摘要
目的
阐明分离自南海雷州湾硇洲岛潮汐带沉积物的12株产铁载体细菌的系统发育多样性,并探测这些实验菌株及微泡菌属(Microbulbifer)已知物种代表性菌株的铁载体生物合成基因簇的组成、功能、遗传多样性及其演化模式。
方法
采用常规方法观察主要表型特征并进行产铁载体活性验证;利用16S rRNA基因序列分析法了解实验菌株的系统发育多样性(包括类群多样性、物种多样性和遗传多样性);测定代表性实验菌株JSM ZJ756的基因组框架图,通过比较基因组学技术对比分析实验菌株与其系统发育关系密切的典型菌株的G+C含量、平均核苷酸一致性(average nucleotide identity, ANI)和数码DNA-DNA杂交估值(digital DNA-DNA hybridization, dDDH),以更准确地判定其系统分类地位;采用antiSMASH 7.0、BLASTn、BLASTp和MEGA 11等生物信息学工具,对次级代谢产物合成基因簇(secondary metabolite biosynthetic gene clusters, BGCs)进行快速鉴定、功能注释和序列比对,以探测其产铁载体相关功能基因簇的组成、功能、遗传多样性及其演化模式。
结果
实验菌株均为严格好氧、不产芽孢、具有产铁载体活性的革兰氏阴性杆菌。16S rRNA基因序列和全基因组序列分析结果表明,12株菌均属于微泡菌属,归为6-8个物种,与该属的典型菌株构成4个进化系(clade),其中JSM ZJ756为舟山微泡菌(Microbulbifer zhoushanensis)的新成员。通过antiSMASH基因簇分析发现,JSM ZJ756及9个微泡菌属代表性菌株各具有1个铁载体生物合成基因簇(NI-siderophore),其中8个与已知同类型基因簇的相似性在40%及以下。根据与已知基因簇的种类和相似性差异,这10个铁载体基因簇可分为5个功能亚型:JSM ZJ756等3株为Ochrobactin亚型(序列号JYFX01000060.1,相似性28%),M. mangrove DD-1
结论
本研究表明分离自南海雷州湾硇洲岛潮汐带沉积物的12株产铁载体菌株属于微泡菌属,具有较高的系统发育多样性,其中JSM ZJ756为舟山微泡菌的新成员;JSM ZJ756及微泡菌属(代表性菌株)的NI-siderophore基因簇具有较高的多样性和新颖性,具有产生新颖多样铁载体的较大潜力;JSM ZJ756及9个微泡菌属代表性菌株的NI-siderophore基因簇的生物功能、遗传演化,以及这些菌株的系统发育之间存在较高的正向关联性。因此,包括12个产铁载体实验菌株在内的微泡菌属菌株是一类典型的新资源微生物,其系统分类、铁载体代谢机制和遗传演化模式,以及生物技术潜力值得进一步探讨。
铁是所有生物体必需的元素之一,在三羧酸循环、电子传递链、氧化磷酸化、固氮作用和光合作用等重要的基本生命活动中发挥着至关重要的作
铁载体不仅与微生物本身的生存竞争、致病性及抗菌性等生命活动密切相关,而且在生态学、农业、环境修复、生物传感器和生物医药等众多领域具有极大的应用价值。在微生物生态学方面,采用与产铁载体细菌共培养的方法,或者单独添加铁载体作为生长因子,可以分离纯化出一些新颖的不产铁载体的未培养微生
海洋是严重缺铁的环境,海洋表层水的可溶性铁浓度仅为0.01-0.02 nmo
1 材料与方法
1.1 主要试剂和仪器
琼脂粉,北京鼎国昌盛生物技术有限责任公司;铬天青S,上海三爱思试剂有限公司;脱脂奶粉、Marine agar 2216 (以下简称MA)和Marine broth 2216 (以下简称MB)培养基,BD公司;DNA提取和纯化、PCR所用试剂、酶和引物,生工生物工程(上海)股份有限公司。
高压蒸汽灭菌锅,三洋电机株式会社;生物安全柜,苏州安泰空气技术有限公司;生化培养箱,上海精宏实验设备有限公司;真空冷冻干燥器,ThermoFisher Scientific公司;恒温培养摇床,上海知楚仪器有限公司;光学显微镜,Leica Microsystems公司;台式离心机,Eppendorf公司;紫外分光光度计,Shimadzu Corporation公司;PCR仪和电泳仪,Bio-Rad公司。
1.2 菌株来源及培养
菌株JSM ZJ756等12个实验菌株是在本实验室对雷州湾硇洲岛进行细菌多样性调查期间,采用MA等多种复合培养基从潮汐带沉积物样品中分离得到的,继而采用铬天青S (chrome azurol sulfonate, CAS)琼脂平板法筛选出产铁载体细
1.3 表型特征观察和产铁载体活性验证
将菌株接种于MA平板上,于30 ℃培养14 d,每天记录菌落特征,包括直径、颜色、边缘是否圆整、表面是否凸起、是否湿润以及是否产生可溶性色素等。根据菌落的均一性和纯度初步判断菌株的纯度(菌落纯)。采用标准染色法和KOH溶解法观察革兰氏反
1.4 基于16S rRNA基因序列的系统发育分析
采用酶法小量提取基因组DNA,并按常规方法PCR扩增16S rRNA基
1.5 菌株基因组测序分析和参考菌株基因组下载
选取产铁载体活性较强的JSM ZJ756菌株为代表,进行基因组框架图测序和比较基因组学分析。采用MB摇瓶培养菌株JSM ZJ756细胞(30 °C、180 r/min培养3-4 d),随后在室温4 000 r/min离心15 min收集菌体。菌体经0.85% NaCl无菌盐水洗涤3次后,分装于2.0 mL EP管中,并于-70 ℃超低温冰箱冷冻2 d。之后,用干冰包裹样品,送至生工生物工程(上海)股份有限公司采用二代测序技术进行基因组框架图(draft genome)的测定。实验流程严格遵循Illumina公司提供的标准操作指南,包括基因组DNA的提取与质量检测、小片段DNA文库的构建与质量控制、桥式PCR扩增、Illumina测序、下机原始数据的质控与组装。利用软件Prodigal v2.6.3进行编码基因预测,使用RepeatMasker v4.0.5将细菌基因组与已知重复序列数据库(如Repbase)进行比对,以搜索基因组中的重复序列,采用Infernal v1.1.3根据协方差模型在Rfam数据库(https://rfam.org/)中预测RNA基因,并使用tRNAscan-SE v2.0预测基因组中的tRNA基因;利用IslandPath-DIMOB v0.2、PhiSpy v2.3和CRT v1.2分别预测基因组中基因组岛(genomic island)、前噬菌体(prophage)和CRISPR (clustered regularly interspaced palindromic repeats)。
在16S rRNA基因序列分析结果的基础上,根据最新的微泡菌属物种名录(List of Prokaryotic names with Standing in Nomenclature,https://lpsn.dsmz.de/genus/microbulbifer),以有效物种的学名在NCBI基因组数据库(https://www.ncbi.nlm.nih.gov/datasets/genome/)中搜索下载其典型菌株或代表性菌株的基因组数据,用于对比研究。
1.6 基因组系统分类特征比较
通过在线工具计算G+C/A+T+G+C获得基因组DNA的G+C含量。采用EzBioCloud在线网络服务(https://www.ezbiocloud.net/tools/ani)进行基因组两两对比分析(in pairs),按OrthoANI算法估算基因组间平均核苷酸一致性(average nucleotide identity, ANI
1.7 次级代谢产物合成基因簇分析
采用antiSMASH (antibiotics & secondary metabolite analysis shell)细菌版7.0软件(https://antismash.secondarymetabolites.org/#!/start
2 结果与分析
2.1 主要表型特征和产铁载体活性
实验菌株均为严格好氧、无芽孢的革兰氏阴性菌。细胞生长期为短杆状,而生长后期则转变为球状。这些菌株具有轻度嗜盐性,在复合培养基上所能耐受的最高盐度为NaCl体积分数10%-20%,而最适生长盐浓度则在2%-8% NaCl之间。此外,它们的生长温度和酸碱度偏好均为中性。在蓝色CAS平板上,所有菌株均产生了明显的黄色晕圈,表明这些菌株均具备一定的产铁载体活性,其中菌株JSM ZJ756、844和1002的产铁载体活性较强。其他主要形态特征见
Phenotypic characteristic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Colony color | W | B | Y | G-Y | C | L-Y | G-B | B | G | C | L-Y | B |
Motility | - | - | - | - | + | - | + | - | - | - | - | + |
Catalase | + | + | + | + | - | + | + | - | + | + | - | + |
Oxidase | - | + | + | - | + | - | + | + | - | + | + | - |
Nitrate to nitrite | - | + | - | + | + | + | - | + | - | + | - | + |
Growth temperature (°C) | ||||||||||||
Range | 10-40 | 15-45 | 10-45 | 15-45 | 15-40 | 10-45 | 10-40 | 15-40 | 10-45 | 15-45 | 15-45 | 15-40 |
Optimum | 30 | 30-35 | 30 | 35 | 25-30 | 30 | 25 | 25-30 | 30 | 35 | 35 | 25-30 |
pH for growth | ||||||||||||
Range | 6.0-10.0 | 6.0-10.0 | 5.0-10.0 | 5.0-10.0 | 6.0-10.0 | 6.0-11.0 | 6.0-11.0 | 5.0-11.0 | 6.0-10.0 | 5.0-10.0 | 6.0-10.0 | 6.0-11.0 |
Optimum | 7.5 | 7.0 | 7.0-8.0 | 7.0-7.5 | 7.5 | 7.0 | 7.0-7.5 | 7.5-8.0 | 7.0 | 7.0-8.0 | 7.5 | 7.0 |
Growth with NaCl (%) | ||||||||||||
Range | 1-15 | 1-15 | 0-10 | 1-15 | 0-10 | 0-7 | 0-20 | 1-20 | 1-15 | 0-10 | 0-10 | 0-7 |
Optimum | 3-5 | 3-6 | 2-3 | 2-4 | 2-4 | 2-3 | 5-8 | 3-6 | 3-6 | 2-3 | 2-4 | 2-3 |
Hydrolysis | ||||||||||||
Aesculin | - | + | - | - | + | - | - | - | - | + | - | - |
Casein | - | - | - | + | - | - | + | - | - | - | - | + |
Gelatin | + | + | - | - | + | + | + | - | + | + | - | - |
Tween-20 | + | - | + | - | + | + | + | - | + | - | + | + |
Tween-40 | + | + | - | - | - | + | - | - | + | + | + | - |
Tween-60 | - | + | + | - | + | + | - | + | - | + | + | - |
Tween-80 | + | - | - | - | + | - | - | + | + | - | - | - |
Urea | - | + | - | + | - | + | + | - | - | + | - | + |
Diameter of yellowish cycle on CSA plate (mm) | 10 | 11 | 9 | 7 | 10 | 12 | 25 | 21 | 14 | 24 | 17 | 15 |
The strains of the serial numbers 1 to 12 referred to were in sequences of JSM ZJ388/395/511/528/529/576/756/844/972/1002/1192/1199. Colony color: B, brown; C, cream; G-B, grayish brown; G-Y, grayish yellow; L-Y, light yellow; W, white; Y, yellow. +, Positive; -, Negative.
2.2 产铁载体海洋细菌的系统发育多样性
测定了12个实验菌株几乎全长的16S rRNA基因序列,并将这些序列存储于公共数据库中,同时获得了相应的GenBank/EMBL/DDBJ序列号,见
序号 Number | 菌株(序列号) Strain (accession number) | 密切相关物种/典型菌株(top3) (序列号) Closely relative species/type strain (top3) (accession number) | 相似性 Similarity (%) |
---|---|---|---|
1 | JSM ZJ388 (PQ533015) |
Microbulbifer elongates DSM 681 Microbulbifer salipaludis SM Microbulbifer hydrolyticus DSM 1152 |
99.03 98.54 98.26 |
2 | JSM ZJ395 (PQ533016) |
Microbulbifer elongates DSM 681 Microbulbifer salipaludis SM Microbulbifer hydrolyticus DSM 1152 |
98.82 98.34 98.06 |
3 | JSM ZJ511 (PQ533017) |
Microbulbifer mangrove DD-1 Microbulbifer salipaludis SM Microbulbifer hydrolyticus DSM 1152 |
99.36 98.58 98.44 |
4 | JSM ZJ528 (PQ533018) |
Microbulbifer agarilyticus JAMBA Microbulbifer salipaludis SM Microbulbifer elongates DSM 681 |
99.45 97.58 93.31 |
5 | JSM ZJ529 (PQ533019) |
Microbulbifer salipaludis SM Microbulbifer hydrolyticus DSM 1152 Microbulbifer mangrove DD-1 |
98.81 98.81 98.46 |
6 | JSM ZJ576 (PQ533020) |
Microbulbifer variabilis Ni-208 Microbulbifer echini AM13 Microbulbifer epialgicus F-10 |
98.82 98.61 98.47 |
7 | JSM ZJ756 (PQ516908) |
Microbulbifer zhoushanensis TT3 Microbulbifer sediminum TT3 Microbulbifer hydrolyticus DSM 1152 |
99.38 98.41 97.09 |
8 | JSM ZJ844 (PQ533021) |
Microbulbifer variabilis Ni-208 Microbulbifer echini AM13 Microbulbifer epialgicus F-10 |
98.79 98.52 98.38 |
9 | JSM ZJ972 (PQ533022) |
Microbulbifer hydrolyticus DSM 1152 Microbulbifer salipaludis SM Microbulbifer mangrove DD-1 |
98.93 98.78 98.28 |
10 | JSM ZJ1002 (PQ533023) |
Microbulbifer hydrolyticus DSM 1152 Microbulbifer salipaludis SM Microbulbifer mangrove DD-1 |
98.97 98.83 98.35 |
11 | JSM ZJ1192 (PQ533024) |
Microbulbifer variabilis Ni-208 Microbulbifer epialgicus F-10 Microbulbifer echini AM13 |
99.03 98.83 98.76 |
12 | JSM ZJ1199 (PQ533025) |
Microbulbifer variabilis Ni-208 Microbulbifer epialgicus F-10 Microbulbifer echini AM13 |
99.24 99.04 98.97 |
尽管实验菌株与其系统发育上密切相关的典型菌株之间的16S rRNA基因序列相似性均超过了区分原核生物物种的阈值(98.65%

图1 采用邻接法基于16S rRNA基因序列构建的12株产铁载体海洋细菌和微泡菌属所有已知物种典型菌株的系统发育树
Figure 1 Neighbor-joining tree based on 16S rRNA gene sequences showing the phylogenetic relationship of 12 marine siderophore-producing bacteria with type strains of all known species of the genus Microbulbifer. Numbers at nodes indicate bootstrap values (>50%) based on neighbor-joining analyses of 1 000 resampled datasets.
2.3 基因组测序和系统分类特征比较
为了更准确地判定实验菌株的系统发育地位,选择了产铁载体活性较强的JSM ZJ756为代表,测定了其基因组框架图,并进行了基因型特征的比较。菌株JSM ZJ756的基因组大小为4 221 651 bp,由34个重叠群(contig)构成;N50长度为310 838 bp;G+C含量为61.25%。含3 684个蛋白质编码序列(protein coding sequence, CDS),总长度为3 674 302 bp,占全长的87.03%;含54个tRNA基因和4个rRNA基因(包括2个5S rRNA,1个16S rRNA和1个23S rRNA)。该基因组数据已被存储于NCBI数据库(https://www.ncbi.nlm.nih.gov/datasets/genome, JBISER010000000)。菌株JSM ZJ756与其系统发育关系密切的10个微泡菌属已知物种典型菌株基因组之间的ANI值和dDDH值见
序号 Number | 物种及其代表性菌株 Species/representative strain | 基因组序列号 Accession number | 基因组大小 Size (bp) | G+C content(%) | ANI (%) | dDDH (formula 2, %) |
---|---|---|---|---|---|---|
1 |
Microbulbifer zhoushanensis TT3 | GCA_021729055.1 | 4 127 908 | 61.28 | 99.42 | 96.00 (94.6-97.0) |
2 |
Microbulbifer sediminum TT3 | GCA_021729035.1 | 3 854 156 | 60.87 | 84.75 | 28.80 (26.5-31.3) |
3 |
Microbulbifer hydrolyticus IRE3 | GCA_009931115.1 | 4 209 307 | 57.60 | 74.78 | 21.60 (19.3-24.0) |
4 |
Microbulbifer salipaludis SN0- | GCA_017303155.1 | 3 979 573 | 58.35 | 74.73 | 21.40 (19.1-23.8) |
5 |
Microbulbifer yueqingensis CGMCC 1.1065 | GCA_900100355.1 | 3 664 854 | 62.01 | 81.26 | 24.40 (22.1-26.8) |
6 |
Microbulbifer mangrovi DD-1 | GCA_002009015.1 | 4 507 547 | 57.15 | 74.67 | 21.80 (19.5-24.2) |
7 |
Microbulbifer celer KCTC 1297 | GCA_020991125.1 | 4 346 001 | 57.18 | 71.15 | 21.40 (19.2-23.9) |
8 |
Microbulbifer marinus CGMCC 1.1065 | GCA_900107725.1 | 3 982 390 | 59.75 | 77.16 | 21.90 (19.6-24.3) |
9 |
Microbulbifer aestuariivivens NBRC 11253 | GCA_039545115.1 | 3 405 539 | 59.65 | 76.98 | 21.80 (19.6-24.3) |
10 |
Microbulbifer elongates DSM 681 | GCA_021165935.1 | 4 196 952 | 57.57 | 74.95 | 21.40 (19.2-23.9) |
*:非典型菌株。
*: Non-type strain.
2.4 产铁载体相关基因簇分析
在微泡菌属的32个有效种中,尽管部分物种如M. chitinilyticus、M. gwangyangensis、M. maritimus和M. okinawensis缺乏基因组数据,而M. agarilyticus、M. hydrolyticus和M. salipaludis仅有非典型菌株(non-type strain)的基因组数据,但仍有25个已知物种公布了其典型菌株的基因组数据(https://www.ncbi.nlm.nih.gov/datasets/genome/,2024-10-31)。为深入了解菌株JSM ZJ756及微泡菌属的产铁载体功能,将该属的25个典型菌株和3个非典型菌株(以下统称为代表性菌株)的基因组均用于BGCs分析。这29个菌株基因组的序列号,其antiSMASH 7.0在线BGCs分析结果概览图、各菌株BGCs组成、功能及分布的原始数据均已存储在国家微生物科学数据中心(https://nmbc.cn/resource/attachment/),编号为NMDCX0001729。在29个基因组中共发现23大类179个拷贝的BGCs,平均每菌拥有4.9类6.2个;菌株JSM ZJ756拥有6类7个BGCs。较广泛分布(广布型) BGCs主要有RiPP-like (所有29个菌株都有,共58个拷贝)、Ectoine (26菌)、NRPS (12菌)、NRPS-like (11菌)、NI-siderophore (10菌)和Resorcinol (9菌);菌株JSM ZJ756拥有除NRPS外的其他5类广布型BGCs。其中与适应(海洋)盐环境直接相关的是相容性溶质四氢嘧啶(ectoine)生物合成基因簇(Ectoine基因簇),与铁载体产生直接相关的是铁载体生物合成基因簇(NI-siderophore基因簇)。本研究对铁载体生物合成功能基因簇NI-siderophore进行了较深入的分析。
2.4.1 菌株JSM ZJ756及微泡菌属代表性菌株铁载体合成基因簇结构
在菌株JSM ZJ756及9个代表性菌株基因组中各发现一个铁载体生物合成基因簇(NI-siderophore)。这10个菌株的BGCs组成和功能数据已提交国家微生物科学数据中心(编号:NMDCX0001729),各菌株NI-siderophore基因簇的结构如
序号 Number | 菌株(基因组序列号) Strain (accession number for the genome) | 大小 Size (bp) | 基因簇结构 Structure of BGC-type NI-siderophore | ||||
---|---|---|---|---|---|---|---|
核心合成基因 Core biosynthetic (bp) | 附加合成基因 Biosynthetic-additional | 调节基因 Regulatory | 转运基因Transport | 其他 Others | |||
J | JSM ZJ756 (JBISER010000000) | 32 781 | 2 (1 710, 1 836) | 9 | 0 | 1 | 12 |
1 |
M. zhoushanensis TT3 | 32 781 | 2 (1 710, 1 836) | 9 | 0 | 1 | 12 |
2 |
M. sediminum TT3 | 32 730 | 2 (1 863, 1 848) | 8 | 0 | 1 | 12 |
6 |
M. mangrovi DD-1 | 20 840 | 2 (1 002, 1 335) | 3 | 3 | 2 | 17 |
1 | M. agarilyticus GP101 (GCA_001999945.1) | 3 012 | 1 (2 412) | 5 | 1 | 0 | 20 |
22 |
M. variabilis ATCC 70030 | 32 698 | 2 (1 821, 1 866) | 8 | 1 | 1 | 17 |
25 |
M. echini JCM 3040 | 32 776 | 2 (1 821, 1 944) | 6 | 1 | 1 | 15 |
26 |
M. epialgicus DSM 1865 | 29 529 | 2 (1 743, 1 806) | 2 | 0 | 3 | 19 |
29 |
M. okhotskensis OS2 | 9 179 | 2 (1 821, 1 866) | 2 | 0 | 1 | 4 |
32 |
M. spongiae MI- | 32 716 | 2 (1 824, 1 866) | 6 | 1 | 2 | 14 |
$:非典型菌株。
$: Non-type strain.
2.4.2 菌株JSM ZJ756及微泡菌属代表性菌株铁载体合成基因簇功能多样性
根据匹配已知基因簇的种类及其相似性,菌株JSM ZJ756及9个微泡菌属代表性菌株的NI-siderophore基因簇可以分为5个功能亚型(
基因簇类 Type of BGC | 最相似已知基因 Most similar known cluste | J | 1 | 2 | 6 | 1 | 22 | 25 | 26 | 29 | 32 |
---|---|---|---|---|---|---|---|---|---|---|---|
NI-siderophore (1) | Ochrobactin (JYFX01000060.1) | 28 | 28 | 28 | - | - | - | - | - | - | - |
NI-siderophore (2) | Vibrioferrin (AB082123.1; CP005094.1) | - | - | - | 100 | - | - | - | 85 | - | - |
NI-siderophore (3) | Putrebactin (NIBS01000001.1) | - | - | - | - | 40 | - | - | - | - | - |
NI-siderophore (4) | Aerobactin (AB199785.1) | - | - | - | - | - | - | 22 | - | - | - |
NI-siderophore (5) | - | - | - | - | - | - | + | - | - | + | + |
*第一行序数所指代菌株同表3
*: One of the ordinal numerals on the first line was designated for the same strain as in Table 3
2.4.3 菌株JSM ZJ756及微泡菌属代表性菌株铁载体合成基因簇遗传多样性及其演化
菌株JSM ZJ756和9个微泡菌属代表性菌株的NI-siderophore基因簇中共包含19个核心基因,其中菌株12 (M. agarilyticus GP101)仅含有1个较大的核心基因(2 412 bp),而其他菌株均拥有2个核心基因(较大的标识为-1,较小的为-2)。BLASTn分析发现,这19个核心基因中,有7个(36.8%)与数据库中同源序列的相似性低于83%,更有6个(31.6%)未搜索到匹配序列(no significant similarity found)(编号:NMDCX0001729),表明菌株JSM ZJ756及微泡菌属代表性菌株的NI-siderophore基因簇具有较为新颖的核心基因序列。基于核心基因序列的NI-siderophore遗传演化分析结果,发现除了菌株JSM ZJ756和M. zhoushanensis TT3

图2 采用邻接法基于JSM ZJ576及9个微泡菌属已知物种代表性菌株铁载体基因簇核心基因序列构建的系统发育树。种名前的编号为菌株序号-基因序号,同表3。
Figure 2 Neighbor-joining tree based on core biosynthetic gene sequences of BGCs-type NI-siderophore showing the phylogenetic relationship of strain JSM ZJ756 with 9 representatives of the genus Microbulbifer. The strain serial numbers of 1-32 before species names were respectively designated to the same species as in Table 3, and the flowed-1 or -2 were respectively designated to one of the two core biosynthetic genes of a BGCs-type NI-siderophore. Numbers at nodes indicate bootstrap values (>50%) based on neighbor-joining analyses of 1 000 resampled datasets.
进一步对比分析发现,拥有相同NI-siderophore功能亚型的菌株(
3 讨论与结论
海洋微生物为了应对独特的海洋环境,演化出了多种多样的环境适应策略,如耐盐和铁摄取等关键功能。微泡菌属(Microbulbifer)作为常见的海洋细菌,除了M. hydrolyticu
antiSMASH 7.0分析发现,菌株JSM ZJ756及9个微泡菌属代表性菌株的NI-siderophore基因簇与多种已知基因簇存在显著的相似性差异,并可被划分为5个功能亚型:菌株JSM ZJ756、M. zhoushanensis TT3
基于核心基因序列的遗传演化分析结果进一步证实了菌株JSM ZJ756和9个微泡菌属代表性菌株的NI-siderophore基因簇存在较高的遗传多样性。其中,9个菌株的NI-siderophore基因簇核心基因分别归属于3个独立的遗传演化群,而菌株12 (M. agarilyticus GP101)的NI-siderophore基因簇则展现出相对独立的演化路径。对比分析发现,同一遗传演化群的菌株(
综上所述,基于16S rRNA基因序列的系统发育分析和比较基因组学分析结果表明,本研究中的12个实验菌株均隶属于微泡菌属,具有较高的遗传多样性和物种多样性,可归属于6-8个物种,分属于微泡菌属的4个进化系(clade),其中菌株JSM ZJ756被确认为舟山微泡菌的新成员。antiSMASH基因簇分析发现,菌株JSM ZJ756及9个微泡菌属代表性菌株各具有一个铁载体生物合成基因簇(NI-siderophore),且多数与已知同类型基因簇的相似性在40%及以下,可被划分为5个功能亚型;BLASTn和BLASTp搜索结果显示,这些基因簇具有独特的核心基因序列和编码新颖功能蛋白的能力。基于核心基因序列的遗传演化分析表明,其中9个NI-siderophore基因簇属于3个独立的遗传演化群,而菌株M. agarilyticus GP101的演化路径则相对独立。综合以上分析,分离自雷州湾硇洲岛潮汐带沉积物的12个产铁载体菌株属于微泡菌属,具有较高的系统发育多样性;菌株JSM ZJ756及微泡菌属(代表性菌株)的铁载体生物合成基因簇具有较高的多样性和突出的新颖性,具有较大的产生新颖多样铁载体的潜力。因此,包括实验菌株在内的微泡菌属微生物是一类值得进一步研究和生物技术利用的新微生物资
作者贡献声明
汤倩:菌株分离纯化,系统发育分析,论文写作;陈锦华:菌株鉴定,比较基因组学分析,论文指导和修改;邓丽颖:菌株分离纯化,次级代谢活性筛选;达春瑶:菌株保存,次级代谢基因簇分析;刘祝祥:样品采集,实验设计和指导;陈义光:系统发育、核心基因演化及其对比分析,论文修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
CHHABRA R, SAHA A, CHAMANI A, SCHNEIDER N, SHAH R, NANJUNDAN M. Iron pathways and iron chelation approaches in viral, microbial, and fungal infections[J]. Pharmaceuticals, 2020, 13(10): 275. [百度学术]
LIU LL, WANG W, WU SH, GAO HC. Recent advances in the siderophore biology of Shewanella[J]. Frontiers in Microbiology, 2022, 13: 823758. [百度学术]
SANDY M, BUTLER A. Microbial iron acquisition: marine and terrestrial siderophores[J]. Chemical Reviews, 2009, 109(10): 4580-4595. [百度学术]
KHASHEII B, MAHMOODI P, MOHAMMADZADEH A. Siderophores: importance in bacterial pathogenesis and applications in medicine and industry[J]. Microbiological Research, 2021, 250: 126790. [百度学术]
CAI Y, WANG R, AN MM, LIANG BB. Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching mobility and quorum sensing[J]. Brazilian Journal of Microbiology, 2010, 41(1): 37-41. [百度学术]
胡碧惠, 赵春贵, 杨素萍. 铁对产铁载体的沼泽红假单胞菌光合色素与铁载体合成的影响[J]. 微生物学报, 2014, 54(4): 408-416. [百度学术]
HU BH, ZHAO CG, YANG SP. Influence of iron on siderophore and photosynthetic pigments biosynthesis by siderophore-producing Rhodopesudomonnas palustris[J]. Acta Microbiologica Sinica, 2014, 54(4): 408-416 (in Chinese). [百度学术]
KHAN A, SINGH P, SRIVASTAVA A. Synthesis, nature and utility of universal iron chelator-aiderophore: a review[J]. Microbiological Research, 2018, 212: 103-111. [百度学术]
FAN D, FANG QJ. Siderophores for medical applications: imaging, sensors, and therapeutics[J]. International Journal of Pharmaceutics, 2021, 597: 120306. [百度学术]
AHMED E, HOLMSTRÖM SJM. Siderophores in environmental research: roles and applications[J]. Microbial Biotechnology, 2014, 7(3): 196-208. [百度学术]
张笑雨, 朱建明, 蔡中华, 周进. 海洋微生物铁载体的研究进展[J]. 生物化学与生物物理进展, 2022, 49(9): 1658-1671. [百度学术]
ZHANG XY, ZHU JM, CAI ZH, ZHOU J. The research advance of siderophores in marine microbes[J]. Progress in Biochemistry and Biophysics, 2022, 49(9): 1658-1671 (in Chinese). [百度学术]
GOLONKA R, YEOH BS, VIJAY-KUMAR M. The iron tug-of-war between bacterial siderophores and innate immunity[J]. Journal of Innate Immunity, 2019, 11(3): 249-262. [百度学术]
KAEBERLEIN T, LEWIS K, EPSTEIN SS. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment[J].Science, 2002, 296(5570): 1127-1129. [百度学术]
D’ONOFRIO A, CRAWFORD JM, STEWART EJ, WITT K, GAVRISH E, EPSTEIN S, CLARDY J, LEWIS K. Siderophores from neighboring organisms promote the growth of uncultured bacteria[J]. Chemistry & Biology, 2010, 17(3): 254-264. [百度学术]
BENEDUZI A, AMBROSINI A, PASSAGLIA LMP. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology, 2012, 35(S4): 1044-1051. [百度学术]
TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. [百度学术]
邓声坤, 雷锋杰, 龙漪萍, 张焕荣, 姜懿轩, 张爱华. 细菌铁载体拮抗植物病原真菌及促生作用研究进展[J]. 微生物学通报, 2023, 50(7): 3198-3210. [百度学术]
DENG SK, LEI FJ, LONG YP, ZHANG HR, JIANG YX, ZHANG AH. Bacterial siderophores antagonize phytopathogenic fungi and promote plant growth: a review[J]. Microbiology China, 2023, 50(7): 3198-3210 (in Chinese). [百度学术]
TANG YK, KANG HY, QIN ZY, ZHANG KX, ZHONG YX, LI HL, MO LH. Significance of manganese resistant Bacillus cereuss train WSE01 as a bioinoculant for promotion of plant growth and manganese accumulation in Myriophyllum verticillatum[J]. Science of the Total Environment, 2020, 707: 135867. [百度学术]
ROSKOVA Z, SKAROHLID R, McGACHY L. Siderophores: an alternative bioremediation strategy?[J]. Science of the Total Environment, 2022, 819: 153144. [百度学术]
李玉霞, 宋柳霆, 张雅琴, 刘骐源, 陈海洋, 杨洁, 左锐. 铁载体在环境污染与资源利用中的应用研究进展[J]. 地球科学与环境学报, 2023, 45(6): 1330-1340. [百度学术]
LI YX, SONG LT, ZHANG YQ, LIU QY, CHEN HY, YANG J, ZUO R. Review on the application of siderophores in environmental pollution and resource utilization[J]. Journal of Earth Sciences and Environment, 2023, 45(6): 1330-1340 (in Chinese). [百度学术]
CHUNG CHUN LAM CK, JICKELLS TD, RICHARDSON DJ, RUSSELL DA. Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters[J]. Analytical Chemistry, 2006, 78(14): 5040-5045. [百度学术]
NOSRATI R, DEHGHANI S, KARIMI B, YOUSEFI M, TAGHDISI SM, ABNOUS K, ALIBOLANDI M, RAMEZANI M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems[J]. Biosensors and Bioelectronics, 2018, 117: 1-14. [百度学术]
MÖLLMANN U, HEINISCH L, BAUERNFEIND A, KÖHLER T, ANKEL-FUCHS D. Siderophores as drug delivery agents: application of the “Trojan horse” strategy[J]. BioMetals, 2009, 22(4): 615-624. [百度学术]
HUANG YZ, JIANG YF, WANG HY, WANG JX, SHIN MC, BYUN Y, HE HN, LIANG YQ, YANG VC. Curb challenges of the “Trojan horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(10): 1299-1315. [百度学术]
NEGASH KH, NORRIS JKS, HODGKINSON JT. Siderophore-antibiotic conjugate design: new drugs for bad bugs?[J]. Molecules, 2019, 24(18): 3314. [百度学术]
AOKI T, YOSHIZAWA H, YAMAWAKI K, YOKOO K, SATO J, HISAKAWA S, HASEGAWA Y, KUSANO H, SANO M, SUGIMOTO H, NISHITANI Y, SATO T, TSUJI M, NAKAMURA R, NISHIKAWA T, YAMANO Y. Cefiderocol (S-649266), a new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship[J]. European Journal of Medicinal Chemistry, 2018, 155: 847-868. [百度学术]
郐俊扬, 王晓娟, 王辉. 头孢地尔: 新型铁载体头孢菌素抗多重耐药革兰阴性杆菌感染[J]. 生物工程学报, 2022, 38(3): 990-1003. [百度学术]
KUAI JY, WANG XJ, WANG H. Cefiderocol: a novel siderophore cephalosporin against multi-drug resistant Gram-negative bacilli infections[J]. Chinese Journal of Biotechnology, 2022, 38(3): 990-1003 (in Chinese). [百度学术]
IMLAY JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium[J]. Nature Reviews Microbiology, 2013, 11(7): 443-454. [百度学术]
PIETRANGELO A. Mechanism of iron toxicity[M]//Advances in Experimental Medicine and Biology. Boston, MA: Springer US, 2002: 19-43. [百度学术]
TSAFACK A, LIBMAN J, SHANZER A, CABANTCHIK ZI. Chemical determinants of antimalarial activity of reversed siderophores[J]. Antimicrobial Agents and Chemotherapy, 1996, 40(9): 2160-2166. [百度学术]
MIETHKE M, MARAHIEL MA. Siderophore-based iron acquisition and pathogen control[J]. Microbiology and Molecular Biology Reviews, 2007, 71(3): 413-451. [百度学术]
门晋名. 铁载体高产菌的筛选及铁载体的分离纯化[D]. 青岛: 青岛科技大学硕士学位论文, 2013. [百度学术]
MEN JM. The selection of high-yield siderophores production strains and separation and purification of the siderophores[D]. Qingdao: Master’s Thesis of Qingdao University of Science & Technology, 2013 (in Chinese). [百度学术]
BOYD PW, JICKELLS T, LAW CS, BLAIN S, BOYLE EA, BUESSELER KO, COALE KH, CULLEN JJ, de BAAR HJW, FOLLOWS M, HARVEY M, LANCELOT C, LEVASSEUR M, OWENS NPJ, POLLARD R, RIVKIN RB, SARMIENTO J, SCHOEMANN V, SMETACEK V, TAKEDA S, et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions[J]. Science, 2007, 315(5812): 612-617. [百度学术]
MAWJI E, GLEDHILL M, MILTON JA, TARRAN GA, USSHER S, THOMPSON A, WOLFF GA, WORSFOLD PJ, ACHTERBERG EP. Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean[J]. Environmental Science & Technology, 2008, 42(23): 8675-8680. [百度学术]
汤倩. 硇洲岛潮汐带沉积物中产铁载体细菌多样性及相关功能基因分析[D]. 吉首: 吉首大学硕士学位论文, 2020. [百度学术]
TANG Q. Diversity of siderophore-producing bacteria and function genes analysis in which isolated from intertidal sediment from Naozhou Island[D]. Jishou: Master’s Thesis of Jishou University, 2020 (in Chinese). [百度学术]
GONZÁLEZ JM, MAYER F, MORAN MA, HODSON RE, WHITMAN WB. Microbulbifer hydrolyticus gen.nov., sp.nov., and Marinobacterium georgiense gen.nov., sp.nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community[J]. International Journal of Systematic Bacteriology, 1997, 47(2): 369-376. [百度学术]
HATADA Y, MIZUNO M, LI ZJ, OHTA Y. Hyper-production and characterization of the ι-carrageenase useful for ι-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalytic mechanism[J].Marine Biotechnology, 2011, 13(3): 411-422. [百度学术]
LI ZP, DU ZP, LI HB, CHEN YH, ZHENG MJ, JIANG ZD, DU XP, NI H, ZHU YB. Characterisation of marine bacterium Microbulbifer sp. ALW1 with Laminaria japonica degradation capability[J]. AMB Express, 2022, 12(1): 139. [百度学术]
ZHONG WM, AGARWAL V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty[J]. Beilstein Journal of Organic Chemistry, 2024, 20: 1635-1651. [百度学术]
GREGERSEN T. Rapid method for distinction of Gram-negative from Gram-positive bacteria[J]. European Journal of Applied Microbiology and Biotechnology, 1978, 5(2): 123-127. [百度学术]
东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [百度学术]
DONG XZ, CAI MY. Handbook of Identification of Common Bacterial Systems[M]. Beijing: Science Press, 2001 (in Chinese). [百度学术]
王卫星, 周晓伦, 李忠玲, 王明鹏, 王卫卫. CAS平板覆盖法检测氢氧化细菌铁载体[J]. 微生物学通报, 2014, 41(8): 1692-1697. [百度学术]
WANG WX, ZHOU XL, LI ZL, WANG MP, WANG WW. Detection of siderophore production from hydrogen-oxidizing bacteria with CAS overlay plate method[J]. Microbiology China, 2014, 41(8): 1692-1697 (in Chinese). [百度学术]
CUI XL, MAO PH, ZENG M, LI WJ, ZHANG LP, XU LH, JIANG CL. Streptimonospora salina gen.nov., sp.nov., a new member of the family Nocardiopsaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2): 357-363. [百度学术]
LEE I, OUK KIM Y, PARK SC, CHUN J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2): 1100-1103. [百度学术]
YOON SH, HA SM, LIM J, KWON S, CHUN J. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie Van Leeuwenhoek, 2017, 110(10): 1281-1286. [百度学术]
RICHTER M, ROSSELLÓ-MÓRA R. Shifting the genomic gold standard for the prokaryotic species definition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 19126-19131. [百度学术]
MEIER-KOLTHOFF JP, CARBASSE JS, PEINADO-OLARTE RL, GÖKER M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes[J]. Nucleic Acids Research, 2022, 50(D1): D801-D807. [百度学术]
WAYNE LG, MOORE WEC, STACKEBRANDT E, KANDLER O, COLWELL RR, KRICHEVSKY MI, TRUPER HG, MURRAY RGE, GRIMONT PAD, BRENNER DJ, STARR MP, MOORE LH. Report of the ad ho committee on reconciliation of approaches to bacterial systematics[J]. International Journal of Systematic and Evolutionary Microbiology, 1987, 37(4): 463-464. [百度学术]
MEIER-KOLTHOFF JP, GÖKER M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy[J]. Nature Communications, 2019, 10(1): 2182. [百度学术]
BLIN K, SHAW S, AUGUSTIJN HE, REITZ ZL, BIERMANN F, ALANJARY M, FETTER A, TERLOUW BR, METCALF WW, HELFRICH EJN, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50. [百度学术]
KIM M, OH HS, PARK SC, CHUN J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2): 346-351. [百度学术]
MEIER-KOLTHOFF JP, HAHNKE RL, PETERSEN J, SCHEUNER C MICHAEL V, FIEBIG A, ROHDE C, ROHDE M, FARTMANN B, GOODWIN LA, CHERTKOV O, REDDY T, PATI A, IVANOVA NN, MARKOWITZ V, KYRPIDES NC, WOYKE T, GÖKER M, KLENK HP. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and aproposal for delineating subspecies in microbial taxonomy[J]. Standards in Genomic Sciences, 2014, 9: 2. [百度学术]
TOBIAS NJ, MISHRA B, GUPTA DK, KE LP, THINES M, BODE HB. Draft genome sequence of Ochrobactrum anthropi strain ML7 isolated from soil samples in vinhphuc province, Vietnam[J].Genome Announcements, 2015, 3(2): e00218-15. [百度学术]
TANABE T, FUNAHASHI T, NAKAO H, MIYOSHI SI, SHINODA S, YAMAMOTO S. Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2003, 185(23): 6938-6949. [百度学术]
BAARS O, ZHANG XN, MOREL FMM, SEYEDSAYAMDOST MR. The siderophore metabolome of Azotobacter vinelandii[J].Applied and Environmental Microbiology, 2015, 82(1): 27-39. [百度学术]
HIRSCHMANN M, GRUNDMANN F, BODE HB. Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria[J]. Environmental Microbiology, 2017, 19(10): 4080-4090. [百度学术]
SUZUKI K, TANABE T, MOON YH, FUNAHASHI T, NAKAO H, NARIMATSU S, YAMAMOTO S. Identification and transcriptional organization of aerobactin transport and biosynthesis cluster genes of Vibriohollisae[J]. Research in Microbiology, 2006, 157(8): 730-740. [百度学术]
刘超兰, 黎江华, 郭义东. 2株小双孢菌新种的全基因组测序分析与抗菌活性测定[J]. 微生物学通报, 2021, 8(5): 1662-1673. [百度学术]
LIU CL, LI JH, GUO YD. Whole genome sequencing and antibacterial activity determination of two novel species of Microbispora[J]. Microbiology China, 2021, 48(5): 1662-1673 (in Chinese). [百度学术]
TANG SK, WANG Y, CAI M, LOU K, MAO PH, JIN X, JIANG CL, XU LH, LI WJ. Microbulbifer halophilus sp.nov., a moderately halophilic bacterium from north-west China[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(9): 2036-2040. [百度学术]
FU YH, WU ZC, KONG YH, XU XW, SUN C, WU YH. Microbulbifer zhoushanensis sp.nov., Microbulbifer sediminum sp.nov. and Microbulbifer guangxiensis sp.nov., three marine bacteria isolated from a tidal flat[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73: 005842. [百度学术]