carbene-copper (I) complexes[J]. Organometallics, 1993, 12(9): 3405-3409. [百度学术] 

11

GUERRET O, SOLÉ S, GORNITZKA H, TEICHERT M, TRINQUIER G, BERTRAND G. 1,2,4-triazole-3,5-diylidene: a building block for organometallic polymer synthesis[J]. Journal of the American Chemical Society, 1997, 119(28): 6668-6669. [百度学术] 

12

WANG HMJ, LIN IJB. Facile synthesis of silver (I)-carbene complexes. useful carbene transfer agents[J]. Organometallics, 1998, 17(5): 972-975. [百度学术] 

13

TULLOCH AAD, DANOPOULOS AA, WINSTON S, KLEINHENZ S, EASTHAM G. N-functionalised heterocyclic carbene complexes of silver[J]. Journal of the Chemical Society, Dalton Transactions, 2000(24): 4499-4506. [百度学术] 

14

MELAIYE A, SIMONS RS, MILSTED A, PINGITORE F, WESDEMIOTIS C, TESSIER CA, YOUNGS WJ. Formation of water-soluble pincer silver (I)-carbene complexes: a novel antimicrobial agent[J]. Journal of Medicinal Chemistry, 2004, 47(4): 973-977. [百度学术] 

15

PRENCIPE F, ZANFARDINO A, Di NAPOLI M, ROSSI F, D’ERRICO S, PICCIALLI G, MANGIATORDI GF, SAVIANO M, RONGA L, VARCAMONTI M, TESAURO D. Silver (I) N-heterocyclic carbene complexes: a winning and broad spectrum of antimicrobial properties[J]. International Journal of Molecular Sciences, 2021, 22(5): 2497. [百度学术] 

16

KARAASLAN MG, AKTAŞ A, GÜRSES C, GÖK Y, ATEŞ B. Chemistry, structure, and biological roles of Au-NHC complexes as TrxR inhibitors[J]. Bioorganic Chemistry, 2020, 95: 103552. [百度学术] 

17

FULLER FW, PARRISH M, NANCE FC. A review of the dosimetry of 1% silver sulfadiazine cream in burn wound treatment[J]. The Journal of Burn Care & Rehabilitation, 1994, 15(3): 213-223. [百度学术] 

18

PATIL S, DEALLY A, GLEESON B, MÜLLER-BUNZ H, PARADISI F, TACKE M. Novel benzyl-substituted N-heterocyclic carbene-silver acetate complexes: synthesis, cytotoxicity and antibacterial studies[J]. Metallomics, 2011, 3(1): 74-88. [百度学术] 

19

O’BEIRNE C, PIATEK ME, FOSSEN J, MÜLLER-BUNZ H, ANDES DR, KAVANAGH K, PATIL SA, BAUMANN M, TACKE M. Continuous flow synthesis and antimicrobial evaluation of NHC* silver carboxylate derivatives of SBC3 in vitro and in vivo[J]. Metallomics, 2021, 13(2): mfaa011. [百度学术] 

20

ALMALIOTI F, MacDOUGALL J, HUGHES S, HASSON MM, JENKINS RL, WARD BD, TIZZARD GJ, COLES SJ, WILLIAMS DW, BAMFORD S, FALLIS IA, DERVISI A. Convenient syntheses of cyanuric chloride-derived NHC ligands, their Ag(I) and Au(I) complexes and antimicrobial activity[J]. Dalton Transactions, 2013, 42(34): 12370-12380. [百度学术] 

21

SÁNCHEZ A, CARRASCO CJ, MONTILLA F, ÁLVAREZ E, GALINDO A, PÉREZ-ARANDA M, PAJUELO E, ALCUDIA A. Antimicrobial properties of amino-acid-derived N-heterocyclic carbene silver complexes[J]. Pharmaceutics, 2022, 14(4): 748. [百度学术] 

22

LIAO XW, YANG F, LI HY, SO PK, YAO ZP, XIA W, SUN HZ. Targeting the thioredoxin reductase-thioredoxin system from Staphylococcus aureus by silver ions[J]. Inorganic Chemistry, 2017, 56(24): 14823-14830. [百度学术] 

23

EZRATY B, GENNARIS A, BARRAS F, COLLET JF. Oxidative stress, protein damage and repair in bacteria[J]. Nature Reviews Microbiology, 2017, 15(7): 385-396. [百度学术] 

24

LU J, HOLMGREN A. The thioredoxin antioxidant system[J]. Free Radical Biology and Medicine, 2014, 66: 75-87. [百度学术] 

25

OUYANG YF, TANG XW, ZHAO Y, ZUO X, REN XY, WANG J, ZOU LL, LU J. Disruption of bacterial thiol-dependent redox homeostasis by magnolol and honokiol as an antibacterial strategy[J]. Antioxidants, 2023, 12(6): 1180. [百度学术] 

26

LU J, VLAMIS-GARDIKAS A, KANDASAMY K, ZHAO R, GUSTAFSSON TN, ENGSTRAND L, HOFFNER S, ENGMAN L, HOLMGREN A. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione[J]. FASEB Journal, 2013, 27(4): 1394-1403. [百度学术] 

27

HARBUT MB, VILCHÈZE C, LUO XZ, HENSLER ME, GUO H, YANG BY, CHATTERJEE AK, NIZET V, JrJACOBS WR, SCHULTZ PG, WANG F. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4453-4458. [百度学术] 

28

RAFEIRO E, BARR SG, HARRISON JJ, RACZ WJ. Effects of N-acetylcysteine and dithiothreitol on glutathione and protein thiol replenishment during acetaminophen-induced toxicity in isolated mouse hepatocytes[J]. Toxicology, 1994, 93(2/3): 209-224. [百度学术] 

29

ABELLO PA, FIDLER SA, BUCHMAN TG. Thiol reducing agents modulate induced apoptosis in porcine endothelial cells[J]. Shock, 1994, 2(2): 79-83. [百度学术] 

30

DESHPANDE VS, KEHRER JP. Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells[J]. Toxicology and Applied Pharmacology, 2006, 214(3): 230-236. [百度学术] 

31

SEOK SH, BAEK MW, LEE HY, KIM DJ, NA YR, NOH KJ, PARK SH, LEE HK, LEE BH, RYU DY, PARK JH. Arsenite-induced apoptosis is prevented by antioxidants in zebrafish liver cell line[J]. Toxicology in Vitro, 2007, 21(5): 870-877. [百度学术] 

32

PIATEK M, O’BEIRNE C, BEATO Z, TACKE M, KAVANAGH K. Exposure of Candida parapsilosis to the silver (I) compound SBC3 induces alterations in the proteome and reduced virulence[J]. Metallomics, 2022, 14(8): mfac046. [百度学术] 

33

GARRISON JC, YOUNGS WJ. Ag(I) N-heterocyclic carbene complexes: synthesis, structure, and application[J]. Chemical Reviews, 2005, 105(11): 3978-4008. [百度学术] 

34

MELAIYE A, SUN ZH, HINDI K, MILSTED A, ELY D, RENEKER DH, TESSIER CA, YOUNGS WJ. Silver (I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity[J]. Journal of the American Chemical Society, 2005, 127(7): 2285-2291. [百度学术] 

35

ESAREV IV, KARGE B, ZENG HX, LIPPMANN P, JONES PG, SCHREY H, BRÖNSTRUP M, OTT I. Silver organometallics that are highly potent thioredoxin and glutathione reductase inhibitors: exploring the correlations of solution chemistry with the strong antibacterial effects[J]. ACS Infectious Diseases, 2024, 10(5): 1753-1766. [百度学术] 

36

BÜSSING R, KARGE B, LIPPMANN P, JONES PG, BRÖNSTRUP M, OTT I. Gold (I) and gold (III) N-heterocyclic carbene complexes as antibacterial agents and inhibitors of bacterial thioredoxin reductase[J]. ChemMedChem, 2021, 16(22): 3402-3409. [百度学术] 

37

ZOU LL, WANG J, GAO Y, REN XY, ROTTENBERG ME, LU J, HOLMGREN A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production[J]. Scientific Reports, 2018, 8(1): 11131. [百度学术] 

38

DONG CJ, CHEN W, ZOU LL, LIU BB, DENG KH, GUO DR, WANG P, CHEN H, WANG H, WANG J. The assessment on synergistic activity of ebselen and silver ion against Yersinia pseudotuberculosis[J]. Frontiers in Microbiology, 2022, 13: 963901. [百度学术] 

39

WANG P, WANG J, XIE ZL, ZHOU JX, LU QQ, ZHAO Y, DONG CJ, ZOU LL. Depletion of multidrug-resistant uropathogenic Escherichia coli BC1 by ebselen and silver ion[J]. Journal of Cellular and Molecular Medicine, 2020, 24(22): 13139-13150. [百度学术] 

40

DONG CJ, WANG J, CHEN H, WANG P, ZHOU JX, ZHAO Y, ZOU LL. Synergistic therapeutic efficacy of ebselen and silver ions against multidrug-resistant Acinetobacter baumannii-induced urinary tract infections[J]. Metallomics, 2020, 12(6): 860-867. [百度学术] 

41

CHAKRABORTY S, SAGARIKA P, RAI S, SAHI C, MUKHERJEE S. Tyrosine-templated dual-component silver nanomaterials exhibit photoluminescence and versatile antimicrobial properties through ROS generation[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 36938-36947. [百度学术] 

42

CARVALHO ML, PINTO AP, RANIERO LJ, COSTA MS. Biofilm formation by Candida albicans is inhibited by photodynamic antimicrobial chemotherapy (PACT), using chlorin E6: increase in both ROS production and membrane permeability[J]. Lasers in Medical Science, 2018, 33(3): 647-653. [百度学术] 

43

SONG D, KIM B, KIM M, LEE JK, CHOI J, LEE H, SHIN S, SHIN D, NAM HY, LEE Y, LEE S, KIM Y, SEO J. Impact of conjugation of the reactive oxygen species (ROS)-generating catalytic moiety with membrane-active antimicrobial peptoids: promoting multitarget mechanism and enhancing selectivity[J]. Journal of Medicinal Chemistry, 2024, 67(17): 15148-15167. [百度学术] 

44

ZOU LL, LU J, WANG J, REN XY, ZHANG LL, GAO Y, ROTTENBERG ME, HOLMGREN A. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections[J]. EMBO Molecular Medicine, 2017, 9(8): 1165-1178. [百度学术] 

45

CHEN H, LU QQ, AN HY, LI JT, SHEN SC, ZHENG X, CHEN W, WANG L, LI JH, DU YQ, WANG YQ, LIU XW, BAUMANN M, TACKE M, ZOU LL, WANG J. The synergistic activity of SBC3 in combination with ebselen against Escherichia coli infection[J]. Frontiers in Pharmacology, 2022, 13: 1080281. [百度学术]