摘要
目的
从玉米根际土壤中筛选出一株对磷酸三钙与植酸钙均有较好的解磷效果的解磷真菌——产紫篮状菌(Talaromyces purpureogenus),并命名为XZY3PSF。为了后续将该菌株应用于农业生产,开展其解磷条件优化及对辣椒生长与品质影响的研究。
方法
采用液体摇培法测定溶液中有效磷含量,研究该菌株对Ca3(PO4)2、FePO4、AlPO4、磷矿粉、大豆卵磷脂及鸡蛋黄等6种难溶性磷酸盐的溶解能力,并探讨碳源、氮源、pH、装液量等因素对其解磷能力的影响;采用温室盆栽法评价该菌株对辣椒的促生作用及对果实品质的影响。
结果
该菌株对碳源的利用顺序依次为果糖>葡萄糖>麦芽糖>蔗糖;对氮源的利用顺序依次为氯化铵>硝酸铵>硫酸铵>硝酸钾>脲。菌株在初始pH 6.0-7.0的条件下解磷能力较强,不同装液量对菌株的解磷能力无显著性影响。在供试的6种磷源培养液中,该菌株对磷酸三钙和磷矿粉的解磷量最高。其中,磷酸三钙在第5天达到最高解磷量,且极显著高于其他磷源(P<0.01);磷矿粉则在第21天达到最高解磷量,且极显著高于其他磷源(P<0.01)。与施用复合化肥相比,该菌株可显著提高辣椒苗的株高、辣椒产量、辣椒维生素C含量与辣椒素类物质总量(P<0.05)。Pearson相关性分析结果表明,菌株XZY3PSF在不同氮源或不同碳源的培养液中的解磷量与pH变化呈极显著负相关关系,与菌丝干重呈显著或极显著负相关关系;辣椒素类物质含量与维生素C含量、糖度之间分别呈极显著与显著正相关关系。
结论
菌株XZY3PSF解磷能力强,尤其对磷酸铝与磷酸铁类磷源也具有一定的解磷能力,能显著提高作物的主要营养指标,推测其在南方砖红土壤中将具有较强的解磷能力,为后续田间应用奠定良好基础。
磷是植物生长和发育过程中不可或缺的元素,它参与了许多生物大分子的合成,如核酸、蛋白质和抗性物质,对植物的光合作用、呼吸作用及生物合成过程具有重要影
有机磷虽然只约占土壤磷元素总量的15%-18%,但在磷的生物地球化学循环中扮演着重要角色,主要包括土壤有机质中的有机磷、生物体内的有机磷(如磷酸肌醇、核酸、磷脂等)及与腐殖质结合的某些有机磷;土壤中的有机磷在微生物的作用下,通过矿化作用转化为无机磷,供植物吸收利用;无机磷通常占土壤总磷含量的60%-80%,包括吸附态磷、矿物态磷和水溶性磷,主要以正磷酸盐的形式存在于钙、镁、铁、铝及黏粒结合的磷中;在土壤无机磷化合物中,除了少量的水溶态磷外,绝大部分以吸附态和固体矿物态存在;这些难溶性无机磷在酸性土壤中与F
解磷菌(phosphate-solubilizing microorganisms, PSM)是一类能够分解有机或无机磷物质的微生物,种类繁多,已报道的解磷菌有20多个属,包括细菌、真菌和放线菌
本研究对前期筛选获得的解磷真菌XZY3PS
1 材料与方法
1.1 材料
1.1.1 菌株
菌株XZY3PSF分离自西藏自治区墨脱县背崩乡(29°14′36″N, 95°10′9″E)的玉米根际土壤样品,并经鉴定为Talaromyces purpureogenus,保藏于广东省微生物菌种保藏中心,保藏编号为GDMCC 62750。
1.1.2 培养基
简化版无机磷液体培养基(g/L):葡萄糖10.0,硫酸铵2.0,磷酸三钙5.0,胰蛋白胨0.5,pH 7.0-7.5;保存用PDA培养基(g/L):马铃薯200.0,葡萄糖20.0,琼脂18.0,pH自然。所有培养基均在121 ℃条件下灭菌20 min。
1.1.3 供试溶液
钼酸盐溶液:将13.00 g钼酸铵[(NH4)6Mo7O24·4H2O]溶于100 mL蒸馏水中,0.35 g酒石酸锑钾(KSbC4H4O7·H2O)溶于100 mL蒸馏水中。在不断搅拌的情况下,将钼酸铵溶液缓慢加入300 mL 50%硫酸溶液中,再加入酒石酸锑钾溶液混匀,置于棕色瓶4 ℃保存。10%抗坏血酸溶液:将10 g抗坏血酸溶于100 mL蒸馏水中,置于棕色瓶4 ℃保存。150 mmol/L对硝基苯磷酸二钠(p-disodium 4-nitrophenyl phosphate, pNPP)溶液:称取2.784 g pNPP溶于50 mL蒸馏水中。
1.2 孢子接种液制备方法
挑取菌株的菌丝,接种于PDA平板中,28 ℃恒温培养至长出孢子。用无菌水冲洗孢子,并经无菌3层擦镜纸过滤后,制备成真菌的孢子悬液,经镜检孢子数约为7×1
1.3 菌株解磷能力的测定
1.3.1 不同碳源对解磷菌生长及解磷能力的影响试验
以简化版无机磷液体培养基为基础,分别以半乳糖、海藻糖、阿拉伯糖、可溶性淀粉、蔗糖、麦芽糖、葡萄糖、果糖为碳源,其他成分保持不变。各碳源添加量:海藻糖10.50 g/L,葡萄糖、半乳糖、果糖、阿拉伯糖10.00 g/L,蔗糖、麦芽糖9.50 g/L,可溶性淀粉9.00 g/L,使每个处理中的碳(C)含量一致。在150 mL三角瓶中分别装入50 mL各培养液,121 ℃条件下灭菌20 min,接菌后于28 ℃、170 r/min摇床培养7 d,测定各培养液的可溶性磷浓度、pH及菌丝干重。
1.3.2 不同氮源对解磷菌生长及解磷能力的影响试验
以简化版无机磷液体培养基为基础,分别以(NH4)2SO4、NH4Cl、KNO3、NH4NO3、脲[CO(NH2)2]作为氮源,其他成分保持不变。各氮源添加量分别为(NH4)2SO4 0.50 g/L、NH4Cl 0.41 g/L、KNO3 0.76 g/L、NH4NO3 0.30 g/L、脲0.23 g/L,使每个处理的氮(N)含量一致。在150 mL三角瓶中装入50 mL各培养液,28 ℃、170 r/min培养7 d,测定各培养液的可溶性磷浓度、pH及菌丝干重。
1.3.3 解磷菌对6种难溶性磷源的溶解能力及溶解动态测定
以简化版无机磷液体培养基为基础,分别加入磷酸三钙、磷矿粉、磷酸铁、磷酸铝、大豆卵磷脂、鸡蛋黄液作为磷源。在150 mL三角瓶中装入50 mL基础营养液,各磷源加入量均为每瓶0.25 g。各培养基中磷(P)元素加入量分别为磷酸三钙1 000.00 mg/L、磷矿粉506.00 mg/L、磷酸铝1 270.00 mg/L、磷酸铁830.00 mg/L、大豆卵磷脂476.49 mg/L、鸡蛋黄液13.30 mg/L。分别于第5、9、15、21、30天测定可溶性磷浓度。
1.3.4 不同初始pH对解磷菌生长及解磷能力的影响试验
以简化版无机磷液体培养基为基础,用HCl和NaOH将培养基分别调至pH 4.0、5.0、6.0、7.0、8.0、9.0、10.0。在150 mL三角瓶中分别装入50 mL各培养液,28 ℃、180 r/min培养7 d,测定各培养液的可溶性磷浓度、pH及菌丝干重。
1.3.5 不同装液量对解磷菌生长及解磷能力的影响试验
配制简化版无机磷液体培养基,分别在100、150、250 mL三角瓶中装入50 mL培养液,121 ℃灭菌20 min。接菌后于28 ℃、180 r/min摇床培养7 d,测定各培养液的可溶性磷浓度、pH及菌丝干重。
1.3.6 摇培方法
除装液量外,其余实验均在150 mL三角瓶中装入50 mL培养液,121 ℃灭菌20 min。接菌后于28 ℃、180 r/min摇床培养,于相应测定时间取上清液测定可溶性磷浓度。各实验中的每个处理设3次重复。
1.3.7 测定方法
pH值用台式pH计(Thermofisher公司)直接测定。培养液可溶性磷浓度用钼锑抗比色法测
1.4 解磷菌对室内盆栽辣椒苗生长及果实品质的影响
1.4.1 辣椒种植与处理方法
取香蕉种植地土壤作为盆栽用土(土壤pH为6.0,有机质含量为58.5 g/kg,碱解氮为89.30 mg/kg,有效磷含量为95.58 mg/kg,速效钾为329.7 mg/kg)。以终浓度1 g/kg将磷酸三钙混入土壤中,设置以下处理:土壤中接入解磷菌、未接入解磷菌(该处理作为对照)以及施用N/P/K=15/15/15的复合化肥。将活化好的菌株配制成孢子悬液,并保证菌悬液浓度达到1
1.4.2 植株生物量的测定
植株培养约2个月,收获果实5批次以上后,将整株植株从土壤中取出,用清水冲洗干净泥沙,再用滤纸吸干水分。用直尺测量株高,用游标卡尺测量植株基部的茎粗。将根和茎分离后,用电子天平分别称量其质量,并取平均值。产量统计为同一植株不同批次摘取的充分红熟的红椒果实总量,用电子天平称量其质量并分别取平均值。
1.4.3 辣椒果实的品质测定内容与测定方法
采收充分红熟且无病虫害的红椒果实,经80 ℃热风烘干至恒重,去掉果柄后粉碎,分别过40目和80目筛,并保存于避光的干燥器内。用于测定干物质、维生素C、糖含量、蛋白质和辣椒素共5个品质指标,设3次重复,取平均值。干物质含量采用烘干法测定,维生素C含量采用2,6-二氯酚靛酚法测
1.5 数据处理与分析
采用Excel 2010和SPSS 19.0对数据进行分析处理。多重比较采用LSD法,相关性分析采用Pearson法,利用Excel 2010软件作图。
2 结果与分析
2.1 菌株解磷能力的测定
2.1.1 不同碳源对解磷菌生长及解磷能力的影响
菌株XZY3PSF在不同碳源的无机磷液体培养液中培养7 d后,分别测定其有效磷含量、菌丝干重及培养后液体的pH值。从
Carbon sources | Available phosphorus content (mg/L) | Dry weight of mycelium (g) | Final pH value of culture solution |
---|---|---|---|
Galactose | 0.7±0.1Ee | 0.021±0.002Bc | 8.11±0.07Aa |
Trehalose | 14.2±3.2Dd | 0.021±0.001Bc | 6.70±0.14Bb |
Arabinose | 16.6±3.0Dd | 0.092±0.008Ab | 6.17±0.05BCc |
Soluble starch | 59.1±1.2Cc | 0.111±0.005Aab | 6.35±0.06Bbc |
Sucrose | 353.4±8.1Bb | 0.179±0.012Aab | 5.32±0.74DEde |
Maltose | 390.0±10.3ABb | 0.181±0.017Aab | 4.84±0.23Ee |
Glucose | 447.1±15.7ABab | 0.157±0.007Aab | 5.62±0.03CDd |
Fructose | 529.4±3.9Aa | 0.153±0.016Aab | 5.54±0.04CDd |
There is a extremely significant difference between different uppercase letters (P<0.01), and there is a significant difference between different lowercase letters (P<0.05). The same as the following tables.
如

图1 菌株XZY3PSF在不同碳源下培养后溶液中的有效磷含量与菌丝干重、培养液终pH值之间的Pearson相关性分析结果。*:P<0.05;**:P<0.01。下同。
Figure 1 Pearson correlation analysis results between available phosphorus content in the solution of strain XZY3PSF cultured under different carbon sources and dry weight of mycelium and final pH value of the culture medium. *: P<0.05; **: P<0.01.The same below.
2.1.2 不同氮源对解磷菌生长及解磷能力的影响
菌株XZY3PSF在不同氮源的无机磷液体培养液中摇培养7 d后,分别测定其有效磷含量、菌丝干重及培养后液体的pH值。从
Nitrogen sources | Available phosphorus content (mg/L) | Dry weight of mycelium (g) | Final pH value of culture solution |
---|---|---|---|
NH4Cl | 594.9±32.3Aa | 0.107±0.054a | 4.71±0.52Bb |
NH4NO3 | 567.2±12.6Aa | 0.104±0.041a | 4.74±0.50Bb |
(NH4)2SO4 | 481.9±4.4Bb | 0.169±0.002a | 5.57±0.11ABa |
KNO3 | 382.2±16.1Cc | 0.168±0.035a | 6.12±0.18Aa |
CO(NH2)2 | 353.5±2.2Cd | 0.145±0.015a | 5.49±0.50ABa |
如

图2 菌株XZY3PSF在不同氮源的磷酸三钙培养液中培养后溶液中的有效磷含量、菌丝干重、培养液终pH值之间的Pearson相关性分析结果
Figure 2 Pearson correlation analysis results of available phosphorus content in solution, dry weight of mycelium and final pH value of culture medium after XZY3PSF was cultured in tricalcium phosphate culture medium with different nitrogen sources.
2.1.3 不同初始pH对解磷菌生长及解磷能力的影响
菌株XZY3PSF在不同初始pH的无机磷液体培养液中培养7 d后,分别测定其有效磷含量、菌丝干重及培养后液体的pH值。如
Initial pH | Available phosphorus content (mg/L) | Dry weight of mycelium (g) | Final pH value of culture solution |
---|---|---|---|
4.0 | 462.1±13.8BCbc | 0.126±0.015a | 5.65±0.13Aa |
5.0 | 456.8±7.0BCbc | 0.121±0.004ab | 5.63±0.02Aa |
6.0 | 504.5±8.0Aa | 0.113±0.002ab | 5.38±0.11ABb |
7.0 | 484.6±7.5ABab | 0.110±0.009b | 5.25±0.15Bb |
8.0 | 459.4±6.8BCbc | 0.121±0.004ab | 5.31±0.02Bb |
9.0 | 437.6±10.1Cc | 0.113±0.005ab | 5.29±0.14Bb |
如

图3 菌株XZY3PSF在不同初始pH的磷酸三钙培养液中培养后溶液中的有效磷含量与菌丝干重、培养液终pH值之间的Pearson相关性分析结果
Figure 3 Pearson correlation analysis results of available phosphorus content in solution, dry weight of mycelium and final pH value of culture medium after XZY3PSF was cultured in tricalcium phosphate culture medium with different initial pH.
2.1.4 不同装液量对解磷菌生长及解磷能力
菌株XZY3PSF在不同装液量的无机磷液体培养液中培养7 d后,分别测定其有效磷含量、菌丝干重及培养后液体的pH值。如
Broth content | Available phosphorus content (mg/L) | Dry weight of mycelium (g) | Final pH value of culture solution |
---|---|---|---|
50 mL/250 mL | 417.7±6.2a | 0.111±0.012a | 6.96±0.14a |
50 mL/150 mL | 414.2±19.9a | 0.112±0.006a | 6.84±0.03a |
50 mL/100 mL | 430.2±4.4a | 0.123±0.009a | 6.89±0.12a |

图4 菌株XZY3PSF在不同装液量的磷酸三钙培养液中培养后溶液中的有效磷含量与菌丝干重、培养液终pH值之间的Pearson相关性分析结果
Figure 4 The results of Pearson correlation analysis between available phosphorus content in solution dry weight of mycelium, and final pH value of culture medium after strain XZY3PSF was cultured in tricalcium phosphate medium with different liquid volumes.
2.1.5 解磷菌对6种难溶性磷源的溶解能力及溶解动态测定
如
Different phosphorus sources | Available phosphorus content (mg/L) | ||||
---|---|---|---|---|---|
5 d | 9 d | 15 d | 21 d | 30 d | |
Calcium phosphate | 416.7±5.4Aa/Aa | 241.0±8.4Aa/Bb | 120.9±16.3Bb/Cc | 66.1±9.1Cd/CDd | 19.4±2.7Ccd/Dd |
Ground phosphate rock | 222.0±8.7Bb/Cc | 248.1±14.1Aa/BCbc | 278.3±10.1Aa/Bb | 604.5±31.1Aa/Aa | 595.5±12.1Aa/Aa |
Aluminum phosphate | 123.0±3.9Cc/Bb | 76.9±4.0Bb/Dd | 95.9±5.7Bc/Cc | 146.0±7.0Bb/Aa | 102.2±4.6Bb/Cc |
Iron phosphate | 20.3±2.6Dd/Aab | 18.5±1.6Cc/Ab | 18.9±2.7De/Ab | 25.0±2.8De/Aa | 23.1±7.1Ccd/Aab |
Soy lecithin | 13.8±1.9Dd/Dd | 35.5±2.9BCc/Cc | 52.9±4.0Cd/Bb | 94.5±11.4Cc/Aa | 100.2±5.0Bb/Aa |
Egg yolk liquid | 0.1±0.0Ee/Cc | 4.0±1.4Cc/Bb | 4.6±1.0De/Bb | 4.2±0.3De/Bb | 9.9±1.9Cd/Aa |
The uppercase and lowercase letters before/represent the difference analysis results among values in the same column, while those after/represent the difference analysis results betweenamong values in the same row.

图5 菌株XZY3PSF对不同磷源在不同培养时间下的有效磷含量变化趋势
Figure 5 Change trend of available phosphorus content of strain XZY3PSF under different phosphorus sources and culture times.
2.2 解磷菌对室内盆栽的辣椒苗生长及果实品质影响
2.2.1 对辣椒苗生长的影响
如

图6 室内盆栽种植的辣椒植株株高、根重与产量的比较分析结果。A:株高、植株总重与产量的比较分析;B:根干重与单果的比较分析。图中不同大小写字母表示存在极显著(P<0.01)或显著性差异(P<0.05)。下同。
Figure 6 Comparative analysis of plant height, root weight, and yield of pepper plants grown in pots indoors. A: Comparative analysis of plant height, total plant weight, and production; B: Comparative analysis of root dry weight and single fruit weight. In the figure, there is a extremely significant difference between different uppercase letters (P<0.01), and there is a significant difference between different lowercase letters (P<0.05). The same below.
2.2.2 对辣椒品质的影响
如

图7 室内盆栽种植收获的辣椒主要营养物质含量的比较分析结果
Figure 7 Comparative analysis of the main nutrient contents of peppers harvested from indoor potted planting.
从
Treatment | Capsaicin (g/kg) | Dihydrocapsaicin (g/kg) | Total amount of capsaicinoids (g/kg) | Spicy degree |
---|---|---|---|---|
CK (H2O) | 1.396±0.227Bb | 0.367±0.069Bb | 1.959±0.244Bb | 201±26Bc |
Composite fertilizer | 1.747±0.203Bb | 0.443±0.043ABb | 2.434±0.269Bb | 250±26Bb |
XZY3PSF | 2.983±0.358Aa | 0.620±0.119Aa | 4.003±0.510Aa | 411±54Aa |
Different uppercase letters indicate highly significant differences between each other (P<0.01), while different lowercase letters indicate significant differences between each other (P<0.05).
如

图8 辣椒营养物质含量与辣味素等辣度相关指标之间的Pearson相关性结果
Figure 8 Pearson correlation results between pepper nutrient content and spicy related indicators such as capsaicin.
3 讨论与结论
根际微生物作为土壤和植株之间的连接体,在土壤与植株的物质和能量循环中发挥着至关重要的作
碳是构成微生物的基本骨架,解磷微生物同样需要碳源来合成新的细胞,并参与体内碳化合物的氧
辣椒富含辣椒素、维生素C、辣椒碱等,是重要的蔬菜之一,具有很高的营养价值和保健功
总体而言,菌株XZY3PSF在碳源为葡萄糖/果糖,氮源为NH4NO3/NH4Cl,初始pH值为6.0/7.0时,解磷效率最高。此外,对于不同磷源物质,该菌株对磷酸三钙与磷矿粉的解磷能力最强。在促进辣椒生长的试验中,菌株XZY3PSF能显著提高辣椒的生物量及主要营养指标。推测其在南方砖红土壤中将具有较强的解磷能力,具有开发成微生物菌肥的良好潜力,研究结果为后续田间应用奠定了良好基础。
作者贡献声明
徐云龙:本论文的主要实验参与者与撰写者;周游:试验方案设计及指导,参与部分稿件修改;郭立佳:试验设计及开展;汪军:参与试验数据收集;梁昌聪:试验方案设计及指导;杨扬:试验方案指导,论文修改及审核;他永全:试验指导;韩丙军:参与与辣味相关成分的分析与论文修改:杨腊英:整体实验完成人。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
吴紫燕, 糜芳, 干华磊, 张莹莹, 袁东华, 吴家胜, 毛伟力. 一株具有促生溶磷功能的木霉菌Tr940的筛选及其在番茄上的应用[J]. 生物灾害科学, 2022, 45(2): 156-164. [百度学术]
WU ZY, MI F, GAN HL, ZHANG YY, YUAN DH, WU JS, MAO WL. Screening of a Trichoderma Tr940 with the function of promoting growth and phosphorus-solubilizing as well as its application in tomatoes[J]. Biological Disaster Science, 2022, 45(2): 156-164 (in Chinese). [百度学术]
TURRIÓN MB, BUEIS T, LAFUENTE F, LÓPEZ O, SAN JOSÉ E, ELEFTHERIADIS A, MULAS R. Effects on soil phosphorus dynamics of municipal solid waste compost addition to a burnt and unburnt forest soil[J]. Science of the Total Environment, 2018, 642: 374-382. [百度学术]
陈凯. 低磷胁迫下山白兰幼苗的生理响应及差异蛋白表达分析[D]. 南宁: 广西大学硕士学位论文, 2020. [百度学术]
CHEN K. Physiological response and differential protein expression analysis of seedlings of Cymbidium glaucum under low phosphorus stress[D]. Nanning: Master’s Thesis of Guangxi University, 2020 (in Chinese). [百度学术]
YANG XJ, FINNEGAN PM. Regulation of phosphate starvation responses in higher plants[J]. Annals of Botany, 2010, 105(4): 513-526. [百度学术]
贾萌萌, 刘国明, 黄标. 设施菜地利用强度对土壤磷形态分布及其有效性的影响: 以江苏省水耕人为土和潮湿雏形土为例[J]. 土壤, 2021, 53(1): 30-36. [百度学术]
JIA MM, LIU GM, HUANG B. Effects of greenhouse vegetable cultivation on fractionations and bioavailability of soil phosphorus: a case study on paddy soil and fluvo-aquic soil in Jiangsu Province[J]. Soils, 2021, 53(1): 30-36 (in Chinese). [百度学术]
POIRIER Y, BUCHER M. Phosphate transport and homeostasis in Arabidopsis[J]. The Arabidopsis Book, 2002, 1: e0024. [百度学术]
乔欢, 吴小芹, 魏伟. 两株解磷青霉对马尾松根际土壤的微生态效应及其促生作用[J]. 南京林业大学学报(自然科学版), 2016, 40(6): 109-116. [百度学术]
QIAO H, WU XQ, WEI W. Effects of two phosphate-solubilizing Penicillium strains on microbial community structure and their growth-promoting in Masson pine rhizosphere[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(6): 109-116 (in Chinese). [百度学术]
李敏, 滕泽栋, 朱静, 宋明阳. 解磷微生物修复土壤重金属污染研究进展[J]. 生态学报, 2018, 38(10): 3393-3402. [百度学术]
LI M, TENG ZD, ZHU J, SONG MY. Research advances in heavy metal contaminated soil remediation by phosphate solubilizing microorganisms[J]. Acta Ecologica Sinica, 2018, 38(10): 3393-3402 (in Chinese). [百度学术]
荣国强, 秦欣科, 姚全军, 张自清, 胡应邦, 吴长昊. 土壤解磷菌在现代农业中应用现状的研究[J]. 农产品加工, 2021(13): 86-89. [百度学术]
RONG GQ, QIN XK, YAO QJ, ZHANG ZQ, HU YB, WU CH. Research on application status of soil phosphate solubilizing bacteria in modern agriculture[J]. Farm Products Processing, 2021(13): 86-89 (in Chinese). [百度学术]
彭静静, 高辉远. 解磷菌的研究进展及展望[J]. 泰山学院学报, 2016, 38(6): 95-99. [百度学术]
PENG JJ, GAO HY. Research progress and prospect of phosphate-solubilizing microorganisms[J]. Journal of Taishan University, 2016, 38(6): 95-99 (in Chinese). [百度学术]
张典利, 孟臻, 亓文哲, 乔康. 植物根际促生菌的研究与应用现状[J]. 世界农药, 2018, 40(6): 37-43, 50. [百度学术]
ZHANG DL, MENG Z, QI WZ, QIAO K. The research and application status of plant growth promoting rhizobacteria[J]. World Pesticide, 2018, 40(6): 37-43, 50 (in Chinese). [百度学术]
杨腊英, 郭立佳, 周游, 汪军, 梁昌聪, 徐云龙, 黄俊生. 多功能解磷真菌的筛选与解磷活性评价[J]. 热带作物学报, 2023, 44(8): 1662-1670. [百度学术]
YANG LY, GUO LJ, ZHOU Y, WANG J, LIANG CC, XU YL, HUANG JS. Screening of a multifunctional phosphate-solubilizing fugus and evaluation of the phosphate-solubilizing activity[J]. Chinese Journal of Tropical Crops, 2023, 44(8): 1662-1670 (in Chinese). [百度学术]
陈玮. 钼锑抗比色法测定水中总磷的改进[J]. 山西化工, 2003(1): 18-19, 36. [百度学术]
CHEN W. Improvement of determining total phosphorus by colormetry[J]. Shanxi Chemical Industry, 2003(1): 18-19, 36 (in Chinese). [百度学术]
徐朝阳. 2, 6-二氯酚靛酚滴定法与碘量法测定蔬菜水果中维生素C方法的准确度比较[J]. 食品安全导刊, 2021(25): 100-101. [百度学术]
XU CY. Comparison of accuracy between 2,6-dichlorophenol indophenol titration method and iodometric method for determining vitamin C in vegetables and fruits[J]. China Food Safety Magazine, 2021(25): 100-101 (in Chinese). [百度学术]
焦洁. 考马斯亮蓝G-250染色法测定苜蓿中可溶性蛋白含量[J]. 农业工程技术, 2016, 36(17): 33-34. [百度学术]
JIAO J. Determination of soluble protein in alfalfa by coomassie brilliant blue G-250 staining method[J]. Agricultural Engineering Technology, 2016, 36(17): 33-34 (in Chinese). [百度学术]
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法: GB/T 21266—2007[S]. 北京: 中国标准出版社, 2008. [百度学术]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of total capsaicinoid content and representation of pungency degree in capsicum and its products: GB/T 21266—2007[S]. Beijing: Standards Press of China, 2008 (in Chinese). [百度学术]
DONG HW, LIU W, ZHANG H, ZHENG XB, DUAN HJ, ZHOU LX, XU TT, RUAN R. Improvement of phosphate solubilizing bacteria Paenibacillus xylanexedens on the growth of Chlorella pyrenoidosa and wastewater treatment in attached cultivation[J]. Chemosphere, 2022, 306: 135604. [百度学术]
ALAM F, KHAN A, FAHAD S, NAWAZ S, AHMED N, ARIF ALI M, ADNAN M, DAWAR K, SAUD S, HASSAN S, AOWN SAMMAR RAZA M, NAVEED K, ARIF M, DATTA R, DANISH S. Phosphate solubilizing bacteria optimize wheat yield in mineral phosphorus applied alkaline soil[J]. Journal of the Saudi Society of Agricultural Sciences, 2022, 21(5): 339-348. [百度学术]
田志杰, 李景鹏, 杨福. 非生物胁迫下作物磷素利用研究进展[J]. 生态学杂志, 2017, 36(8): 2336-2342. [百度学术]
TIAN ZJ, LI JP, YANG F. Progress in crop phosphorus utilization under abiotic stresses[J]. Chinese Journal of Ecology, 2017, 36(8): 2336-2342 (in Chinese). [百度学术]
史发超, 殷中伟, 江红梅, 范丙全. 一株溶磷真菌筛选鉴定及其溶磷促生效果[J]. 微生物学报, 2014, 54(11): 1333-1343. [百度学术]
SHI FC, YIN ZW, JIANG HM, FAN BQ. Screening, identification of P-dissolving fungus P83 strain and its effects on phosphate solubilization and plant growth promotion[J]. Acta Microbiologica Sinica, 2014, 54(11): 1333-1343 (in Chinese). [百度学术]
赖鉴添, 杨婷, 史发超, 和锐敏, 王鑫, 邵丹青, 何琴, 卢颖林, 胡黎明, 安玉兴. 蔗叶堆肥中一株泡盛曲霉溶磷能力的鉴定及其对辣椒的促生效果[J]. 微生物学报, 2021, 61(1): 77-91. [百度学术]
LAI JT, YANG T, SHI FC, HE RM, WANG X, SHAO DQ, HE Q, LU YL, HU LM, AN YX. A phosphorus-dissolving Aspergillus awamori strain from sugarcane leaf compost for growth promotion of pepper[J]. Acta Microbiologica Sinica, 2021, 61(1): 77-91 (in Chinese). [百度学术]
NAHAS E. Phosphate solubilizing microorganisms: effect of carbon, nitrogen, and phosphorus sources[M]//First International Meeting on Microbial Phosphate Solubilization. Dordrecht: Springer Netherlands, 2007: 111-115. [百度学术]
SONG OR, LEE SJ, LEE YS, LEE SC, KIM KK, CHOI YL. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil[J]. Brazilian Journal of Microbiology, 2008, 39(1): 151-156. [百度学术]
黄达明, 李倩, 管国强, 张志才, 钱静亚, 宋庆春. 一株解磷细菌的筛选、鉴定及其溶磷培养条件的优化[J]. 生物技术通报, 2015(2): 173-178. [百度学术]
HUANG DM, LI Q, GUAN GQ, ZHANG ZC, QIAN JY, SONG QC. Selection, identification and medium optimization of a phosphate-solubilizing bacterium[J]. Biotechnology Bulletin, 2015(2): 173-178 (in Chinese). [百度学术]
BEN FARHAT M, FARHAT A, BEJAR W, KAMMOUN R, BOUCHAALA K, FOURATI A, ANTOUN H, BEJAR S, CHOUAYEKH H. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa[J]. Archives of Microbiology, 2009, 191(11): 815-824. [百度学术]
卫星, 徐鲁荣, 张丹, 支月娥, 周培. 一株耐硝酸盐的巨大芽孢杆菌溶磷特性研究[J]. 环境科学学报, 2015, 35(7): 2052-2058. [百度学术]
WEI X, XU LR, ZHANG D, ZHI YE, ZHOU P. Phosphate solubilizing characteristics of a nitrate-tolerating bacterium, Bacillus megaterium[J]. Acta Scientiae Circumstantiae, 2015, 35(7): 2052-2058 (in Chinese). [百度学术]
韩蕾, 杨乐, 唐金铭, 张雅倩. 解磷菌发酵及溶磷条件的研究[J]. 生物技术通报, 2019, 35(1): 98-104. [百度学术]
HAN L, YANG L, TANG JM, ZHANG YQ. Fermentation condition and phosphate-dissolving capacity of phosphate-solubilizing bacterium[J]. Biotechnology Bulletin, 2019, 35(1): 98-104 (in Chinese). [百度学术]
SESHADRI S, IGNACIMUTHU S, LAKSHMINARASIMHAN C. Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus nigers trains[J]. Chemical Engineering Communications, 2004, 191(8): 1043-1052. [百度学术]
张泽, 李杏, 曾佳琦, 江昱燕, 耿惠怡, 葛艳辉. 溶磷菌的筛选、条件优化及溶磷机制研究[J/OL]. 天津理工大学学报, 2024. http://kns.cnki.net/kcms/detail/12.1374.N.20240429.1832.046.html. [百度学术]
ZHANG Z, LI X, ZENG JQ, JIANG YY, GENG HY, GE YH. Screening of phosphate-solubilizing bacteria, optimization of conditions and study on phosphate-solubilizing mechanism[J/OL]. Journal of Tianjin University of Technology, 2024. http://kns.cnki.net/kcms/detail/12.1374.N.20240429.1832.046.html(in Chinese). [百度学术]
NAUTIYAL CS, BHADAURIA S, KUMAR P, LAL H, MONDAL R, VERMA D. Stress induced phosphate solubilization in bacteria isolated from alkaline soils[J]. FEMS Microbiology Letters, 2000, 182(2): 291-296. [百度学术]
李静, 艾加敏, 余天飞, 边丹, 郑超超, 郭旻皓, 邓振山. 一株溶磷真菌的鉴定及其促生特性研究[J]. 福建农业学报, 2021, 36(10): 1224-1230. [百度学术]
LI J, AI JM, YU TF, BIAN D, ZHENG CC, GUO MH, DENG ZS. Identification and growth-promoting effect of a phosphate-solubilizing fungus on wheat seedlings[J]. Fujian Journal of Agricultural Sciences, 2021, 36(10): 1224-1230 (in Chinese). [百度学术]
FAN DD, REN YX, ZHU XL, MA P, LIANG LH. Optimization of culture conditions for phosphate solubilizing by Acinetobacter calcoaceticus YC-5a using response surface methodology[J]. African Journal of Microbiology Research, 2011, 5(20): 3327-3333. [百度学术]
杨晓燕, 叶伟伟, 魏善强, 张龙, 黄俊. 一株巨大芽孢杆菌发酵培养基的优化及解磷效果研究[J]. 中国农学通报, 2022, 38(15): 105-112. [百度学术]
YANG XY, YE WW, WEI SQ, ZHANG L, HUANG J. Bacillus megaterium: fermentation medium optimization and phosphate solubilization effect[J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 105-112 (in Chinese). [百度学术]
帅天罡, 陆红佳, 胡益侨, 刘雄. 辣椒营养保健功能与加工利用进展[J]. 中国调味品, 2014, 39(8): 125-129. [百度学术]
SHUAI TG, LU HJ, HU YQ, LIU X. The nutrition and health care functions and processing and utilization progress of chili[J]. China Condiment, 2014, 39(8): 125-129 (in Chinese). [百度学术]
LOIZZO MR, PUGLIESE A, BONESI M, MENICHINI F, TUNDIS R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: a comparison between fresh and processed peppers[J]. LWT-Food Science and Technology, 2015, 64(2): 623-631. [百度学术]
付文婷, 詹永发, 何建文, 黄冬福, 梁郸娜, 范高领, 杨万荣, 罗恒. 10个贵州地方辣椒品种品质评价[J]. 中国瓜菜, 2018, 31(12): 37-40. [百度学术]
FU WT, ZHAN YF, HE JW, HUANG DF, LIANG DN, FAN GL, YANG WR, LUO H. Quality evaluation of 10 pepper landraces in Guizhou[J]. China Cucurbits and Vegetables, 2018, 31(12): 37-40 (in Chinese). [百度学术]
李凌凌, 陆雅琳, 汪汉正, 周予西, 左振宇, 杨忠华. 一株固氮菌的筛选、鉴定及混菌发酵制备复合型菌糠菌肥的研究[J]. 武汉科技大学学报, 2021, 44(1): 34-42. [百度学术]
LI LL, LU YL, WANG HZ, ZHOU YX, ZUO ZY, YANG ZH. Isolation, identification of a nitrogen-fixing bacterium and preparation of complex bio-fertilizer with spent mushroom substrate by mix fermenting[J]. Journal of Wuhan University of Science and Technology, 2021, 44(1): 34-42 (in Chinese). [百度学术]
KHARKWAL AC, JOSHI H, SHANDILYA C, DABRAL S, KUMAR N, VARMA A. Isolation and characterization of a newly discovered plant growth-promoting endophytic fungal strain from the genus Talaromyces[J]. Scientific Reports, 2024, 14(1): 6022. [百度学术]