摘要
肠炎沙门菌(Salmonella Enteritidis)是一种重要的食源性病原菌,可引起人和动物的胃肠道感染。iscA是编码铁-硫(Fe-S)簇组装的关键基因之一,参与铁离子的转运和能量代谢,是一种保守的A型铁结合蛋白。
目的
通过构建肠炎沙门菌Z11 ΔiscA突变株,探究IscA在沙门菌感染过程中的作用。
方法
以实验室保存的肠炎沙门菌Z11菌株为研究对象,采用无标记框内缺失突变法构建iscA突变株。分析并比较野生株与突变株在运动性、生物被膜形成能力等方面的差异;分别在小鼠单核巨噬细胞RAW264.7和小鼠模型上探究IscA对肠炎沙门菌毒力的影响。
结果
本研究成功构建了ΔiscA缺失株;与野生株相比,ΔiscA在生长能力和生物被膜形成能力方面无明显差异,表明缺失iscA基因不会影响肠炎沙门菌的正常生长和生物被膜形成;在运动性方面,ΔiscA在6 h时的菌圈直径显著小于野生株,表明iscA基因的缺失降低了肠炎沙门菌Z11的游动能力。在RAW264.7细胞实验中,与野生株相比,ΔiscA缺失株的黏附和侵袭能力均显著降低,分别下降至约37%和20%;并且,ΔiscA缺失株突破细胞屏障进入细胞内的增殖速率也显著低于野生株。小鼠感染实验结果显示,ΔiscA缺失株在空肠和盲肠中的定殖能力显著低于野生株感染组。
结论
基因iscA与肠炎沙门菌的毒力密切相关,其缺失会影响该菌株的运动性、黏附侵袭能力、胞内增殖能力,并且降低其在宿主肠道中的定殖能力,从而进一步影响肠炎沙门菌的感染过程。
肠炎沙门菌(Salmonella Enteritidis)是一种重要的人兽共患食源性病原菌,广泛存在于畜禽及其肉制品中,能够通过受污染的食物感染人类,严重威胁公共健
在感染过程中,细菌需应对多种环境应激,主要包括来自反应性化学物质或营养限制的挑战,如活性氧(reactive oxygen species, ROS)、活性氮(reactive nitrogen species, RNS)以及限铁环境
在大肠杆菌中,ISC铁-硫(Fe-S)簇合成系统主要由高度保守的基因簇iscRSUA-hscBA-fdx组成,该基因簇编码7种蛋白——IscR、IscS、IscU、IscA、HscB、HscA和铁氧还蛋白,它们在Fe-S簇的合成过程中各自发挥着关键作
近年来的研究表明,在志贺氏菌中iscA基因的表达与细菌的毒力和致病性密切相关,缺乏iscA基因的细胞会面临Fe-S簇合成不足的问题,进而导致细胞增殖减缓甚至死
1 材料与方法
1.1 细菌、质粒、引物、细胞和实验动物
肠炎沙门菌(Salmonella Enteritidis) Z11野生株(wild type, WT)由本课题组分离并保存,大肠杆菌(Escherichia coli) DH5α λpir和X7213 λpir用于质粒pDM4的扩增,本研究所用的菌株和质粒见
菌株/质粒 Strains/plasmids | 说明/用途 Relevant characteristics | 来源 Source |
---|---|---|
Escherichia coli X7213 λpir DH5α λpir |
Host for π requiring plasmids, Conjugal donor Host for π requiring plasmids |
Laboratory collection Laboratory collection |
Salmonella Enteritidis | ||
Z11 | Wild type | Laboratory collection |
ΔiscA | Z11, in-frame deletion in iscA | This study |
ΔiscA::iscA | ΔiscA, complements iscA | This study |
ΔiscA::Vector | ΔiscA, complements vector | This study |
Plasmids | ||
pDM4 |
Suicide vector, pir dependent, R6K, SacBR, C | Laboratory collection |
pBAD33 |
Carrying a mob gene in pBAD33, C | Laboratory collection |
1.2 培养基
LB固体培养基(g/L):NaCl 10.0,胰蛋白胨10.0,牛肉膏5.0,琼脂15.0;煌绿琼脂培养基(g/L):胰酪蛋白胨5.0,蛋白胨5.0,酵母粉3.0,NaCl 5.0,乳糖10.0,蔗糖10.0,亮绿0.012 5,苯酚红0.08,琼脂20.0,pH 6.9±0.2。根据实验需求添加以下成分:氯霉素(Cm,25 μg/mL)、羧苄青霉素(Carb,100 ng/mL)、硫酸庆大霉素(Gm,100 μg/mL、10 μg/mL)、2,6-二氨基庚二酸(mes0-2,6-diaminopimelic acid, DAP,50 μg/mL)。
1.3 主要试剂和仪器
羧苄青霉素、链霉素、硫酸卡那霉素、微孔滤膜、蔗糖、超级感受态制备试剂盒,生工生物工程(上海)股份有限公司;2,6-二氨基庚二酸(DAP),Sigma-Aldrich公司;2×Taq MasterMix、PrimeSTAR Max DNA Polymerase、Sal Ⅰ、Sac Ⅰ限制性核酸内切酶,TaKaRa公司;ClonExpress Ultra One Step Cloning Kit,南京诺维赞生物科技股份有限公司;DMEM细胞培养基、Dulbecco’s Phosphate-Buffered Saline (DPBS)、胰酶和胎牛血清,Gibco公司;细菌基因组提取试剂盒、琼脂糖凝胶回收试剂盒、无内毒素质粒大提试剂盒、快速质粒小提试剂盒,天根生化科技(北京)有限公司;
摇床,上海市离心机械研究所有限公司;PCR仪,凝胶成像仪、基础通用电泳仪、琼脂糖凝胶水平电泳槽、全自动细胞计数仪,Bio-Rad公司;超微量紫外-可见光分光光度计、CO2培养箱,ThermoFisher Scientific公司;恒温金属浴,杭州博日科技有限公司;多功能酶标仪,BioTek公司。
1.4 肠炎沙门菌Z11基因组提取
复苏肠炎沙门菌Z11于添加Carb的LB平板上,37 ℃培养12-16 h,用接种环刮取单菌落于添加Carb的LB液体培养基中,37 ℃、180 r/min培养12 h,按照细菌基因组提取试剂盒说明书提取肠炎沙门菌Z11基因组总DNA。
1.5 框内无标记缺失突变株构建
构建缺失突变株和回补株所用引物见
Primer name | Primer sequences (5′→3′) |
---|---|
iscA-Up-F | GAGCGGATAACAATTTGTGGAATCCCGGGAAGAGGGTGAAGTAATCCATA |
iscA-Up-R | TTTTGTTATGTAACCGTGTTCCGCTGTTATACCGA |
iscA-Down-F | AACACGGTTACATAACAAAACCTCAATGTTAACGT |
iscA-Down-R | AGCGGAGTGTATATCAAGCTTATCGATACCTCTGGTAACGGAGTGGGTGA |
iscA-Out-F | GAACCGTCGCAACCAGAGAG |
iscA-Out-R | CGTCTGCGTGACCTTTCTCC |
iscA-In-F | AAATTGCAGGCTCTTGCCGT |
iscA-In-R | CTGGCCAACCGTGGTAAAGG |
iscA-F | AGCGAATTTCGAGCTCGGTACCTTACACGTGGAAGCTTTCGCC |
iscA-R | TCCGCCAAAACAGCCAAGCTTACGTCATGAAGTTGCAGATTAAAGTT |
pBAD33-F | TCTACTGTTTCTCCATACCCGTTTT |
pBAD33-F | TTCTGCGTTCTGATTTAATCTGTAT |
Sal I-up | GGTGCTCCAGTGGCTTCTGTTTCTA |
Sac I-down | CAGCAACTTAAATAGCCTCTAAGGT |
以Z11菌株基因组为模板,分别扩增iscA上下游同源臂(up和down片段),引物为iscA-Up-F和iscA-Up-R。PCR反应体系(50 µL):PrimeSTAR Max DNA Polymerase 25 µL,上、下游引物(10 µmol/L)各2 µL,DNA模板2 µL,ddH2O 19 µL。PCR反应条件:98 ℃预变性3 min;95 ℃变性15 s,58 ℃退火10 s,72 ℃延伸15 s,30个循环;72 ℃终延伸10 min。使用ClonExpress Ultra One Step Cloning Kit将上下游同源臂插入到Sal Ⅰ和Sac Ⅰ双酶切的pDM4质粒,50 ℃连接15-20 min,42 ℃热转化E. coli DH5α λpir和X7213 λpir感受态细胞。转化后,挑取单菌落进行PCR验证。PCR反应体系(20 µL):2×Taq MasterMix 10 µL,上、下游引物(10 µmol/L)各1 µL,DNA模板1 µL,ddH2O 7 µL。PCR反应条件:95 ℃预变性5 min;95 ℃变性30 s,58 ℃退火30 s,72 ℃延伸1 min 30 s,30个循环;72 ℃终延伸10 min。重组质粒通过接合转移方式转化进入Z11菌株,用Sal I-up/Out-F和Sac I-down/Out-F两对引物分别进行PCR扩增验证单交换正确的菌落,并进行蔗糖筛选。单菌落分别用iscA-Out-F/R和iscA-In-F/R引物对进行PCR验证,获得正确的iscA缺失突变株。PCR反应体系(20 µL):2×Taq MasterMix 10 µL,上、下游引物(10 µmol/L)各1 µL,DNA模板1 µL,ddH2O 7 µL。PCR反应条件:95 ℃预变性5 min;95 ℃变性30 s,58 ℃退火30 s,72 ℃延伸2 min,30个循环;72 ℃终延伸10 min。
1.6 回补株构建
以Z11菌株基因组为模板,扩增iscA基因启动子及开放阅读框(open reading frame, ORF)区域。PCR反应体系:PrimeSTAR Max DNA Polymerase 25 µL,上、下游引物(10 µmol/L)各2 µL,DNA模板2 µL,ddH2O 19 µL。PCR反应条件:98 ℃预变性3 min;95 ℃变性15 s,58 ℃退火10 s,72 ℃延伸15 s,30个循环;72 ℃终延伸10 min。PCR产物通过ClonExpress Ultra One Step Cloning Kit插入到Kpn Ⅰ和Hind Ⅲ双酶切的pBAD33质粒中。重组质粒通过电转化进入ΔiscA缺失株,PCR验证获得正确的ΔiscA::iscA回补株。PCR反应体系(20 µL):2×Taq MasterMix 10 µL,上、下游引物(10 µmol/L)各1 µL,DNA模板1 µL,ddH2O 7 µL。PCR反应条件:95 ℃预变性5 min;95 ℃变性30 s,58 ℃退火30 s,72 ℃延伸1 min 30 s,30个循环;72 ℃终延伸10 min。在培养细菌时,回补株和空质粒回补株需添加氯霉素(25 μg/mL)以维持质粒的稳定性。
1.7 iscA基因缺失对肠炎沙门菌表型的影响
1.7.1 生长曲线测定
复苏Z11、ΔiscA突变株及回补株,挑取单菌落接种于LB液体培养基中,37 ℃、180 r/min培养过夜。取1 mL新鲜菌液测OD600,并调节OD600至0.05,取200 μL菌液加入96孔板中,37 ℃、180 r/min培养,使用酶标仪每隔1 h测定OD600值,直至所有菌株达到平台期并记录相关数据(测定24 h)。
1.7.2 运动性测定
复苏Z11、ΔiscA突变株及回补株,挑取单菌落接种于LB液体培养基中,37 ℃、180 r/min培养过夜。取1 mL新鲜菌液用PBS洗涤2遍,8 000 r/min离心2 min,用PBS轻轻吹打重悬菌体后测OD600值,调节OD600至1.0,取2.5 μL菌液分别点在含0.3%琼脂的LB平板上,于37 ℃培养箱中正置培养6 h。观察菌株的形态,并测量菌圈直径。
1.7.3 生物被膜形成能力测定
将过夜培养的菌液用PBS洗涤2遍,8 000 r/min离心2 min,用PBS轻轻吹打重悬菌体后测OD600值,调节OD600至1.0。取150 μL菌液接入3 mL新鲜LB液体培养基中,静置培养72 h。随后进行结晶紫染色,加入200 μL甲醇固定15 min,加入200 μL结晶紫染色液,静置染色15 min,弃掉液体,用蒸馏水洗去多余染液;加入200 μL 33%冰醋酸,用枪头轻微洗下试管壁的生物膜,取100 μL测量OD595处的吸光值。
1.8 细胞感染试验
1.8.1 黏附和侵袭能力测定
复苏实验室冻存的鼠源巨噬细胞RAW264.7于含有10%胎牛血清的DMEM培养基中,37 ℃、5% CO2条件下培养。感染前1天,将巨噬细胞以5×1
黏附率=(胞外黏附细菌数/总感染细菌数)×100%
(1)
按照上述方法感染并黏附细胞0.5 h后,用DPBS洗涤3遍,加入含有100 μg/mL庆大霉素的DMEM培养基分别侵袭2、4和6 h。用含有0.2% Trion X-100的PBS裂解细胞10 min,梯度稀释后进行计数。按照公式(2)计算侵袭率。
侵袭率=(胞内侵袭细菌数/总感染细菌数)×100%
(2)
1.8.2 胞内增殖能力测定
复苏实验室冻存的RAW264.7细胞于含有10%胎牛血清的DMEM培养基中。感染前1天,将巨噬细胞以5×1
增殖速率=(胞内增殖菌量–初始侵袭细胞菌量)/
初始侵袭细胞菌量×100% | (3) |
1.9 小鼠感染试验
将培养好的菌液4 500 r/min离心5 min,用PBS洗涤2遍,测定并调节OD600至1.0,随后用PBS稀释为5×1
1.10 数据处理与分析
利用GraphPad Prism 6.0对所有数据进行统计分析。实验结果以平均值±标准误(mean±SEM)格式表示,采用t检验进行统计学分析,*表示P <0.05,**表示P <0.01,***表示P <0.001。
2 结果与分析
2.1 肠炎沙门菌Z11ΔiscA突变株及ΔiscA::iscA回补株的构建
基于同源重组原理,构建了肠炎沙门菌Z11 ΔiscA的框内无标记缺失突变株。运用特异性外部引物(iscA-Out-F/R)和内部引物(iscA-In-F/R)对缺失突变株进行验证。结果如

图1 突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector的PCR验证。A:突变株ΔiscA的PCR验证[泳道M:DL5000 DNA marker;泳道1:Z11 (Out);泳道2:Z11ΔiscA (Out);泳道3:Z11 (In);泳道4:Z11ΔiscA (In)];B:回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector的PCR验证[泳道M:DL2000 DNA marker;泳道1:Z11;泳道2:Z11ΔiscA::Vector;泳道3:Z11ΔiscA::iscA]。
Figure 1 Identification of Z11ΔiscA, complemented strain ΔiscA::iscA and ΔiscA::Vector by PCR. A: Identification of Z11ΔiscA by PCR (Lane M: DL5000 DNA marker; Lane 1: Z11 (Out); Lane 2: Z11ΔiscA (Out); Lane 3: Z11 (In); Lane 4: Z11ΔiscA (In)); B: Identification of complemented strain ΔiscA::iscA and ΔiscA::Vector by PCR (Lane M: DL2000 DNA marker; Lane 1: Z11; Lane 2: Z11ΔiscA::Vector; Lane 3: Z11ΔiscA::iscA).
2.2 iscA基因缺失对肠炎沙门菌表型的影响
2.2.1 iscA基因缺失不影响肠炎沙门菌的生长
在LB培养基中测定肠炎沙门菌Z11和ΔiscA突变株的生长曲线,结果如

图2 突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector的生长曲线
Figure 2 The growth curves of ΔiscA, complementation strains ΔiscA::iscA and ΔiscA::Vector.
2.2.2 iscA基因缺失降低肠炎沙门菌的运动能力
沙门菌通过鞭毛等运动器官实现快速运动,从而入侵宿主肠道上皮细胞或扩散。本研究探讨了iscA基因缺失对肠炎沙门菌运动性的影响。结果如

图3 突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector的运动能力测定(n=3)。A:突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector在LB半固体平板上的运动能力;B:突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector的运动能力柱状图(***:P<0.001)。
Figure 3 Determination of motility of ΔiscA, complemented strain ΔiscA::iscA and ΔiscA::Vector (n=3). A: The swimming ability of ΔiscA, complemented strains ΔiscA::iscA and ΔiscA::Vector on LB semi-solid plates; B: Histogram of the swimming ability of ΔiscA, complemented strain ΔiscA::iscA and ΔiscA::Vector (***: P<0.001).
2.2.3 iscA基因缺失不会影响肠炎沙门菌生物被膜形成能力
对肠炎沙门菌WT和ΔiscA的生物被膜形成能力进行检测,在试管中静置培养72 h后,用结晶紫染色发现ΔiscA缺失突变株的生物被膜形成能力略微下降,但由于试管间差异较大,未达到显著差异,回补株ΔiscA::iscA与WT之间也无显著差异,结果如

图4 缺失突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector生物被膜形成能力测定(n=3)
Figure 4 Determination of biofilm formation of ΔiscA, complemented strains ΔiscA::iscA and ΔiscA::Vector (n=3).
2.3 iscA缺失降低肠炎沙门菌的黏附侵袭能力
以RAW264.7细胞为模型,评估了iscA基因缺失对肠炎沙门菌黏附和侵袭能力的影响。黏附能力结果如

图5 缺失突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector黏附和侵袭能力测定(n=3)。A:缺失突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector在RAW264.7细胞上的黏附能力测定;B:缺失突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector在RAW264.7细胞上的侵袭能力测定。
Figure 5 Determination of adhesion and invasion ability of ΔiscA, complemented strains ΔiscA::iscA and ΔiscA::Vector (n=3). A: The adhesion capability of ΔiscA, complemented strains ΔiscA::iscA and ΔiscA::Vector in RAW264.7 cells; B: The invasion capability of ΔiscA, complemented strains ΔiscA::iscA and ΔiscA::Vector in RAW264.7 cells. *: P<0.05.
2.4 iscA缺失影响肠炎沙门菌的胞内增殖
本研究进一步探讨了iscA基因缺失对肠炎沙门菌胞内增殖的影响。将野生株和ΔiscA突变株以MOI=10感染RAW264.7细胞,并在0、2、4、6 h分别取样裂解细胞,测定胞内增殖情况。结果如

图6 缺失突变株ΔiscA、回补株ΔiscA::iscA和空质粒菌株ΔiscA::Vector胞内增殖能力测定(n=3)
Figure 6 Determination of the intracellular proliferation ability of ΔiscA, complemented strains ΔiscA::iscA and ΔiscA::Vector (n=3). **: P<0.01.
2.5 iscA基因缺失对肠炎沙门菌毒力的影响
以小鼠为模型,进一步评估了IscA对肠炎沙门菌毒力的影响。将WT和ΔiscA缺失株以5×1

图7 小鼠口服感染后的存活率(n=7)
Figure 7 Mouse survival after oral infection (n=7).
2.6 iscA基因缺失对肠炎沙门菌在小鼠肠道定殖的影响
本研究评估了野生株Z11和ΔiscA突变株在C57BL/6小鼠体内的定殖情况。将WT和ΔiscA突变株分别以5×1

图8 缺失突变株ΔiscA在小鼠不同脏器的定殖能力测定。A:缺失突变株ΔiscA和WT野生株在小鼠空肠中的载菌量变化;B:缺失突变株ΔiscA和WT野生株在小鼠盲肠中的载菌量变化。
Figure 8 Determination of colonization ability of ΔiscA in mouse organs. A: Changes in bacterial load of WT and ΔiscA in the jejunum; B: Changes in bacterial load of WT and ΔiscA in the caecum. *: P<0.05.
3 讨论与结论
随着沙门菌感染在全球范围内的广泛流行及其对畜禽养殖业造成的重大影响,沙门菌已成为主要的食源性病原菌之一,其中肠炎沙门菌是人类感染沙门菌病的主要血清
肠炎沙门菌利用鞭毛等运动器官迅速移动到肠道,并通过其特殊的疏水分子黏附在宿主细胞,进而突破肠道上皮细胞屏障,侵袭并扩散至其他脏器,引发全身感
此外,本研究还评估了Z11和ΔiscA在C57BL/6小鼠模型上的毒力和定殖情况。在毒力实验中,发现ΔiscA缺失突变株可以将小鼠的死亡时间延缓至第8天。在定殖实验中,在感染3 d后取空肠和盲肠样本进行载菌量测定,结果显示ΔiscA缺失突变株的载菌量显著低于野生株,说明大部分ΔiscA缺失突变株被宿主的免疫系统清除,表明iscA基因对于肠炎沙门菌在肠道中的定殖能力至关重要。
综上所述,本研究通过基因敲除技术构建了ΔiscA缺失突变株,证明了iscA基因的缺失对肠炎沙门菌Z11在运动性、黏附侵袭、胞内增殖、毒力以及定殖能力的影响,结果表明IscA能够显著影响肠炎沙门菌感染宿主的致病过程,揭示了iscA基因在沙门菌抵御宿主体内不良环境因素从而成功定殖的过程中发挥了调控作用。研究结果为预防和控制沙门菌感染提供了新的思路和方法,有助于深入了解沙门菌的致病机制,为开发新型抗菌药物和疫苗提供理论依据。
作者贡献声明
余逸:设计并执行实验,分析数据和撰写论文;顾丹:设计实验,分析数据和修改论文;焦新安:指导设计实验,修改论文;潘志明:指导设计实验,修改论文等。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
MAJOWICZ SE, MUSTO J, SCALLAN E, ANGULO FJ, KIRK M, O’BRIEN SJ, JONES TF, FAZIL A, HOEKSTRA RM, International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. The global burden of nontyphoidal Salmonella gastroenteritis[J]. Clinical Infectious Diseases, 2010, 50(6): 882-889. [百度学术]
KIRK MD, PIRES SM, BLACK RE, CAIPO M, CRUMP JA, DEVLEESSCHAUWER B, DÖPFER D, FAZIL A, FISCHER-WALKER CL, HALD T, HALL AJ, KEDDY KH, LAKE RJ, LANATA CF, TORGERSON PR, HAVELAAR AH, ANGULO FJ. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis[J]. PLoS Medicine, 2015, 12(12): e1001921. [百度学术]
CHEN HM, WANG Y, SU LH, CHIU CH. Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy[J]. Pediatrics & Neonatology, 2013, 54(3): 147-152. [百度学术]
WANG LD, YAN J, NIU H, HUANG R, WU SY. Autophagy and ubiquitination in Salmonella infection and the related inflammatory responses[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 78. [百度学术]
KURTZ JR, ALAN GOGGINS J, McLACHLAN JB. Salmonella infection: interplay between the bacteria and host immune system[J]. Immunology Letters, 2017, 190: 42-50. [百度学术]
GUT AM, VASILJEVIC T, YEAGER T, DONKOR ON. Salmonella infection-prevention and treatment by antibiotics and probiotic yeasts: a review[J]. Microbiology, 2018, 164(11): 1327-1344. [百度学术]
NAIR AV, SINGH A, RAJMANI RS, CHAKRAVORTTY D. Salmonella Typhimurium employs spermidine to exert protection against ROS-mediated cytotoxicity and rewires host polyamine metabolism to ameliorate its survival in macrophages[J]. Redox Biology, 2024, 72: 103151. [百度学术]
TAN GQ, LU JX, BITOUN JP, HUANG H, DING HG. IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions[J]. Biochemical Journal, 2009, 420(3): 463-472. [百度学术]
WAYNE OUTTEN F. Recent advances in the Suf Fe-S cluster biogenesis pathway: beyond the proteobacteria[J]. Biochimica et Biophysica Acta, 2015, 1853(6): 1464-1469. [百度学术]
SOURICE M, ORIOL C, AUBERT C, MANDIN P, PY B. Genetic dissection of the bacterial Fe-S protein biogenesis machineries[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2024, 1871(5): 119746. [百度学术]
FONTENOT CR, DING HG. Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster to regulate intracellular iron homeostasis in Escherichia coli[J]. The Journal of Biological Chemistry, 2023, 299(6): 104748. [百度学术]
ZHENG L, CASH VL, FLINT DH, DEAN DR. Assembly of iron-sulfur clusters. identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii[J]. The Journal of Biological Chemistry, 1998, 273(21): 13264-13272. [百度学术]
AGAR JN, KREBS C, FRAZZON J, HUYNH BH, DEAN DR, JOHNSON MK. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU[J]. Biochemistry, 2000, 39(27): 7856-7862. [百度学术]
YANG JJ, BITOUN JP, DING HG. Interplay of IscA and IscU in biogenesis of iron-sulfur clusters[J]. Journal of Biological Chemistry, 2006, 281(38): 27956-27963. [百度学术]
DING HG, CLARK RJ, DING BJ. IscA mediates iron delivery for assembly of iron-sulfur clusters in IscU under the limited accessible free iron conditions[J]. Journal of Biological Chemistry, 2004, 279(36): 37499-37504. [百度学术]
VICKERY LE, CUPP-VICKERY JR. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation[J]. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42(2): 95-111. [百度学术]
METTERT EL, KILEY PJ. Fe-S cluster homeostasis and beyond: the multifaceted roles of IscR[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2024, 1871(6): 119749. [百度学术]
REMES B, EISENHARDT BD, SRINIVASAN V, KLUG G. IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein[J]. MicrobiologyOpen, 2015, 4(5): 790-802. [百度学术]
METTERT EL, KILEY PJ. Coordinate regulation of the Suf and Isc Fe-S cluster biogenesis pathways by IscR is essential for viability of Escherichia coli[J]. Journal of Bacteriology, 2014, 196(24): 4315-4323. [百度学术]
RUNYEN-JANECKY L, DAUGHERTY A, LLOYD B, WELLINGTON C, ESKANDARIAN H, SAGRANSKY M. Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence[J]. Infection and Immunity, 2008, 76(3): 1083-1092. [百度学术]
GRUZDEV N, McCLELLAND M, PORWOLLIK S, OFAIM S, PINTO R, SALDINGER-SELA S. Global transcriptional analysis of dehydrated Salmonella enterica serovar Typhimurium[J]. Applied and Environmental Microbiology, 2012, 78(22): 7866-7875. [百度学术]
DING HG, YANG JJ, COLEMAN LC, YEUNG S. Distinct iron binding property of two putative iron donors for the iron-sulfur cluster assembly: IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions[J]. The Journal of Biological Chemistry, 2007, 282(11): 7997-8004. [百度学术]
VERGNES A, VIALA JPM, OUADAH-TSABET R, POCACHARD B, LOISEAU L, MÉRESSE S, BARRAS F, AUSSEL L. The iron-sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica[J]. Cellular Microbiology, 2017, 19(4). DOI:10.1111/cmi.12680. [百度学术]
HOLDEN ER, ABI ASSAF J, AL-KHANAQ H, VIMONT N, WEBBER MA, TRAMPARI E. Identification of pathways required for Salmonella to colonize alfalfa using TraDIS-Xpress[J]. Applied and Environmental Microbiology, 2024, 90(7): e0013924. [百度学术]
李灵芝. 肠炎沙门菌持续性感染相关基因的筛选及鉴定[D]. 扬州: 扬州大学硕士学位论文, 2023. [百度学术]
LI LZ. Screening and identification of genes related to persistent infection of Salmonella enteritis[D]. Yangzhou: Master’s Thesis of Yangzhou University, 2023 (in Chinese). [百度学术]
BAHRAMIANFARD H, DERAKHSHANDEH A, NAZIRI Z, KHALTABADI FARAHANI R. Prevalence, virulence factor and antimicrobial resistance analysis of Salmonella Enteritidis from poultry and egg samples in Iran[J]. BMC Veterinary Research, 2021, 24, 17(1): 196. [百度学术]
WEI XY, LONG L, YOU L, WANG M, WANG D, LIU CT, LI SJ, WANG JH. Serotype distribution, trend of multidrug resistance and prevalence of β-lactamase resistance genes in human Salmonella isolates from clinical specimens in Guizhou, China[J]. PLoS One, 2023, 18(4): e0282254. [百度学术]
CUNRATH O, PALMER JD. An overview of Salmonella enterica metal homeostasis pathways during infection[J]. microLife, 2021, 2: uqab001. [百度学术]
RANA K, NAYAK SR, BIHARY A, SAHOO AK, MOHANTY KC, PALO SK, SAHOO D, PATI S, DASH P. Association of quorum sensing and biofilm formation with Salmonella virulence: story beyond gathering and cross-talk[J]. Archives of Microbiology, 2021, 203(10): 5887-5897. [百度学术]
JONES BD, GHORI N, FALKOW S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches[J]. Journal of Experimental Medicine, 1994, 180(1): 15-23. [百度学术]
ALEKSANDROWICZ A, CAROLAK E, DUTKIEWICZ A, BŁACHUT A, WASZCZUK W, GRZYMAJLO K. Better together-Salmonella biofilm-associated antibiotic resistance[J]. Gut Microbes, 2023, 15(1): 2229937. [百度学术]
WU Y, WAYNE OUTTEN F. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I Fimbria expression[J]. Journal of Bacteriology, 2009, 191(4): 1248-1257. [百度学术]
FÀBREGA A, VILA J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation[J]. Clinical Microbiology Reviews, 2013, 26(2): 308-341. [百度学术]
HORSTMANN JA, LUNELLI M, CAZZOLA H, HEIDEMANN J, KÜHNE C, STEFFEN P, SZEFS S, ROSSI C, LOKAREDDY RK, WANG C, LEMAIRE L, HUGHES KT, UETRECHT C, SCHLÜTER H, GRASSL GA, STRADAL TEB, ROSSEZ Y, KOLBE M, ERHARDT M. Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion[J]. Nature Communications, 2020, 11(1): 2013. [百度学术]
ZENG J, ZHANG K, LIU JS, QIU GZ. Expression, purification, and characterization of iron-sulfur cluster assembly regulator IscR from Acidithiobacillus ferrooxidans[J]. Journal of Microbiology and Biotechnology, 2008, 18(10): 1672-1677. [百度学术]
VELAYUDHAN J, KARLINSEY JE, FRAWLEY ER, BECKER LA, NARTEA M, FANG FC. Distinct roles of the Salmonella enterica serovar Typhimurium CyaY and YggX proteins in the biosynthesis and repair of iron-sulfur clusters[J]. Infection and Immunity, 2014, 82(4): 1390-1401. [百度学术]