摘要
目的
分析立枯丝核菌菌核形成所需的代谢底物,旨在了解营养元素和环境因子对其菌核形成的影响规律。
方法
基于Biolog表型芯片技术测定663种营养物质、96种渗透压和96种pH环境下立枯丝核菌的菌核形成能力。
结果
在供试的营养物质及环境条件中,分别有19/95的碳源、21/95的氮源、16/94的磷硫源、69/94的营养补充物、61/282的肽类氮源、28/96的渗透压环境以及40/96的pH环境可以诱导立枯丝核菌形成菌核;其中,N-乙酰-d-氨基葡萄糖、尿苷3′-单磷酸盐、磷酸胆碱和5种二肽(Arg-Trp、Met-Arg、Pro-Phe、Val-Tyr、Val-Met),以及10 mmol/L、20 mmol/L硫酸铵(pH 8.0)和pH 4.5+l-脯氨酸3种环境条件可显著促进立枯丝核菌菌核的形成;立枯丝核菌在pH 4.0-10.0范围内均能形成菌核;KEGG分析显示,诱导菌核形成的物质主要参与了代谢途径、ABC转运蛋白、次生代谢物生物合成和d-氨基酸代谢等通路。
结论
营养限制和环境胁迫是诱导立枯丝核菌菌核形成的关键因素。在营养受限的条件下,适宜立枯丝核菌形成菌核的物质包括d-山梨醇、d-木糖、N-乙酰-d-半乳糖胺、d-阿拉伯糖和d-松三糖等5种碳源;N-乙酰-d-氨基葡萄糖、腺苷和胸腺嘧啶等3种氮源;尿苷3′-单磷酸盐和磷酸胆碱等2种磷源;吐温-80等1种营养补充物;以及Arg-Trp、Met-Arg、Pro-Phe、Val-Tyr和Val-Met等5种肽类氮源。适宜的渗透压环境为10 mmol/L、20 mmol/L硫酸铵(pH 8.0),适宜的pH环境为pH 4.0-4.5和pH 9.5-10.0。本研究结果为立枯丝核菌菌核形成机制的研究奠定了基础。
立枯丝核菌(Rhizoctonia solani Kühn),隶属于担子菌门(Basidiomycota),最早由Kühn于1858年在马铃薯上发
菌核是部分真菌在生长条件受限或受到不良环境胁迫时,由营养菌丝聚集形成的一种特殊休眠体结构,其形态多样,能在环境条件适宜时萌发,形成无性或有性繁殖结
虽然菌核能够抵御多种不良环境,但其形成也受温度、光照、pH、活性氧(reactive oxygen species, ROS)以及营养物质等环境因子的影
1 材料与方法
1.1 材料
供试立枯丝核菌LK4菌株分离自贵州省遵义市染病烟苗。d-葡萄糖、无水磷酸二氢钾和硫酸钠均购自西格玛奥德里奇(上海)贸易有限公司;酵母氮源购自BD医疗器械有限公司;0.2 μm注射器过滤膜购自颇尔生命科学有限公司;OmniLog PM高通量微生物细胞表型测定系统、浊度计、FF-IF接种液和表型微阵列(Phenotype MicroArray, PM)微孔板PM1、PM2A、PM3B、PM4A、PM5、PM6、PM7、PM8、PM9、PM10均购自Biolog公司。
1.2 试剂及菌丝悬浮液制备
d-葡萄糖溶液:准确称量57.664 g d-葡萄糖用灭菌水溶解并定容至100 mL。PM (3B、5、6、7、8)添加液:称取0.816 6 g无水磷酸二氢钾和0.341 g硫酸钠用灭菌水溶解定容至100 mL。PM (9、10)添加液:称取8.04 g酵母提取物用灭菌水溶解并定容至100 mL。将d-葡萄糖溶液和2种PM添加液分别使用0.2 μm过滤膜过滤除菌。立枯丝核菌菌丝片段的制备:将PDB中静置培养72 h的立枯丝核菌菌丝用无菌纱布过滤,去除菌丝包裹的菌碟后,用灭菌蒸馏水冲洗菌丝去除其携带的培养基,反复冲洗3遍后将菌丝置于灭菌研钵中,加入适量灭菌水充分研磨以制成菌丝片段悬浮液。最后使用浊度仪测量并调节悬浮液浊度至62%。
1.3 微孔板接种及孵育
各微孔板接种成分如
Solutions | PM1, 2A | PM3B, 5, 6,7, 8 | PM4A | PM9, 10 |
---|---|---|---|---|
FF-IF inoculum (mL) | 20.00 | 50.00 | 10.00 | 20.00 |
d-glucose (mL) | - | 1.88 | 0.38 | 0.75 |
PM additive solution (mL) | - | 5.00 | - | 2.00 |
Mycelial fragment suspension (mL) | 0.50 | 1.25 | 0.25 | 0.50 |
Sterile water (mL) | 3.50 | 1.88 | 1.38 | 0.75 |
Total volume (mL) | 24.00 | 60.00 | 12.00 | 24.00 |
-: Indicates that the corresponding substance has not been added to the solution.
1.4 菌核形成能力评估
培养结束后,综合评估各微孔中菌核的数量及体积大小,以评价菌核的形成情况。菌核形成能力等级划分如下:++++表示极强;+++表示强;++表示一般;+表示弱。
2 结果与分析
2.1 碳源对立枯丝核菌菌核形成的影响
在95种供试碳源中共有19种可以诱导立枯丝核菌形成菌核,其中在d-山梨醇(d-sorbitol)、d-木糖(d-xylose)、N-乙酰-d-半乳糖胺(N-acetyl-d-galactosamine)、d-阿拉伯糖(d-arabinose)和d-松三糖(d-melezitose)诱导下菌核形成能力一般;而在其余14种碳源诱导下,菌核形成能力较弱(
Microplate | Well | Substrate | Sclerotial formation |
---|---|---|---|
PM1 | B02 | d-sorbitol | ++ |
B03 | Glycerol | + | |
B08 | d-xylose | ++ | |
C03 | d,l-malic acid | + | |
C08 | Acetic acid | + | |
D05 | Tween-40 | + | |
D10 | Lactulose | + | |
E07 | α-hydroxybutyric acid | + | |
F05 | Fumaric acid | + | |
H06 | l-lyxose | + | |
PM2A | B01 | N-acetyl-d-galactosamine | ++ |
B05 | d-arabinose | ++ | |
C01 | Gentiobiose | + | |
C04 | d-melezitose | ++ | |
C12 | Palatinose | + | |
D01 | d-raffinose | + | |
D04 | l-sorbose | + | |
D07 | Turanose | + | |
G12 | l-methionine | + |
2.2 氮源对立枯丝核菌菌核形成的影响
立枯丝核菌在PM3B微孔板中的产核情况表明,22%的供试氮源(21/95)可诱导菌核形成,其中N-乙酰-d-氨基葡萄糖(N-acetyl-d-glucosamine)诱导下的菌核形成能力最强,腺苷(adenosine)和胸腺嘧啶(thymidine)次之(
Well | Substrate | Sclerotial formation |
---|---|---|
A04 | Nitrate | + |
A10 | l-aspartic acid | ++ |
A12 | l-glutamic acid | + |
B01 | l-glutamine | ++ |
B10 | l-serine | + |
C01 | l-tyrosine | + |
C05 | d-aspartic acid | + |
C08 | d-serine | + |
D04 | Hydroxylamine | + |
D06 | N-amylamine | + |
D12 | Agmatine | + |
E08 | d-glucosamine | + |
E11 | N-acetyl-d-glucosamine | ++++ |
F03 | Adenosine | +++ |
F04 | Cytidine | + |
F08 | Thymine | + |
F09 | Thymidine | +++ |
H03 | Ala-Glu | + |
H04 | Ala-Gly | + |
H05 | Ala-His | + |
H10 | Gly-Glu | ++ |
2.3 磷、硫源对立枯丝核菌菌核形成的影响
磷、硫作为细胞结构的组成成分以及酶活性的参与者,在94种供试磷、硫源中仅有16种能够诱导立枯丝核菌产生菌核(
Well | Substrate | Sclerotial formation |
---|---|---|
A09 | Adenosine 3′-monophosphate | + |
B09 | Guanosine 3′-monophosphate | + |
C04 | d-glucose-6-phosphate | ++ |
D04 | Phospho-l-arginine | + |
D07 | o-phospho-l-threonine | + |
D09 | Uridine 3′-monophosphate | ++++ |
E04 | Phosphoryl choline | ++++ |
E11 | Inositol hexaphosphate | + |
F06 | Dithiophosphate | + |
G12 | l-methionine sulfone | + |
H02 | Thiourea | + |
H03 | 1-thio-β-d-glucose | + |
H05 | Taurocholic acid | + |
H06 | Taurine | + |
H09 | Butane sulfonic acid | + |
H11 | Methane sulfonic acid | + |
2.4 营养补充物质对立枯丝核菌菌核形成的影响
在PM5微孔板中可诱导立枯丝核菌形成菌核的物质数量最多,占供试营养补充物的73% (69/94),但其诱导菌核形成的能力大多为一般或较弱(
Well | Substrate | Sclerotial formation | Well | Substrate | Sclerotial formation |
---|---|---|---|---|---|
A06 | l-aspartic acid | + | E07 | β-alanine | + |
A08 | l-glutamic acid | + | E08 | d-pantothenic acid | + |
A10 | Adenine | + | E09 | Orotic acid | + |
A11 | Adenosine | ++ | E11 | Uridine | + |
A12 | 2′-deoxyadenosine | + | E12 | 2′-deoxyuridine | + |
B01 | l-glutamine | + | F01 | Quinolinic acid | + |
B02 | Glycine | + | F02 | Nicotinic acid | + |
B04 | l-isoleucine | + | F03 | Nicotinamide | ++ |
B06 | l-lysine | + | F04 | β-nicotinamide adenine dinucleotide | + |
B08 | l-phenylalanine | + | F05 | δ-amino-levulinic acid | + |
B09 | Guanosine 3′,5′-cyclic monophosphate | + | F06 | Hematin | + |
B10 | Guanine | + | F07 | Deferoxamine | + |
B11 | Guanosine | + | F08 | α-d-glucose | + |
B12 | 2′-deoxyguanosine | + | F09 | N-acetyl-d-glucosamine | + |
C01 | l-proline | + | F10 | Thymine | + |
C03 | l-threonine | + | F11 | Glutathione | + |
C06 | l-valine | + | F12 | Thymidine | + |
C07 | l-isoleucine+l-valine | + | G01 | Oxaloacetic acid | + |
C08 | Hydroxy-l-proline | ++ | G03 | Cyanocobalamin | + |
C09 | (5)4-amino-imidazole-4(5)-carboxamide | + | G04 | ρ-amino-benzoic acid | + |
C10 | Hypoxanthine | + | G05 | Folic acid | + |
C11 | Inosine | + | G06 | Inosine+thiamine | + |
C12 | 2′-deoxyinosine | + | G08 | Thiamine pyrophosphate | + |
D02 | l-citrulline | + | G10 | Pyrrolo-quinoline quinone | + |
D03 | Chorismic acid | + | G12 | Myo-inositol | ++ |
D04 | (-)Shikimic acid | + | H01 | Butyric acid | + |
D05 | l-homoserine lactone | + | H03 | α-ketobutyric acid | + |
D07 | d-aspartic acid | ++ | H04 | Caprylic acid | + |
D08 | d-glutamic acid | + | H06 | d,l-mevalonic acid | + |
D10 | Cytosine | + | H07 | d,l-carnitine | + |
D11 | Cytidine | + | H08 | Choline | ++ |
D12 | 2′-deoxycytidine | + | H10 | Tween-40 | + |
E01 | Putrescine | + | H11 | Tween-60 | + |
E02 | Spermidine | + | H12 | Tween-80 | +++ |
E03 | Spermine | + |
2.5 肽类氮源对立枯丝核菌菌核形成的影响
PM6、PM7和PM8微孔板用于检测肽类氮源对立枯丝核菌菌核形成的影响。结果表明,在282种供试肽类氮源中,共有61种可诱导立枯丝核菌形成菌核,其中Arg-Trp、Met-Arg、Pro-Phe、Val-Tyr和Val-Met等5种肽类氮源诱导菌核形成的能力极强;Ala-Leu、Ile-Phe、Ile-Tyr、Phe-Pro、Ala-Val和γ-Glu-Gly等6种肽类氮源诱导菌核形成的能力较强(
Microplate | Well | Substrate | Sclerotial formation | Microplate | Well | Substrate | Sclerotial formation |
---|---|---|---|---|---|---|---|
PM6 | A05 | Ala-Asn | + | PM7 | D01 | Phe-Pro | +++ |
A06 | Ala-Glu | + | D10 | Pro-Phe | ++++ | ||
A09 | Ala-Leu | +++ | E04 | Ser-Leu | + | ||
A11 | Ala-Phe | + | E06 | Ser-Phe | + | ||
B01 | Ala-Ser | + | F04 | Thr-Met | + | ||
B02 | Ala-Thr | + | F06 | Trp-Ala | + | ||
B05 | Arg-Ala | + | G02 | Trp-Ser | + | ||
B07 | Arg-Asp | ++ | H03 | Val-Arg | ++ | ||
B08 | Arg-Gln | + | H04 | Val-Asn | + | ||
C02 | Arg-Phe | ++ | H10 | Val-Tyr | ++++ | ||
C04 | Arg-Trp | ++++ | PM8 | A03 | Ala-Asp | ++ | |
C07 | Asn-Glu | + | A07 | Ala-Val | +++ | ||
D05 | Gln-Gln | + | A10 | Asp-Gly | + | ||
D06 | Gln-Gly | ++ | A11 | Glu-Ala | + | ||
D07 | Glu-Asp | + | A12 | Gly-Asn | + | ||
D08 | Glu-Glu | + | B01 | Gly-Asp | ++ | ||
D09 | Glu-Gly | + | B02 | Gly-Ile | + | ||
D10 | Glu-Ser | + | C11 | Pro-Arg | + | ||
E01 | Glu-Val | + | D07 | Ser-Asn | + | ||
E04 | Gly-Cys | + | D08 | Ser-Asp | + | ||
E11 | Gly-Pro | + | D10 | Ser-Glu | + | ||
F07 | His-Leu | + | E02 | Thr-Ser | ++ | ||
G04 | Ile-Arg | + | E08 | Val-Glu | + | ||
G05 | Ile-Gln | + | E10 | Val-Met | ++++ | ||
G10 | Ile-Phe | +++ | F07 | d-Ala-d-Ala | + | ||
H02 | Ile-Tyr | +++ | G01 | γ-Glu-Gly | +++ | ||
PM7 | A02 | l-glutamine | + | G03 | Gly-d-Ala | ++ | |
B04 | Lys-Trp | + | G04 | Gly-d-Asp | + | ||
B07 | Met-Arg | ++++ | H04 | Gly-Gly-Ile | + | ||
C03 | Met-Lys | + | H12 | Tyr-Gly-Gly | + | ||
C09 | Phe-Ala | + |
2.6 渗透压环境对立枯丝核菌菌核形成的影响
在96种渗透压环境中,共有28种可诱导立枯丝核菌产生菌核,其中10 mmol/L和20 mmol/L硫酸铵(ammonium sulfate)诱导菌核形成能力最强,其次是60 mmol/L硝酸钠(sodium nitrate) (
Well | Substrate | Sclerotialformation |
---|---|---|
D01 | 3% Potassium chloride | + |
D02 | 4% Potassium chloride | + |
D05 | 2% Sodium sulfate | + |
D06 | 3% Sodium sulfate | ++ |
D07 | 4% Sodium sulfate | + |
D08 | 5% Sodium sulfate | ++ |
D09 | 5% Ethylene glycol | + |
D10 | 10% Ethylene glycol | ++ |
D11 | 15% Ethylene glycol | + |
D12 | 20% Ethylene glycol | ++ |
E07 | 2% Urea | + |
F01 | 1% Sodium lactate | ++ |
F02 | 2% Sodium lactate | ++ |
F11 | 11% Sodium lactate | + |
G01 | 20 mmol/L Sodium phosphate pH 7.0 | ++ |
G02 | 50 mmol/L Sodium phosphate pH 7.0 | + |
G04 | 200 mmol/L Sodium phosphate pH 7.0 | ++ |
G05 | 20 mmol/L Sodium benzoate pH 5.2 | ++ |
G09 | 10 mmol/L Ammonium sulfate pH 8.0 | ++++ |
G10 | 20 mmol/L Ammonium sulfate pH 8.0 | ++++ |
G11 | 50 mmol/L Ammonium sulfate pH 8.0 | ++ |
G12 | 100 mmol/L Ammonium sulfate pH 8.0 | ++ |
H01 | 10 mmol/L Sodium nitrate | ++ |
H02 | 20 mmol/L Sodium nitrate | + |
H03 | 40 mmol/L Sodium nitrate | ++ |
H04 | 60 mmol/L Sodium nitrate | +++ |
H05 | 80 mmol/L Sodium nitrate | ++ |
H06 | 100 mmol/L Sodium nitrate | ++ |
2.7 pH环境对立枯丝核菌菌核形成的影响
如
Well | Substrate | Sclerotial formation |
---|---|---|
A02 | pH 4.0 | +++ |
A03 | pH 4.5 | +++ |
A04 | pH 5.0 | ++ |
A05 | pH 5.5 | ++ |
A06 | pH 6.0 | + |
A07 | pH 7.0 | + |
A10 | pH 9.0 | ++ |
A11 | pH 9.5 | +++ |
A12 | pH 10.0 | +++ |
B01 | pH 4.5 | +++ |
B02 | pH 4.5+l-alanine | + |
B03 | pH 4.5+l-arginine | ++ |
B04 | pH 4.5+l-asparagine | ++ |
B06 | pH 4.5+l-glutamic acid | + |
B07 | pH 4.5+l-glutamine | +++ |
B08 | pH 4.5+Glycine | + |
B09 | pH 4.5+l-histidine | + |
C02 | pH 4.5+l-phenylalanine | ++ |
C03 | pH 4.5+l-proline | ++++ |
C04 | pH 4.5+l-serine | ++ |
C05 | pH 4.5+l-threonine | + |
C07 | pH 4.5+l-citrulline | ++ |
C08 | pH 4.5+l-valine | +++ |
C09 | pH 4.5+Hydroxy-l-proline | ++ |
C10 | pH 4.5+l-ornithine | ++ |
C11 | pH 4.5+l-homoarginine | ++ |
C12 | pH 4.5+l-homoserine | + |
D02 | pH 4.5+l-norleucine | ++ |
D11 | pH 4.5+Trimethylamine-N-oxide | + |
E10 | pH 9.5+l-isoleucine | ++ |
F12 | pH 9.5+l-homoserine | + |
G03 | pH 9.5+l-norvaline | ++ |
H01 | X-caprylate | +++ |
H05 | X-β-d-galactoside | + |
H06 | X-α-d-glucuronide | + |
H07 | X-β-d-glucuronide | ++ |
H08 | X-β-d-glucosaminide | ++ |
H09 | X-β-d-galactosaminide | ++ |
H10 | X-α-d-mannoside | ++ |
H12 | X-SO4 | ++ |

图1 立枯丝核菌在代表性微孔板PM10中菌核的形成情况
Figure 1 Sclerotial formation of Rhizoctonia solani in representative microplate PM10.
3 讨论
营养限制是诱导菌核形成的重要因
ROS在菌核形成过程中起着关键作用。它们在真核生物的正常新陈代谢中产生,并在生物体内维持低浓度以避免对细胞造成损
对于环境pH,普遍认为偏酸性环境有利于菌核形成,而中性或碱性环境会抑制其形成。然而,本研究发现立枯丝核菌在pH 4.0-10.0的范围内均能形成菌核,这可能是由于菌株通过代谢活动改变了培养环境的pH值。具体而言,在中等碱性环境(pH 8.0-9.0)中菌株可降低培养基的pH值,创造适宜的酸性环境以促进菌核形
4 结论
本研究通过Biolog表型芯片技术,深入分析了立枯丝核菌菌核形成过程中对不同物质成分以及渗透压和pH环境的代谢响应。结果显示,在供试的物质及环境中分别有19/95的碳源、21/95的氮源、16/94的磷硫源、69/94的营养补充物、61/282的肽类氮源、28/96的渗透压环境以及40/96的pH环境(pH 4.0-10.0)可诱导立枯丝核菌形成菌核。适宜菌核形成的碳源包括d-山梨醇、d-木糖、N-乙酰-d-半乳糖胺、d-阿拉伯糖和d-松三糖;氮源包括N-乙酰-d-氨基葡萄糖、腺苷和胸腺嘧啶,磷源包括尿苷3′-单磷酸盐和磷酸胆碱;营养补充物质包括吐温-80;肽类氮源包括Arg-Trp、Met-Arg、Pro-Phe、Val-Tyr和Val-Met;适宜的渗透压环境为10 mmol/L和20 mmol/L硫酸铵(pH 8.0);适宜的pH环境为pH 4.0-4.5和pH 9.5-10.0。可诱导立枯丝核菌形成菌核的物质主要参与的代谢通路包括代谢途径、ABC转运蛋白、次生代谢物生物合成和d-氨基酸代谢等。
作者贡献声明
向立刚:实验设计、实施,论文初稿撰写;汪汉成:研究方案制定,论文修订;蔡刘体:实验实施,数据统计;陈丽莉:实验实施,数据统计;张文建:实验指导,论文修订;王军:实验指导,论文修订;孟建玉:实验指导,论文修订;杨靓:论文修订;温明霞:实验实施,数据统计。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
KÜHN J. Die Krankheiten der Kulturgewächse, ihre Ursachen und ihre Verhütung[M]. Berlin, Germany: Gustav Bosselmann, 1858. [百度学术]
SNEH B, BURPEE L, OGOSHI A. Identification of Rhizoctonia Species[M]. Saint Paul, The United States of America: American Phytopathological Society, 1991. [百度学术]
OGOSHI A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn[J]. Annual Review of Phytopathology, 1987, 25: 125-143. [百度学术]
SHARON M, KUNINAGA S, HYAKUMACHI M, NAITO S, SNEH B. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping[J]. Mycoscience, 2008, 49(2): 93-114. [百度学术]
AJAYI-OYETUNDE OO, BRADLEY CA. Identification and characterization of Rhizoctonia species associated with soybean seedling disease[J]. Plant Disease, 2017, 101(4): 520-533. [百度学术]
陈彩霞, 王泽昊, FENG Jie, 梁月. 植物病原真菌的菌核研究进展[J]. 微生物学通报, 2018, 45(12): 2762-2768. [百度学术]
CHEN CX, WANG ZH, FENG J, LIANG Y. Sclerotia of plant pathogenic fungi[J]. Microbiology China, 2018, 45(12): 2762-2768 (in Chinese). [百度学术]
KWON YS, KIM SG, CHUNG WS, BAE H, JEONG SW, SHIN SC, JEONG MJ, PARK SC, KWAK YS, BAE DW, LEE YB. Proteomic analysis of Rhizoctonia solani AG-1 sclerotia maturation[J]. Fungal Biology, 2014, 118(5/6): 433-443. [百度学术]
HSIANG T, CHASTAGNER GA. Production and viability of sclerotia from fungicide-resistant and fungicide-sensitive isolates of Botrytis cinerea, B. elliptica and B. tulipae[J]. Plant Pathology, 1992, 41(5): 600-605. [百度学术]
WANG C, PI L, JIANG SF, YANG M, SHU CW, ZHOU EX. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA[J]. Fungal Biology, 2018, 122(5): 322-332. [百度学术]
WIBBERG D, JELONEK L, RUPP O, KRÖBER M, GOESMANN A, GROSCH R, PÜHLER A, SCHLÜTER A. Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs)[J]. Fungal Biology, 2014, 118(9/10): 800-813. [百度学术]
RITCHIE F, BAIN R, McQUILKEN M. Effects of nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani from potato[J]. Journal of Plant Pathology, 2009, 91(3): 589-596. [百度学术]
PATHAK S, DUTTA S, ROYBARMAN A, RAY K, BHARATI DRS, SEN K, RAY SK. Effect of temperature and pH on growth and sclerotial production of Rhizoctonia solani[J]. Journal of Mycopathological Research, 2021, 59(2): 161-164. [百度学术]
LIU Y, BELL-PEDERSEN D. Circadian rhythms in Neurospora crassa and other filamentous fungi[J]. Eukaryotic Cell, 2006, 5(8): 1184-1193. [百度学术]
TOWNSEND BB. Nutritional factors influencing the production of sclerotia by certain fungi[J]. Annals of Botany, 1957, 21(1): 153-166. [百度学术]
SMOLIŃSKA U, KOWALSKA B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum: a review[J]. Journal of Plant Pathology, 2018, 100(1): 1-12. [百度学术]
CHRISTIAS C, LOCKWOOD JL. Conservation of mycelial constituents in four sclerotium-forming fungi in nutrient-deprived conditions[J]. Phytopathology, 1973, 63(5): 602-605. [百度学术]
COOKE RC. Physiology of sclerotia of Sclerotinia sclerotiorum during growth and maturation[J]. Transactions of the British Mycological Society, 1971, 56(1): 51-59. [百度学术]
GEORGIOU CD, TAIRIS N, SOTIROPOULOU A. Hydroxyl radical scavengers inhibit sclerotial differentiation and growth in Sclerotinia sclerotiorum and Rhizoctonia solani[J]. Mycological Research, 2000, 104(10): 1191-1196. [百度学术]
FANG GC, HANAU RM, VAILLANCOURT LJ. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola[J]. Fungal Genetics and Biology, 2002, 36(2): 155-165. [百度学术]
LARA-ORTÍZ T, RIVEROS-ROSAS H, AGUIRRE J. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans[J]. Molecular Microbiology, 2003, 50(4): 1241-1255. [百度学术]
ROLLINS JA, DICKMAN MB. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog[J]. Applied and Environmental Microbiology, 2001, 67(1): 75-81. [百度学术]