摘要
大豆(Glycine max)是世界上重要的粮食作物和油料作物。农业供给侧结构性改革需要增加优质食用大豆种植面积,但由于我国耕地资源的固有特性,大豆的国内产量远不能实现自给自足,亟需提高国内大豆种植面积和产量,摆脱对进口的依赖。根瘤菌(rhizobia)是研发最早的微生物肥料,但在我国的接种面积极低。
目的
本研究拟从库藏根瘤菌中筛选出大豆促生结瘤菌株,为缓解粮食问题提供种质资源保障。
方法
以中国农业微生物菌种保藏管理中心数十年收集的大豆根瘤菌为实验材料,结合16S rRNA基因和recA序列分析,复核菌种保藏信息;通过水培结瘤实验,综合考虑结瘤率、根瘤数量和根瘤质量以及植株株高和干重,评价菌株的结瘤和促生能力。
结果
共活化获得213株大豆根瘤菌菌株,其中156株隶属于慢生根瘤菌(Bradyrhizobium)、48株隶属于中华根瘤菌属(Sinorhizobium)、9株隶属于根瘤菌属(Rhizobium)。在这些菌株中,149株能与本研究选用的大豆品种匹配结瘤,43株能够显著促进大豆植株生长。
结论
本研究进一步明确了库藏大豆根瘤菌的分类地位,评价了其结瘤促生能力,为大豆根瘤菌菌剂的开发提供了丰富的菌质资源。
微生物将N2还原为NH3的过程称为生物固氮(biological nitrogen fixation, BNF)。据固氮微生物(nitrogen-fixing microorganisms)与其他生物的关系,固氮微生物可分为:自生固氮菌(free-living nitrogen-fixer)、共生固氮菌(symbiotic nitrogen-fixer)以及联合固氮菌(associative nitrogen-fixer)。根瘤菌(rhizobia)和豆科(Leguminosae)植物的固氮体系是共生固氮的典型代表。全球每年生物固氮量约为2.28×1
根瘤菌多指广泛存在于土壤中,能与豆科植物共生固氮的革兰氏阴性细
豆科植物与根瘤菌的共生固氮作用发生在植物根系。根瘤菌响应豆科植物根释放的黄酮类(flavonoids)物质,经过一系列生理反应
根瘤菌菌剂是最早研发的生物肥料产品,是世界上公认效果最稳定的微生物肥料,已在全世界范围内推广应用。据统计,根瘤菌在美国、巴西等大豆种植的主要国家接种率达到95%以上,然而我国主要豆科作物的根瘤菌接种面积极低,仅为1%-2%。
为了更好地配合大豆等油料作物的种植,有必要针对大豆等主要种植区的根瘤菌资源进行精准评价,以服务农业生产。中国农业微生物菌种保藏管理中心(Agricultural Culture Collection of China, ACCC)在根瘤菌研究方面已有60余年的积累,保藏根瘤菌菌株约3 700株,基本涵盖了能与我国播种豆科作物共生结瘤的优良菌种,并在20世纪70-90年代的生产实践中广泛应用。然而,因化肥的大量施用,从20世纪90年代起根瘤菌的应用面积骤减,导致对根瘤菌的研究主要关注基础理论,忽略了应用研究。由于ACCC保藏的菌株历史较长,大部分根瘤菌分类鉴定基于较为传统的互接种族和生理生化特性,且存在结瘤能力退化的风险。因此,本研究对1982年以来保藏的大豆根瘤菌采用现代分类方法和体系进行重新鉴定,并对其结瘤及促生功能进行评价,以期为大豆根瘤菌菌剂的开发提供种质资源。
1 材料与方法
1.1 供试作物和菌株
大豆种子购自哈尔滨团贸食品有限公司。基于以往农业生产实践经验筛选出241株供试菌株,均保藏于中国农业微生物菌种保藏管理中心,保藏信息详见
Number | Time | Source of strain | Number | Time | Source of strain |
---|---|---|---|---|---|
E. fredii |
ACCC 1517 | 2012.04 | Changsha, Hunan, China | ||
ACCC 15061 | 1989.05 | No record | ACCC 15177 | No record | Changsha, Hunan, China |
ACCC 1506 | 1989.04 | America | ACCC 15178 | 2017.12 | Changsha, Hunan, China |
ACCC 1506 | 1989.04 | Shangdong, China | ACCC 15179 | 1994 | Changsha, Hunan, China |
ACCC 1506 | 2021.10 | America |
ACCC 1518 | 1994 | Changsha, Hunan, China |
ACCC 1507 | 1989.04 | Henan, China |
ACCC 1518 | No record | Changsha, Hunan, China |
ACCC 1507 | 1989.04 | Henan, China | ACCC 15184 | No record | Changsha, Hunan, China |
ACCC 15072 | 1989.04 | Henan, China |
ACCC 1518 | 2018.02 | Changsha, Hunan, China |
ACCC 15075 | 1989.04 | Henan, China |
ACCC 1518 | 1996 | Changsha, Hunan, China |
ACCC 1507 | 1989.04 | Henan, China |
ACCC 1518 | 1994 | Changsha, Hunan, China |
ACCC 15077 | 1989.04 | Shanxi, China |
ACCC 1518 | 1995 | Jingong, Jiangxi, China |
ACCC 1508 | 1989.04 | Jiangsu, China |
ACCC 1519 | 1995 | Jingong, Jiangxi, China |
ACCC 1508 | 1989.04 | No record |
ACCC 1519 | 1995 | Jingong, Jiangxi, China |
ACCC 1508 | 1989.04 | Changping, Beijing, China |
ACCC 1519 | 1995 | Jingong, Jiangxi, China |
ACCC 1508 | 2003.01 | Changping, Beijing, China |
ACCC 1519 | 1995 | Changsha, Hunan, China |
ACCC 1509 | 1989.05 | Lingxian, Shandong, China |
ACCC 1519 | 1995 | Changsha, Hunan, China |
ACCC 1510 | 2003.01 | Changping, Beijing, China |
ACCC 1519 | 1995 | Changsha, Hunan, China |
ACCC 1510 | 1989.05 | Lingxian, Shandong, China |
ACCC 1519 | 1995 | Changsha, Hunan, China |
ACCC 1510 | 2003.01 | Manasi, Xinjiang, China |
ACCC 1519 | 1995 | Changsha, Hunan, China |
ACCC 1510 | 2003.01 | Ningxia, China |
ACCC 1519 | 1995 | Nanchang, Jiangxi, China |
ACCC 1510 | 1990.11 | Lingxian, Shandong, China | ACCC 15200 | 1995 | Nanchang, Jiangxi, China |
ACCC 1510 | 1989.03 | Jiaxiang, Shandong, China | ACCC 15201 | 1995 | Nanchang, Jiangxi, China |
ACCC 1510 | 2003.01 | Lingxian, Shandong, China |
ACCC 1520 | 1995 | Jingong, Jiangxi, China |
ACCC 1511 | 1989.05 | Changping, Beijing, China |
ACCC 1520 | No record | Jingong, Jiangxi, China |
ACCC 1511 | 2003.01 | Changping, Beijing, China |
ACCC 1520 | 1995 | Jingong, Jiangxi, China |
ACCC 1511 | 2002.12 | Changping, Beijing, China | ACCC 15205 | 1995 | Jingong, Jiangxi, China |
ACCC 1512 | 2002.12 | Changping, Beijing, China |
ACCC 1520 | 1995 | Futian, Fujian, China |
ACCC 1512 | 2002.12 | Changping, Beijing, China |
ACCC 1521 | 1995 | Futian, Fujian, China |
ACCC 1512 | 2003.01 | Changping, Beijing, China |
ACCC 1521 | 1995 | Futian, Fujian, China |
ACCC 1512 | 2003.01 | Changping, Beijing, China |
ACCC 1521 | 1995 | Futian, Fujian, China |
ACCC 1512 | 1989.05 | Lingxian, Shandong, China |
ACCC 1521 | 1995 | Futian, Fujian, China |
ACCC 1512 | 1989.05 | Lingxian, Shandong, China |
ACCC 1521 | 1995 | Futian, Fujian, China |
ACCC 1512 | 1989.05 | Lingxian, Shandong, China |
ACCC 1521 | 1995 | Futian, Fujian, China |
ACCC 1513 | 1989.05 | Lingxian, Shandong, China |
ACCC 1522 | 2010.10 | Huiyang, Guangdong, China |
ACCC 1513 | 1989.05 | Lingxian, Shandong, China |
ACCC 1522 | 2020.01 | Huiyang, Guangdong, China |
ACCC 15132 | No record | Lingxian, Shandong, China |
ACCC 1522 | 1995 | Huiyang, Guangdong, China |
ACCC 1513 | 1988.11 | Manasi, Xinjiang, China |
ACCC 1522 | 1995 | Huiyang, Guangdong, China |
ACCC 1513 | 1989.05 | Manasi, Xinjiang, China | ACCC 15224 | 1995 | Huiyang, Guangdong, China |
ACCC 1514 | 2003.01 | Manasi, Xinjiang, China |
ACCC 1522 | 1995 | Huiyang, Guangdong, China |
ACCC 1514 | 1988.11 | Manasi, Xinjiang, China |
ACCC 1522 | 1995 | Huiyang, Guangdong, China |
ACCC 1514 | 1989.05 | Manasi, Xinjiang, China |
ACCC 1522 | 1995 | Huiyang, Guangdong, China |
ACCC 1514 | 1989.03 | Jiaxiang, Shandong, China |
ACCC 1522 | 1995 | Huiyang, Guangdong, China |
ACCC 1514 | 2003.01 | Shanghai, China | ACCC 15230 | 1995 | Huiyang, Guangdong, China |
B. japonicum |
ACCC 1523 | 1995 | Huiyang, Guangdong, China | ||
ACCC 1500 | 2003.01 | America |
ACCC 1523 | 1995 | Huiyang, Guangdong, China |
ACCC 1500 | 1994 | Heze, Shandong, China |
ACCC 1523 | 1995 | Huiyang, Guangdong, China |
ACCC 1500 | 2003.01 | No record |
ACCC 1523 | 1995 | Huiyang, Guangdong, China |
ACCC 1501 | 1990.11 | Shenyang, Liaoning, China |
ACCC 1523 | 1995 | Huiyang, Guangdong, China |
ACCC 1502 | 1990.11 | Guizhou, China |
ACCC 1524 | 2017.05 | Huiyang, Guangdong, China |
ACCC 1502 | 1991.01 | Shangdong, China | ACCC 15242 | 1995 | Ningming, Guagnxi, China |
ACCC 15022- | 1982.12 | Shangdong, China |
ACCC 1524 | 1995 | Ningming, Guagnxi, China |
ACCC 15022- | 1982.12 | Shangdong, China |
ACCC 1524 | 1995 | Meizhou, Guangdong, China |
ACCC 1502 | 1985.04 | Guizhou, China |
ACCC 1524 | 1995 | Meizhou, Guangdong, China |
ACCC 1502 | 1982.12 | America |
ACCC 1524 | 1995 | Meizhou, Guangdong, China |
ACCC 1502 | 2003.03 | No record |
ACCC 1524 | 1995 | Guangxi, China |
ACCC 1503 | 1990.11 | America |
ACCC 1525 | 1995 | Fujian, China |
ACCC 1503 | 2003.01 | America |
ACCC 1525 | 1995 | Fujian, China |
ACCC 1503 | 2003.01 | America |
ACCC 1525 | 1995 | Fujian, China |
ACCC 1503 | 2003.01 | America |
ACCC 1525 | 1995 | No record |
ACCC 1503 | 2003.01 | America |
ACCC 1525 | 1995 | Changsha, Hunan, China |
ACCC 15037 | 2003.01 | America |
ACCC 1525 | 1995 | Nanchang, Jiangxi, China |
ACCC 1503 | 1990.11 | America |
ACCC 1525 | 1995 | Futian, Fujian, China |
ACCC 15039 | 1990.11 | America |
ACCC 1525 | 1995 | Ningming, Guagnxi, China |
ACCC 15041 | 2001.04 | America |
ACCC 1525 | 1995 | Meixian, Guangdong, China |
ACCC 1504 | 1991.03 | America |
ACCC 1526 | 1995 | Changsha, Hunan, China |
ACCC 1504 | 2003.01 | Australia |
ACCC 1526 | 1995 | Changsha, Hunan, China |
ACCC 15043 | 2003.01 | Australia |
ACCC 1526 | 1995 | Changsha, Hunan, China |
ACCC 15044 | 1990.11 | America |
ACCC 1526 | 1995 | Changsha, Hunan, China |
ACCC 1504 | 1985.04 | America |
ACCC 1526 | 1995 | Changsha, Hunan, China |
ACCC 1504 | 2003.01 | Argentina |
ACCC 1527 | 1995 | Nanchang, Jiangxi, China |
ACCC 1504 | 1991.01 | America |
ACCC 1527 | 1995 | Nanchang, Jiangxi, China |
ACCC 15049 | 1990.11 | America |
ACCC 1527 | 1995 | Nanchang, Jiangxi, China |
ACCC 15051 | 2020.06 | America |
ACCC 1527 | 1995 | Jingong, Jiangxi, China |
ACCC 15052 | 1990.11 | Yulin, Guangxi, China |
ACCC 1527 | 2003.01 | Futian, Fujian, China |
ACCC 15053 | 2003.03 | Wuhan, Hubei, China |
ACCC 1528 | 2003.01 | Futian, Fujian, China |
ACCC 1505 | 1982.12 | Wuhan, Hubei, China |
ACCC 1528 | 2003.01 | Futian, Fujian, China |
ACCC 1505 | 1991.01 | Argentina |
ACCC 1528 | 2003.01 | Futian, Fujian, China |
ACCC 1505 | 1991.01 | Argentina |
ACCC 1528 | 2003.01 | Futian, Fujian, China |
ACCC 1505 | 1990.11 | America |
ACCC 1528 | 2003.01 | Futian, Fujian, China |
ACCC 1506 | 1990.11 | New Zealand |
ACCC 1528 | 2003.01 | Futian, Fujian, China |
ACCC 15062 | 2003.01 | America |
ACCC 1528 | 2003.01 | Ningming, Guagnxi, China |
ACCC 15063 | 1990.11 | Liaoning, China |
ACCC 1529 | 2003.01 | Ningming, Guagnxi, China |
ACCC 1506 | 1982.12 | India |
ACCC 1529 | 2003.01 | Meixian, Guangdong, China |
ACCC 1506 | 1990.11 | America |
ACCC 1540 | No record | Guangzhou, Guangdong, China |
ACCC 1508 | 2003.01 | No record |
ACCC 1560 | 2001.04 | America |
ACCC 1508 | 2003.01 | No record |
ACCC 1560 | 1991.01 | America |
ACCC 1509 | 1990.11 | America |
ACCC 1560 | 1991.04 | America |
ACCC 1509 | No record | America |
ACCC 1560 | 2003.01 | America |
ACCC 1509 | 1991.01 | America |
ACCC 1560 | 1990.11 | No record |
ACCC 1515 | 1996.06 | Wuxuan, Guangxi, China |
ACCC 1561 | 2003.01 | America |
ACCC 1515 | 1994 | Nanchang, Jiangxi, China |
ACCC 1561 | 1982.12 | No record |
ACCC 1515 | No record | Nanchang, Jiangxi, China | ACCC 15617 | 2006.12 | Inner Mongolia, China |
ACCC 1515 | No record | Nanchang, Jiangxi, China | ACCC 15618 | 2006.12 | Inner Mongolia, China |
ACCC 1515 | 1994 | Jingong, Jiangxi, China |
ACCC 1561 | 2006.12 | Inner Mongolia, China |
ACCC 1516 | No record | Futian, Fujian, China |
ACCC 1562 | No record | Inner Mongolia, China |
ACCC 1516 | 2018.01 | Futian, Fujian, China |
ACCC 1562 | No record | Inner Mongolia, China |
ACCC 1516 | 1994 | Futian, Fujian, China |
ACCC 1562 | 2017.12 | Inner Mongolia, China |
ACCC 15164 | No record | Huiyang, Guangdong, China |
ACCC 1562 | 2006.12 | Inner Mongolia, China |
ACCC 1516 | 1994 | Huiyang, Guangdong, China |
ACCC 1562 | 2006.12 | Inner Mongolia, China |
ACCC 1516 | 1994 | Ningming, Guagnxi, China |
ACCC 1562 | No record | Inner Mongolia, China |
ACCC 1516 | 1994 | Ningming, Guagnxi, China |
ACCC 1563 | 2006.12 | Inner Mongolia, China |
ACCC 1516 | 1994 | Nanning, Guagnxi, China |
ACCC 1563 | 2006.12 | Inner Mongolia, China |
ACCC 1516 | 1994 | Nanning, Guagnxi, China |
ACCC 1563 | 2006.12 | Inner Mongolia, China |
ACCC 1517 | 1994 | Nanning, Guagnxi, China |
ACCC 1563 | 2006.12 | Inner Mongolia, China |
ACCC 1517 | 1994 | Meixian, Guangxi, China |
ACCC 1563 | 2006.12 | Inner Mongolia, China |
ACCC 1517 | No record | Changsha, Hunan, China | S. meliloti | ||
ACCC 1517 | No record | Changsha, Hunan, China |
ACCC 1509 | 1990.11 | Gagong, Xizang, China |
ACCC 15175 | 2018.04 | Changsha, Hunan, China | ACCC 15660 | No record | Zhenyuan, Gansu, China |
(待续)
The strains marked with “#” were conducted in nodule experiments.
1.2 菌种活化
在超净工作台中用浸过75%乙醇的脱脂棉球将干燥安瓿管表面擦净,用酒精灯外焰加热安瓿管顶端,将冷的无菌水滴至热的安瓿管顶端使其玻璃碎裂,用无菌镊子敲开安瓿管顶端。
慢生根瘤菌接种于豆芽汁培养基(bean sprouts extract medium, BSE
1.3 菌株信息复核
采用细菌基因组DNA提取试剂盒[天根生化科技(北京)有限公司]提取活化菌株的基因组。
PCR反应体系(50 μL):DNA模板6 μL,上、下游引物(10 μmol/L)各2 μL,ddH2O 15 μL、2×Taq PCR StarMix [康润景星(苏州)生物科技有限公司] 25 μL。用通用引物27F (5′-AGAGTTTGATCMTGGCTCAG-3′)和1492R (5′-GGTTACCTTGTTACGACTT-3′)扩增16S rRNA基因,扩增程序:94 ℃预变性10 min;94 ℃变性30 s,55 ℃退火60 s,72 ℃延伸90 s,循环30次;72 ℃终延伸10 min。用特异性引物41F (5′-TTCGGCAAGGGMTCGRTSATG-3′)和640R (5′-ACATSACRCCGATCTTCATGC-3′)扩增recA,扩增程序:95 ℃预变性2 min;95 ℃变性45 s,58 ℃退火30 s,72 ℃延伸90 s,循环35次;72 ℃终延伸7 min。
扩增产物送至生工生物工程(上海)股份有限公司测序。16S rRNA基因序列提交至EzBioCloud数据库(https://www.ezbiocloud.net/)进行序列比对,recA序列提交至NCBI中的GenBank数据库(https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行BLAST分析比对,对比结果在中国典型培养物保藏中心(http://cctcc.whu.edu.cn/portal/dictionary/index)查询菌株中文名。复核无误后的菌株保藏至4 ℃ YMA斜面和-80 ℃甘油管备用。利用MEGA-X和邻接法(neighbor-joining method)构建系统发育树。
1.4 结瘤实验
1.4.1 松本哲良营养
组分A (g/L):KH2PO4 8.8,KCl 62.0,MgSO4·7H2O 100.0。组分B (g/L):CaCl2 86.0。组分C (g/L):柠檬酸铁12.0。组分D (g/L):NaNO3 12.0,MnSO4·H2O 0.4,ZnSO4 0.1,CuSO4·5H2O 0.1,H3BO3 0.1,Na2MoO4 0.02。使用时4个组分等量混合后稀释200倍,自然pH。
1.4.2 培养体系准备
采用滤纸桥法进行结瘤实

图1 滤纸桥法大豆结瘤实验示意图
Figure 1 Schematic diagram of soybean nodulation in filter paper bridge.
1.4.3 种子表面消毒
选取饱满、均一、健壮的大豆种子,放入干燥的500 mL或1 000 mL锥形瓶中(根据种子量选择),加入浓硫酸没过种子表面,精确处理3 min,其间不断摇晃。倒去浓硫酸,用无菌水冲洗至少10次,直至清洗废液经pH试纸检测呈中性。
1.4.4 种子准备
消毒后的种子用无菌水浸泡6-8 h,无菌水的体积约为种子总体积的250%-300%。吸水膨胀的种子播于铺有4层无菌湿润纱布的铝盒内,避光置于25 ℃恒温培养箱内催芽24-48 h,种子胚根伸长约0.5-1.0 cm为宜,其间保持萌发床湿润。
1.4.5 菌悬液准备
结合菌株入库时的菌株登记信息、农业生产应用效果以及菌种复核结果,选择190株菌株进行结瘤试验,菌株信息见
1.4.6 播种
挑选萌发状态相似的种子放入无菌培养皿中,倒入菌悬液,使种子均匀附着菌液,浸泡30 min后播种。
最先播种对照组。长柄镊子经火焰消毒后,用无菌水冷却,将种子播种于滤纸桥“M”型凹槽内,胚根嵌入“V”型小孔,菌悬液均匀加入每支试管,棉塞封口。在室温25-28 ℃,14 h/10 h光照培养箱中培养,待幼苗长出几片真叶后摘除棉塞,其间根据实际情况补充营养液。30 d后统计实验结果。
1.4.7 植株结瘤情况和农艺性状调查
结瘤实验结束后,计算结瘤率,统计植株结瘤总数,并迅速摘下根瘤,在分析天平上称量鲜重。结瘤率计算如
结瘤率(%)=结瘤植株数量/实验植株总数×100 | (1) |
以第一子叶叶痕作为划分地上和地下部分的标准,测量地上部分茎尖生长点以下的长度作为株高;测量后将地上部分装入信封,置于烘箱中105 ℃杀青2 h,再80 ℃烘干至恒重后称量干重。计算株高和干重的增长率,如
增长率(%)=(处理组平均指标-CK组平均指标)/CK组平均指标×100 | (2) |
1.5 数据分析
原始数据经过Excel预处理后,用R和GraphPad进行显著性分析及图示,显著性水平设定为α=0.05。
2 结果与分析
2.1 根瘤菌菌种信息复核
本研究对库藏根瘤菌进行了信息复核。213株经16S rRNA基因序列比对为根瘤菌(

图2 基于本研究中部分根瘤菌16S rRNA基因序列构建的系统发育树
Figure 2 Neighbour-joining phylogenetic tree based on nearly complete 16S rRNA gene sequences of a part of rhizobium in this study.
213株根瘤菌具有来源多样性(
2.2 与大豆匹配结瘤的根瘤菌筛选
本研究根据菌株信息复核结果以及前期实验结果,共选出186株根瘤菌进行结瘤实验:慢生根瘤菌属138株、中华根瘤菌属43株、根瘤菌属5株。实验规模较大,分为两部分完成,第一部分共109株,第二部分共77株。
在两部分实验中,选择根瘤数量和根瘤质量均排名前10的菌株,结瘤差异统计见
Preservation number | Strain | Average number of root nodules | Average weight of root nodules (g) |
---|---|---|---|
ACCC 15033 | B. elkanii | 10.33±3.68a | 0.078±0.009a |
ACCC 15065 | B. diazoefficiens | 11.67±5.44a | 0.092±0.028a |
ACCC 15083 | S. fredii | 14.00±2.16a | 0.090±0.008a |
ACCC 15263 | B. elkanii | 9.67±3.09a | 0.079±0.006a |
ACCC 15611 | B. japonicum | 9.67±0.94a | 0.082±0.002a |
ACCC 15023 | B. japonicum | 14.67±7.32a | 0.015±0.007b |
ACCC 15090 | S. shofinae | 16.00±1.41a | 0.017±0.002b |
ACCC 15254 | B. diazoefficiens | 12.67±6.65a | 0.060±0.017a |
ACCC 15276 | B. diazoefficiens | 12.00±3.27a | 0.020±0.007b |
ACCC 15279 | B. diazoefficiens | 19.00±15.12a | 0.018±0.011b |
ACCC 15282 | B. diazoefficiens | 17.67±12.28a | 0.039±0.024ab |
Perform univariate ANOVA on the data after passing the Shapiro-Wilk test, n=3, multiple comparisons by the LSD. The data were mean±SE, different lowercases represent significant differences in the treatment groups (α=0.05).
2.3 根瘤菌对大豆植株农艺性状的影响
在第一部分植株样本中,仅ACCC 15611 (0.254±0.007) g处理的干重高于CK (0.236±0.042) g,但差异不显著(P=0.667)。在第二部分植株样本中,ACCC 15108 (0.414±0.010) g、ACCC 15273 (0.409±0.178) g、ACCC 15118 (0.373±0.055) g等34株菌处理的大豆植株干重高于CK (0.255±0.019) g,但差异均不显著(P>0.06)。有27株菌处理的大豆植株株高高于CK (20.87±1.89) cm,其中ACCC 15055、ACCC 15243、ACCC 15197、ACCC 15176、ACCC 15206和ACCC 15611与CK差异显著(
Preservation number | Strain | Stem length (cm) | Growth rate (%) |
---|---|---|---|
ACCC 15055 | B. yuanmingense | 30.63±0.82a |
48.8 |
ACCC 15176 | B. diazoefficiens | 28.35±0.35a |
35.8 |
ACCC 15197 | B. elkanii | 28.63±3.31a |
37.2 |
ACCC 15206 | B. betae | 26.00±1.42a |
24.6 |
ACCC 15243 | B. elkanii | 29.40±2.28a |
40.8 |
ACCC 15611 | B. japonicum | 25.80±2.05a |
23.6 |
ACCC 15006 | B. diazoefficiens | 36.46±1.67bcd |
21.9 |
ACCC 15007 | B. elkanii | 36.51±1.10bcd |
22.0 |
ACCC 15085 | S. fredii | 38.70±4.05abcd |
29.4 |
ACCC 15086 | S. fredii | 36.24±5.49bcd |
21.1 |
ACCC 15101 | S. fredii | 41.45±0.11abcd |
38.6 |
ACCC 15108 | S. fredii | 40.32±1.08abcd |
34.8 |
ACCC 15118 | S. fredii | 37.41±0.44abcd |
25.1 |
ACCC 15119 | S. fredii | 36.99±0.22abcd |
23.6 |
ACCC 15123 | S. fredii | 37.22±0.00abcd |
24.4 |
ACCC 15131 | S. fredii | 36.93±2.79abcd |
23.5 |
ACCC 15143 | S. fredii | 37.61±1.59abcd |
25.7 |
ACCC 15147 | S. fredii | 37.09±4.30abcd |
24.0 |
ACCC 15191 | B. ottawaense | 35.84±3.41d |
19.8 |
ACCC 15194 | B. elkanii | 43.00±2.80ab |
43.8 |
ACCC 15222 | B. diazoefficiens | 42.02±1.17abcd |
40.5 |
ACCC 15225 | B. elkanii | 35.92±2.81d |
20.1 |
ACCC 15250 | B. diazoefficiens | 39.80±1.35abcd |
33.1 |
ACCC 15252 | B. diazoefficiens | 42.83±2.81abc |
43.2 |
ACCC 15254 | B. diazoefficiens | 37.76±1.53abcd |
26.2 |
ACCC 15262 | B. elkanii | 38.26±2.31abcd |
27.9 |
ACCC 15264 | B. elkanii | 39.18±0.58abcd |
31.0 |
ACCC 15273 | B. ottawaense | 40.31±1.23abcd |
34.8 |
ACCC 15275 | B. ottawaense | 39.88±1.33abcd |
33.3 |
ACCC 15276 | B. diazoefficiens | 40.64±1.35abcd |
35.8 |
ACCC 15279 | B. diazoefficiens | 39.76±2.26abcd |
32.9 |
ACCC 15282 | B. diazoefficiens | 39.57±2.06abcd |
32.3 |
ACCC 15285 | B. elkanii | 37.18±4.53abcd |
24.3 |
ACCC 15291 | B. elkanii | 38.23±3.83abcd |
27.8 |
ACCC 15402 | B. diazoefficiens | 38.04±4.80abcd |
27.1 |
ACCC 15615 | B. japonicum | 43.37±0.65a |
45.0 |
ACCC 15622 | S. fredii | 38.90±0.83abcd |
30.0 |
ACCC 15623 | S. fredii | 40.30±2.12abcd |
34.7 |
ACCC 15624 | S. fredii | 38.02±2.56abcd |
27.1 |
ACCC 15630 | B. elkanii | 37.38±1.14abcd |
24.9 |
ACCC 15631 | R. mongolense subsp. loessense | 36.04±2.82cd |
20.5 |
ACCC 15632 | R. mongolense subsp. loessense | 35.88±2.89d |
19.9 |
ACCC 15634 | R. mongolense subsp. loessense | 36.16±1.82bcd |
20.9 |
Perform univariate ANOVA on the data after passing the Shapiro-Wilk test, n=3, multiple comparisons by the LSD. The data were mean±SE, different lowercases represent significant differences in the treatment groups (α=0.05), * represents significant differences between treatment group and CK. *: α<0.05; **: α<0.01; ***: α<0.001.

图3 接种高效促生根瘤菌的大豆长势
Figure 3 Soybean growth inoculated with efficient growth promoting rhizobium. A: ACCC 15055; B: ACCC 15615; C: ACCC 15194; D: ACCC 15252; E: ACCC 15101; F: ACCC 15222; G: ACCC 15276.
在第二部分实验中,39株菌处理的植株均高于CK,除ACCC 15117 (35.42±4.13) cm (P=0.065)和ACCC 15619 (35.20±1.77) cm (P=0.076)处理的植株外,所有植株株高相较于CK均有显著差异(
2.4 根瘤菌的结瘤和促生特性差异
所有菌株的结瘤率见
Nodulation rate (%) | Treatment | |||||
---|---|---|---|---|---|---|
0 | ACCC 15005 | ACCC 15067 | ACCC 15068 | ACCC 15069 | ACCC 15070 | ACCC 15071 |
ACCC 15076 | ACCC 15082 | ACCC 15102 | ACCC 15108 | ACCC 15109 | ACCC 15118 | |
ACCC 15120 | ACCC 15123 | ACCC 15125 | ACCC 15126 | ACCC 15127 | ACCC 15129 | |
ACCC 15130 | ACCC 15131 | ACCC 15133 | ACCC 15139 | ACCC 15140 | ACCC 15142 | |
ACCC 15143 | ACCC 15291 | ACCC 15402 | ACCC 15615 | ACCC 15621 | ACCC 15622 | |
ACCC 15623 | ACCC 15624 | ACCC 15631 | ACCC 15632 | ACCC 15633 | ACCC 15634 | |
ACCC 1506 |
ACCC 1517 |
ACCC 1519 |
ACCC 1525 |
ACCC 1528 | ||
33 | ACCC 15007 | ACCC 15101 | ACCC 15104 | ACCC 15106 | ACCC 15119 | ACCC 15145 |
ACCC 15147 | ACCC 15273 | ACCC 15280 | ACCC 15284 | ACCC 15610 | ACCC 15619 | |
ACCC 15620 | ACCC 15627 | ACCC 15630 |
ACCC 15022- |
ACCC 15022- |
ACCC 1502 | |
ACCC 1504 |
ACCC 1515 |
ACCC 1515 |
ACCC 1515 |
ACCC 1516 |
ACCC 1521 | |
ACCC 1524 |
ACCC 1560 |
ACCC 1560 | ||||
67 | ACCC 15006 | ACCC 15018 | ACCC 15034 | ACCC 15085 | ACCC 15094 | ACCC 15096 |
ACCC 15121 | ACCC 15147 | ACCC 15165 | ACCC 15185 | ACCC 15204 | ACCC 15264 | |
ACCC 15283 | ACCC 15285 | ACCC 15601 |
ACCC 1502 |
ACCC 1502 |
ACCC 1503 | |
ACCC 1503 |
ACCC 1504 |
ACCC 1505 |
ACCC 1508 |
ACCC 1509 |
ACCC 1515 | |
ACCC 1516 |
ACCC 1516 |
ACCC 1517 |
ACCC 1518 |
ACCC 1518 |
ACCC 1519 | |
ACCC 1519 |
ACCC 1519 |
ACCC 1519 |
ACCC 1523 |
ACCC 1524 |
ACCC 1525 | |
ACCC 1525 |
ACCC 1529 | |||||
100 | ACCC 15023 | ACCC 15033 | ACCC 15057 | ACCC 15065 | ACCC 15083 | ACCC 15084 |
ACCC 15086 | ACCC 15090 | ACCC 15095 | ACCC 15107 | ACCC 15117 | ACCC 15169 | |
ACCC 15173 | ACCC 15182 | ACCC 15191 | ACCC 15194 | ACCC 15203 | ACCC 15222 | |
ACCC 15222 | ACCC 15223 | ACCC 15225 | ACCC 15226 | ACCC 15228 | ACCC 15229 | |
ACCC 15230 | ACCC 15245 | ACCC 15246 | ACCC 15246 | ACCC 15247 | ACCC 15250 | |
ACCC 15252 | ACCC 15254 | ACCC 15255 | ACCC 15256 | ACCC 15262 | ACCC 15263 | |
ACCC 15269 | ACCC 15275 | ACCC 15276 | ACCC 15277 | ACCC 15279 | ACCC 15282 | |
ACCC 15611 |
ACCC 1502 |
ACCC 1503 |
ACCC 1503 |
ACCC 1504 |
ACCC 1504 | |
ACCC 1504 |
ACCC 1505 |
ACCC 1505 |
ACCC 1506 |
ACCC 1515 |
ACCC 1516 | |
ACCC 1516 |
ACCC 1516 |
ACCC 1517 |
ACCC 1517 |
ACCC 1518 |
ACCC 1518 | |
ACCC 1519 |
ACCC 1519 |
ACCC 1520 |
ACCC 1520 |
ACCC 1521 |
ACCC 1521 | |
ACCC 1521 |
ACCC 1521 |
ACCC 1521 |
ACCC 1522 |
ACCC 1522 |
ACCC 1523 | |
ACCC 1523 |
ACCC 1523 |
ACCC 1524 |
ACCC 1525 |
ACCC 1526 |
ACCC 1528 | |
ACCC 1560 |
ACCC 1560 |
The strains marked with “#” were inoculated in the first part, while the left was inoculated in the second. The nodulation rate in CK was 0 in both parts.

图4 不同类型根瘤菌结瘤促生差异比较。A:结瘤率;B:促生效果显著性。
Figure 4 Comparison of nodulation and growth promotion between different kinds of rhizobia. A: Nodulation rate; B: Significance of growth promotion effect.
结瘤实验结果表明,供试根瘤菌对大豆植株地上部分的干物质积累无显著影响,但共有93株根瘤菌能够增加大豆株高,其中41株菌有显著的促生效果(P<0.05)。根据P值将菌株分成4类进行列联分析,探究不同类型根瘤菌间促生特性的差异,分析结果见
3 讨论与结论
微生物菌种资源的复核是针对那些被正式收录和保藏的菌株所进行的纯度、分类地位和功能特性的核查。本研究基于16S rRNA基因和recA序列,对241株库藏大豆根瘤菌进行了信息复核,明确了其系统分类地位,并对其与大豆的共生结瘤活性进行了检测。
16S rRNA基因序列比对与进化分析是研究原核生物系统发育地位的最常用方法。16S rRNA基因在细菌中普遍存在,其基因中同时存在高度保守的区域和高度可变的区域,因此适合作为衡量细菌生命进化过程中亲缘关系的标准。如果2个菌株的16S rRNA基因相似性>99.0%,则被认为属于同一种;若<98.7%,则可能为一个新种。因此,16S rRNA基因序列常用于根瘤菌的分类鉴
最初能与大豆结瘤的根瘤菌均被分类为B. japonicum。Hollis
由于本研究的局限性,所使用的菌株在地理和时间维度上并未表现出显著的结瘤差异,未来可针对性地从不同来源以及不同保藏时间的根瘤菌中筛选出有应用前景的菌株,在丰富大豆根瘤菌种质资源库的同时,了解农耕环境和自然环境对根瘤菌种群数量、遗传背景以及结瘤固氮能力的影响。在根瘤菌分离鉴定过程中,可检验菌株与目前主要栽培大豆品种的结瘤能力,以完善菌种信息。此外,由于不同品种大豆的遗传差异,能够招募共生的根瘤菌各不相同。未来可将本研究筛选出的高效菌株与我国不同地区种植的大豆品种进行交叉结瘤实验,以筛选出更有应用前景的菌株,为育种以及微生物肥料的研发和推广提供参考。
作者贡献声明
韩嘉诚:水培实验,调查大豆植株农艺性状以及菌株结瘤形状,数据分析,撰写文章;朱宏图:负责菌株整理、活化与鉴定,完成水培实验;杨芾:协助数据处理;郭捷:协助完成实验;马晓彤:指导并协助完成水培实验,设计、指导实验;张晓霞:指导实验设计,提供研究所需的资源与材料,修订文章。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
HAYASHI K. Nitrogen cycling and management focusing on the central role of soils: a review[J]. Soil Science and Plant Nutrition, 2022, 68(5/6): 514-525. [百度学术]
FOWLER D, PYLE JA, RAVEN JA, SUTTON MA. The global nitrogen cycle in the twenty-first century: introduction[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1621): 20130165. [百度学术]
GUO KY, YANG J, YU N, LUO L, WANG ET. Biological nitrogen fixation in cereal crops: progress, strategies, and perspectives[J]. Plant Communications, 2023, 4(2): 100499. [百度学术]
DAVIES-BARNARD T, FRIEDLINGSTEIN P. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems[J]. Global Biogeochemical Cycles, 2020, 34(3): e2019GB006387. [百度学术]
高英志, 任健. 植物根瘤共生固氮研究进展与展望[J/OL]. 中国科学: 生命科学, 2024-10-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JCXK20241016001& dbname=CJFD&dbcode=CJFQ. [百度学术]
GAO YZ, REN J. Research progress and prospect of symbiotic nitrogen fixation in plant nodules[J/OL]. China Industrial Economics, 2024-10-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JCXK20241016001& dbname=CJFD&dbcode=CJFQ(in Chinese). [百度学术]
ROGEL MA, ORMEÑO-ORRILLO E, MARTINEZ ROMERO E. Symbiovars in rhizobia reflect bacterial adaptation to legumes[J]. Systematic and Applied Microbiology, 2011, 34(2): 96-104. [百度学术]
KUZMANOVIĆ N, FAGORZI C, MENGONI A, LASSALLE F, DICENZO GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(3): 005243. [百度学术]
SY A, GIRAUD E, JOURAND P, GARCIA N, WILLEMS A, de LAJUDIE P, PRIN Y, NEYRA M, GILLIS M, BOIVIN-MASSON C, DREYFUS B. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes[J]. Journal of Bacteriology, 2001, 183(1): 214-220. [百度学术]
BERRADA H. Taxonomy of the rhizobia: current perspectives[J]. British Microbiology Research Journal, 2014, 4(6): 616-639. [百度学术]
GYANESHWAR P, HIRSCH AM, MOULIN L, CHEN WM, ELLIOTT GN, BONTEMPS C, ESTRADA-DE LOS SANTOS P, GROSS E, dos REIS FB, SPRENT JI, YOUNG JP, JAMES EK. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects[J]. Molecular Plant-Microbe Interactions, 2011, 24(11): 1276-1288. [百度学术]
LINDSTRÖM K, MOUSAVI SA. Effectiveness of nitrogen fixation in rhizobia[J]. Microbial Biotechnology, 2020, 13(5): 1314-1335. [百度学术]
BENHIZIA Y, BENHIZIA H, BENGUEDOUAR A, MURESU R, GIACOMINI A, SQUARTINI A. Gamma proteobacteria can nodulate legumes of the genus Hedysarum[J]. Systematic and Applied Microbiology, 2004, 27(4): 462-468. [百度学术]
POOLE P, RAMACHANDRAN V, TERPOLILLI J. Rhizobia: from saprophytes to endosymbionts[J]. Nature Reviews Microbiology, 2018, 16(5): 291-303. [百度学术]
SUZAKI T, KAWAGUCHI M. Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection[J]. Current Opinion in Plant Biology, 2014, 21: 16-22. [百度学术]
SHAW SL, LONG SR. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells[J]. Plant Physiology, 2003, 131(3): 976-984. [百度学术]
CÁRDENAS L, HOLDAWAY-CLARKE TL, SÁNCHEZ F, QUINTO C, FEIJÓ JA, KUNKEL JG, HEPLER PK. Ion changes in legume root hairs responding to Nod factors[J]. Plant Physiology, 2000, 123(2): 443-452. [百度学术]
艾文琴, 姜瀚原, 李欣欣, 廖红. 一种高效研究大豆根瘤共生固氮的营养液栽培体系[J]. 植物学报, 2018, 53(4): 519-527. [百度学术]
AI WQ, JIANG HY, LI XX, LIAO H. An efficient nutrient solution system to study symbiotic nitrogen fixation in soybean[J]. Chinese Bulletin of Botany, 2018, 53(4): 519-527 (in Chinese). [百度学术]
马霞, 王丽丽, 李卫军, 宋江平, 何媛, 罗明. 不同施氮水平下接种根瘤菌对苜蓿固氮效能及种子生产的影响[J]. 草业学报, 2013, 22(1): 95-102. [百度学术]
MA X, WANG LL, LI WJ, SONG JP, HE Y, LUO M. Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia[J]. Acta Prataculturae Sinica, 2013, 22(1): 95-102 (in Chinese). [百度学术]
RASHEEDA SM, MARY SONALI J, SENTHIL KUMAR P, RANGASAMY G, VEENA GAYATHRI K, PARTHASARATHY V. Rhizobium mayense sp. nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil[J]. Environmental Research, 2023, 220: 115200. [百度学术]
DENG ZS, KONG ZY, ZHANG BC, ZHAO LF. Insights into non-symbiotic plant growth promotion bacteria associated with nodules of Sphaerophysa salsula growing in northwestern China[J]. Archives of Microbiology, 2020, 202(2): 399-409. [百度学术]
FANG XY, YANG YR, ZHAO ZG, ZHOU Y, LIAO Y, GUAN ZY, CHEN SM, FANG WM, CHEN FD, ZHAO S. Optimum nitrogen, phosphorous, and potassium fertilizer application increased Chrysanthemum growth and quality by reinforcing the soil microbial community and nutrient cycling function[J]. Plants, 2023, 12(23): 4062. [百度学术]
QIAO MJ, SUN RB, WANG ZX, DUMACK K, XIE XG, DAI CC, WANG ET, ZHOU JZ, SUN B, PENG XH, BONKOWSKI M, CHEN Y. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification[J]. Nature Communications, 2024, 15(1): 2924. [百度学术]
TORRES D, MONGIARDINI E, DONADÍO F, DONOSO R, RECABARREN-GAJARDO G, GUALPA J, SPAEPEN S, DEFEZ R, LOPEZ G, BIANCO C, CASSÁN F. Molecular and physiological analysis of indole-3-acetic acid degradation in Bradyrhizobium japonicum E109[J]. Research in Microbiology, 2021, 172(3): 103814. [百度学术]
SCHROEDER MM, GOMEZ MY, McLAIN N, GACHOMO EW. Bradyrhizobium japonicum IRAT FA3 alters Arabidopsis thaliana root architecture via regulation of auxin efflux transporters PIN2, PIN3, PIN7, and ABCB19[J]. Molecular Plant-Microbe Interactions, 2022, 35(3): 215-229. [百度学术]
CHU XT, SU HN, HAYASHI S, GRESSHOFF PM, FERGUSON BJ. Spatiotemporal changes in gibberellin content are required for soybean nodulation[J]. The New Phytologist, 2022, 234(2): 479-493. [百度学术]
NETT RS, BENDER KS, PETERS RJ. Production of the plant hormone gibberellin by rhizobia increases host legume nodule size[J]. The ISME Journal, 2022, 16(7): 1809-1817. [百度学术]
SIBPONKRUNG S, KONDO T, TANAKA K, TITTABUTR P, BOONKERD N, YOSHIDA KI, TEAUMROONG N. Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation[J]. Microorganisms, 2020, 8(5): 678. [百度学术]
TIMOFEEVA AM, GALYAMOVA MR, SEDYKH SE. Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities[J]. Plants, 2023, 12(24): 4074. [百度学术]
KARONEY EM, OCHIENO DMW, BARAZA DL, MUGE EK, NYABOGA EN, NALUYANGE V. Rhizobium improves nutritive suitability and tolerance of Phaseolus vulgaris to Colletotrichum lindemuthianum by boosting organic nitrogen content[J]. Applied Soil Ecology, 2020, 149: 103534. [百度学术]
BONALDI DS, FUNNICELLI MIG, FERNANDES CC, LAURITO HF, PINHEIRO DG, ALVES LMC. Genetic and biochemical determinants in potentially toxic metals resistance and plant growth promotion in Rhizobium sp. LBMP-C04[J]. World Journal of Microbiology & Biotechnology, 2024, 41(1): 7. [百度学术]
ALI SAHITO Z, ZEHRA A, CHEN SN, YU S, TANG L, ALI Z, HAMZA S, IRFAN M, ABBAS T, HE ZL, YANG XE. Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency[J]. Journal of Hazardous Materials, 2022, 424: 127442. [百度学术]
吴红慧, 周俊初. 根瘤菌培养基的优化和剂型的比较研究[J]. 微生物学通报, 2004, 31(2): 14-19. [百度学术]
WU HH, ZHOU JC. Medium optimization and inoculant type comparison of Rhizobium[J]. Microbiology China, 2004, 31(2): 14-19 (in Chinese). [百度学术]
王雪翠, 马晓彤, 韩梅, 曹卫东, 张宏亮, 白金顺, 曾闹华, 高嵩涓, 周国朋, 王艳秋. 青海箭筈豌豆根瘤菌的筛选及其共生体耐盐性研究[J]. 草业学报, 2016, 25(8): 145-153. [百度学术]
WANG XC, MA XT, HAN M, CAO WD, ZHANG HL, BAI JS, ZENG NH, GAO SJ, ZHOU GP, WANG YQ. Screening of rhizobia of common vetch (Vicia sativa) in Qinghai, and assessment of symbiont salt tolerance[J]. Acta Prataculturae Sinica, 2016, 25(8): 145-153 (in Chinese). [百度学术]
马晓彤. 苜蓿根瘤菌与苜蓿品种共生匹配优良组合筛选的研究[D]. 北京: 中国农业科学院硕士学位论文, 2009. [百度学术]
MA XT. The study of screening high symbiotic matching combinations of rhizobia and alfalfa varieties[D]. Beijing: Master’s Thesis of Chinese Academy of Agricultural Sciences, 2009 (in Chinese) [百度学术]
FERRAZ HELENE LC, O’HARA G, HUNGRIA M. Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species[J]. Systematic and Applied Microbiology, 2020, 43(2): 126053. [百度学术]
JIN CZ, WU XW, ZHUO Y, YANG YZ, LI TH, JIN FJ, LEE HG, JIN L. Genomic insights into a free-living, nitrogen-fixing but non nodulating novel species of Bradyrhizobium sediminis from freshwater sediment: Three isolates with the smallest genome within the genus Bradyrhizobium[J]. Systematic and Applied Microbiology, 2022, 45(5): 126353. [百度学术]
ZHONG CF, HU G, HU C, XU CH, ZHANG ZH, NING K. Comparative genomics analysis reveals genetic characteristics and nitrogen fixation profile of Bradyrhizobium[J]. iScience, 2024, 27(2): 108948. [百度学术]
HAN F, LI HQ, LYU EM, ZHANG QQ, GAI HY, XU YF, BAI XM, HE XQ, KHAN AQ, LI XL, XIE F, LI FM, FANG XW, WEI M. Soybean-mediated suppression of BjaI/BjaR1 quorum sensing in Bradyrhizobium diazoefficiens impacts symbiotic nitrogen fixation[J]. Applied and Environmental Microbiology, 2024, 90(2): e0137423. [百度学术]
HAKIM S, IMRAN A, SAJJAD MIRZA M. Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan[J]. Brazilian Journal of Microbiology, 2021, 52(1): 311-324. [百度学术]
SALGUEIRO J, NUSSENBAUM AL, MARCHESINI MI, GARBALENA MS, BRAMBILLA S, BELLIARD S, CUADROS F, NÚÑEZ M, YÁÑEZ C, JUÁREZ ML, VERA MT, LANZAVECCHIA SB, TSIAMIS G, SEGURA DF. Culturable bacteria associated with Anastrepha fraterculus sp. 1: in search of nitrogen-fixing symbionts with biotechnological potential[J]. Insect Science, 2025. [百度学术]
TANG MX, WANG HY, QI X, HE T, ZHANG B, WANG ET, YU M, WANG BN, WANG F, LIU ZK, LIU XY. Diversification of Sinorhizobium populations associated with Medicago polymorpha and Medicago lupulina in purple soil of China[J]. Frontiers in Microbiology, 2023, 13: 1055694. [百度学术]
马晓凡, 李林. 日照大豆、菜豆根瘤菌的16S rDNA多样性分析[J]. 湖北农业科学, 2017, 56(15): 2938-2941. [百度学术]
MA XF, LI L. 16S rDNA sequence analysis of Rhizobium strains isolated from soybeans and kidney beans in Rizhao[J]. Hubei Agricultural Sciences, 2017, 56(15): 2938-2941 (in Chinese). [百度学术]
江华明, 李仁全, 彭万仁, 张波, 刘新春, 刘松青. 川西高原野生斜茎黄芪根瘤菌的遗传多样性[J]. 西南农业学报, 2019, 32(8): 1910-1917. [百度学术]
JIANG HM, LI RQ, PENG WR, ZHANG B, LIU XC, LIU SQ. Genetic diversity of rhizobia isolated from root nodules of wild Astragalus adsurgens pall in west of Sichuan, China[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1910-1917 (in Chinese). [百度学术]
LAMRABET M, CHADDAD Z, BOUHNIK O, ALAMI S, KADDOURI K, BENNIS M, LAMIN H, MNASRI B, BOURGERIE S, MORABITO D, ABDELMOUMEN H, BEDMAR EJ, MISSBAH EL IDRISSI M. Different species of Bradyrhizobium from symbiovars genistearum and retamae nodulate the endemic Retama dasycarpa in the High Atlas Mountains[J]. FEMS Microbiology Ecology, 2023, 99(5): fiad038. [百度学术]
STEFAN A, van CAUWENBERGHE J, ROSU CM, STEDEL C, CHAN C, SIMMS EL, ITICESCU C, TSIKOU D, FLEMETAKIS E, EFROSE RC. Nodules of Medicago spp. host a diverse community of rhizobial species in natural ecosystems[J]. Agronomy, 2024, 14(9): 2156. [百度学术]
FLORES-FÉLIX JD, SÁNCHEZ-JUANES F, ARAUJO J, DÍAZ-ALCÁNTARA CA, VELÁZQUEZ E, GONZÁLEZ-ANDRÉS F. Two novel symbiovars of Bradyrhizobium yuanmingense, Americaense and caribense, the symbiovar tropici of Bradyrhizobium pachyrhizi and the symbiovar cajani of Bradyrhizobium cajani are microsymbionts of the legume Cajanus cajan in Dominican Republic[J]. Systematic and Applied Microbiology, 2023, 46(5): 126454. [百度学术]
YOUSEIF SH, ABD EL-MEGEED FH, AGEEZ A, MOHAMED ZK, SHAMSELDIN A, SALEH SA. Phenotypic characteristics and genetic diversity of rhizobia nodulating soybean in Egyptian soils[J]. European Journal of Soil Biology, 2014, 60: 34-43. [百度学术]
RUCKER HR, KAÇAR B. Enigmatic evolution of microbial nitrogen fixation: insights from Earth’s past[J]. Trends in Microbiology, 2024, 32(6): 554-564. [百度学术]
ZHANG JJ, ZHAO ZY, FENG YF, WANG JQ, ZONG XX, WANG ET. Rhizobium acaciae and R. anhuiense are the dominant rhizobial symbionts of Pisum sativum L. from Yunnan-Guizhou Plateau[J]. Frontiers in Microbiology, 2024, 15: 1437586. [百度学术]
BENDER HA, HUYNH R, PUERNER C, PELAEZ J, SADOWSKI C, KISSMAN EN, BARBANO J, SCHALLIES KB, GIBSON KE. The Sinorhizobium meliloti nitrogen-fixing symbiosis requires CbrA-dependent regulation of a DivL and CckA phosphorelay[J]. Journal of Bacteriology, 2024, 206(10): e0039923. [百度学术]
BRITO-SANTANA P, DUQUE-PEDRAZA JJ, BERNABÉU-RODA LM, CARVIA-HERMOSO C, CUÉLLAR V, FUENTES-ROMERO F, ACOSTA-JURADO S, VINARDELL JM, SOTO MJ. Sinorhizobium meliloti DnaJ is required for surface motility, stress tolerance, and for efficient nodulation and symbiotic nitrogen fixation[J]. International Journal of Molecular Sciences, 2023, 24(6): 5848. [百度学术]
SUN L, ZHANG ZP, DONG XY, TANG ZH, JU B, DU ZJ, WANG ET, XIE ZH. Bradyrhizobium aeschynomenes sp. nov., a root and stem nodule microsymbiont of Aeschynomene indica[J]. Systematic and Applied Microbiology, 2022, 45(4): 126337. [百度学术]
PASSERI I, CANGIOLI L, FONDI M, MENGONI A, FAGORZI C. The complex epigenetic panorama in the multipartite genome of the nitrogen-fixing bacterium Sinorhizobium meliloti[J]. Genome Biology and Evolution, 2025, 17(1): evae245. [百度学术]
AVONTUUR JR, PALMER M, BEUKES CW, CHAN WY, TASIYA T, van ZYL E, COETZEE MPA, STEPKOWSKI T, VENTER SN, STEENKAMP ET. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns[J]. Molecular Phylogenetics and Evolution, 2022, 167: 107338. [百度学术]
CHIBEBA AM, KYEI-BOAHEN S, de FÁTIMA GUIMARÃES M, NOGUEIRA MA, HUNGRIA M. Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique[J]. Agriculture, Ecosystems & Environment, 2017, 246: 291-305. [百度学术]
KLEPA MS, HELENE LCF, O HARA G, HUNGRIA M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars[J]. International Journal of Systematic and Evolutionary Microbiology, 2022. DOI:10.1099/ijsem. 0.005446. [百度学术]
HOLLIS AB, KLOOS WE, ELKAN GH. DNA: DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae[J]. Microbiology, 1981, 123(2): 215-222. [百度学术]
KUYKENDALL LD, SAXENA B, DEVINE TE, UDELL SE. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov[J]. Canadian Journal of Microbiology, 1992, 38(6): 501-505. [百度学术]
XU LM, GE C, CUI Z, LI J, FAN H. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans[J]. International Journal of Systematic Bacteriology, 1995, 45(4): 706-711. [百度学术]
ZHANG YM, LI Y, CHEN WF, WANG ET, SUI XH, LI QQ, ZHANG YZ, ZHOU YG, CHEN WX. Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8): 1951-1957. [百度学术]
APPUNU C, N’ZOUE A, LAGUERRE G. Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India[J]. Applied and Environmental Microbiology, 2008, 74(19): 5991-5996. [百度学术]
TIAN CF, ZHOU YJ, ZHANG YM, LI QQ, ZHANG YZ, LI DF, WANG S, WANG J, GILBERT LB, LI YR, CHEN WX. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8629-8634. [百度学术]
JACOTT CN, LOZANO-MORILLO S, del CERRO P. Nod factor lipopolysaccharide purification to study nitrogen-fixing bacteria symbiosis with legumes[J]. Methods in Molecular Biology, 2024, 2751: 237-245. [百度学术]