网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

短梗霉资源应用:生物制造与可持续发展  PDF

  • 杨玉
  • Ndabacekure Odoline
  • 刘温馨
  • 徐兴然
  • 邹祥
西南大学 药学院,重庆杨玉, Ndabacekure Odoline, 刘温馨, 徐兴然, 邹祥. 短梗霉资源应用:生物制造与可持续发展[J]. 微生物学报, 2025, 65(4): 1695-1713.

最近更新:2025-04-09

DOI: 10.13343/j.cnki.wsxb.20240725

CSTR: 32112.14.j.AMS.20240725

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

短梗霉(Aureobasidium spp.)是一种具有极强生态适应性和抗逆性的真菌,广泛分布于植物等自然环境中,且能在极端条件下生存。短梗霉的基因组展现出特异性分化特征,其菌株在发酵过程中具有明显优势,能够利用广谱碳源并产生丰富多样的代谢产物。短梗霉及其代谢产物在生物医药、生物防治和食品加工等多个领域展现出显著的应用潜力。本文综述了短梗霉属菌株的分布、分类、主要代谢产物以及多领域的应用情况。未来随着基因组编辑、智能生物制造等多学科领域的不断发展,短梗霉有望在生物制造和可持续发展产业中发挥重要作用。

短梗霉(Aureobasidium spp.)是一种广泛分布于自然环境中的酵母样真菌,能够在酸性、高渗透压和寡营养等极端环境条件下生存,展现出极强的生态适应性和抗逆[

1-2]。目前已报道的短梗霉菌超过50种,其中多数为出芽短梗霉(A. pullulans)和产黑色素短梗霉(A. melanogenum)。短梗霉在进化过程中积累了丰富的遗传多样性,能够利用多种广谱碳源,并产生一系列代谢产物,如聚苹果酸、普鲁兰多糖、富马酸、黑色素、胞外酶等(图1)[3-6]。短梗霉基因组中存在大量与碳水化合物代谢相关的基因及调控元件,这是其代谢多样性和环境适应性强的重要内在机[2]

fig

图1  短梗霉及其代谢产物的多领域应用。A:短梗霉底盘生物技术和应用;B:代谢产物在药物递送与抑菌治疗的应用;C:活体细胞及代谢产物在农业防治的应用;D:代谢产物在食品加工保鲜中的应用。

Figure 1  Multi-disciplinary applications of Aureobasidium spp. and its metabolites. A: Biotechnology and applications of Aureobasidium spp. chassis; B: Applications of metabolites in drug delivery and antibacterial treatments; C: Applications of living cells and metabolites in agricultural control; D: Applications of metabolites in food processing and preservation.

短梗霉菌株在生物制造领域被视为极具潜力的底盘生物工厂,它们具有广谱碳源利用能力,能够以廉价的生物质为原料,如玉米芯、木糖结晶母液等进行生物转[

7]。此外,短梗霉菌株在培养过程中主要呈现为单细胞形态,具备出色的抗逆性能,能够适应低pH值、高渗透压、高剪切力等极端发酵环境,展现出优异的工业菌株鲁棒性。短梗霉的代谢产物,如聚苹果酸和普鲁兰多糖等高分子聚合物,在药物递送和食品加工保鲜中被广泛应用(图1B、1D)。同时,短梗霉丰富的次级代谢产物在植物病害防控中也发挥着重要作用,可有效抑制植物病原菌(图1C)。因此,本文对短梗霉菌株的分布、分类特征、代谢产物其在生物医药、农业和食品工业中的应用进行系统综述,并探讨其在未来生物制造领域的应用前景。

1 短梗霉资源分布与分类

1.1 资源分布与生态适应性

短梗霉在自然界中分布极为广泛,常作为附生或内生真菌存在于植物的叶片等部位,并与植物形成共生关系,在生态系统中发挥着不可或缺的生态功[

8-9]。已报道在冰川、红树林、海洋、沙漠等多种极端环境中也发现了短梗霉属菌株的存[1,10-14]。短梗霉在高盐、低酸、高温等极端环境中同样表现出卓越的生存和适应能力,这主要归因于其细胞具有的特定生理适应分子机制。短梗霉合成的黑色素有助于细胞应对热胁迫、氧化应激和紫外线辐射等特殊环境压[15]。例如,从塔克拉玛干沙漠中分离得到的产黑色素短梗霉XJ5-1就具备产黑色素的能[16]。短梗霉的环境耐受性还依赖于普鲁兰多糖等聚合物类产物,这些产物可维持细胞水分并增强细胞的抗氧化能[17]。此外,高渗透压和低温等环境因素会激活短梗霉的丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路,诱导细胞内甘油积累以应对渗透压胁[18]。同时,高渗透压和低pH值等环境因素还会引起钙调磷酸酶信号通路下游基因的转录激活,进而对细胞生物膜的形成和细胞壁的完整性进行调节,从而提高细胞的耐受[7,19-21]。这些适应性机制为短梗霉能够在多种极端环境下生存奠定了基础。

1.2 系统分类学与基因组特征

在系统分类学上,短梗霉隶属于子囊菌门(Ascomycota)、座囊菌纲(Dothideomycetes)、座囊菌目(Dothideales)、Saccotheciaceae[

22]。最早由Viala和Boyer在葡萄叶上发现并命名为A. vitis,曾被归入DothioraceaeAureobasidiaceae[23-26]。出芽短梗霉最初被记录为Dematium pullulans,被描述为一种极端耐受的酵母样真菌,可通过透明分生孢子的同步产生与Hormonema spp.进行区分,并以产普鲁兰多糖广为人[27-28]。近年来短梗霉属已成为研究热点。2018年后被鉴定的新种超过20个,短梗霉的细胞形态呈现多态性,由酵母状细胞、芽生孢子、膨胀细胞、厚垣孢子、菌丝及假菌丝组成,分生孢子透明、光滑且呈椭圆形,部分可见黑色素沉[29],见表1。细胞的多态性和细胞分化受到pH、温度、营养条件等多种因素的影[57]。在发酵培养阶段细胞多表现为单细胞形态,主要为酵母状细胞和膨胀细胞。

表1  已经报道的短梗霉菌种
Table 1  The reported strains of Aureobasidium spp.
种名Species name来源Source位置Location菌株号Strainnumber有效记录年份Year ofeffectiverecord参考文献References
A. acericola 紫花槭叶 Leaves of Acer pseudosieboldianum 韩国 Korea MB836925 2021 [30]
A. aerium 空气Air 中国北京 Beijing, China MB843527, CFCC 50324 2022 [26]
A. aleuritis N/A N/A MB309377 1977 [28]
A. apocryptum N/A N/A MB309378 1977 [28]
A. aurantiacum N/A N/A MB902111 2024 [31]
A. australiense N/A N/A MB501787 1896 [32]
A. bupleuri 直布罗陀柴胡花 Flowers of Bupleurum gibraltarium 西班牙 Spain MB835676, CBS 131304 2021 [33]
A. castaneae 锥栗叶斑Leaf spots of Castanea henryi 中国湖南 Hunan, China MB838314 2021 [34]
A. caulivorum 三叶草 Trifolium spp. 英国 UK MB326817 1962 [35]
A. dalgeri 桉树叶 Leaves of Eucalyptus 突尼斯 Tunisia MB309379 1977 [28]
A. faidherbiae 环荚合欢叶Leaves of Faidherbia albida 纳米比亚 Namibia MB848079 2023 [36]
A. foliicola N/A N/A MB326818 1964 [37]
A. hainanensis 秋茄叶 Leaves of Kandelia candel 中国海南 Hainan, China RZIQ01000000 2019 [38]
A. harposporum 白果槲寄生 Viscum album 西班牙马德里 Madrid, Spain MB309380, CBS 122914 1977 [28]
A. indicum N/A N/A MB103074 1985 [39]
A. insectorum 沫蝉 Spittle insects 中国 China MB571251 2023 [40]
A. intercalariosporum 叶Leaf 中国 China MB571252 2023 [40]
A. iranianum 竹子 Bamboo 伊朗 Iran MB800705, CCTU 268 2012 [41]
A. khasianum 美丽桐叶 Leaves of Wightia speciosissima 印度 India MB828278 2018 [42]
A. leucospermi 灰针垫花叶 Leaves of Leucospermum conocarpodendron 南非斯泰伦博斯 Stellenbosch, South Africa MB560556, CBS 130593 2011 [43]
A. lilii 植物 Plant N/A MB326819 1964 [44]
A. lini 亚麻 Linum usitatissimum 英国 UK MB283371, CBS 125.21 1977 [28]
A. mangrovei 海榄雌 Avicennia marina 伊朗 Iran MB823444 2018 [12]
A. mansonii N/A N/A MB326820 1962 [35]
A. melanogenum N/A N/A MB807698, CBS 105.22 2014 [2]
A. microstictum N/A N/A MB326821 1962 [35]
A. microstromoides 美国梓树 Catalpa bignonioides 匈牙利 Hungary MB326822 1962 [35]
A. microtermitis 白蚁Termite 印度古吉拉特邦 Gujarat, India MB839078, GTS2.7 2021 [45]
A. motuoense 叶 Leaf 中国 China MB571263, OP856710 2023 [40]
A. mustum 葡萄 Vitis vinifera 南澳大利亚州 South Australia MB836845 2020 [46]
A. namibiae 白云质大理岩 Dolomitic marble 纳米比亚 Namibia MB807701, CBS 147.97 2014 [2]
A. nigricans 箭舌豌豆 Vicia sativa N/A MB326823 1962 [35]
A. pini 松叶 Pine needle 中国 China MB828664, CFCC 52778 2019 [47]
A. planticola 叶Leaf 中国 China MB571262 2023 [40]
A. proteae 瓶中美人帝王花 Protea Sylvia 南非 South Africa MB560557, CBS 114273 2011 [43]
A. prunicola 北美稠李 Prunus virginiana 美国威斯康星州 Wisconsin, USA MB309382 1977 [28]
A. prunorum N/A N/A MB309383 1973 [48]
A. pullulans 葡萄 Vitis vinifera 法国 France MB101771 1910 [49]
A. ribis 黑茶藨子叶 Leaves of Ribes nigrum N/A MB309384 1977 [28]
A. salmonis N/A N/A MB309385 1967 [50]
A. sanguinariae 血根草叶 Leaves of Sanguinaria canadensis 美国西弗吉尼亚州 West Virginia, USA MB309386 1977 [28]
A. subglaciale 海水亚冰川 Subglacial ice from sea water 挪威 Norway MB807700, CBS 123387 2014 [2]
A. thailandense 木材表面 Surface of wood 泰国 Thailand MB801148, NRRL 58543 2013 [51]
A. thujae-plicatae 植物 Plant N/A MB309387 1978 [32]
A. tremulum 实验室培养污染物 Culture contaminant in a laboratory 印度马哈拉施特拉邦 Maharashtra, India MB829941 2019 [52]
A. umbellulariae 加州桂叶 Leaves of Umbellularia californica 美国加利福尼亚州 California, USA MB309388 1977 [28]
A. uvarum 葡萄汁 Grape juice 南澳大利亚州 South Australia MB836846 2020 [46]
A. vaccinii 植物 Plant N/A MB126507 1989 [32]
A. vineae 葡萄汁 Grape juice 南澳大利亚州 South Australia MB836849 2020 [46]
A. vitis N/A N/A MB168679 1891 [53]
A. vitis var. tuberculatum N/A N/A MB168866 1898 [54]
A. welwitschiae 百岁兰叶 Leaves of Welwitschia mirabilis 纳米比亚Namibia MB848078 2023 [36]
A. xishuangbannaense 华南水鼠耳蝠Myotis laniger 中国云南Yunnan, China MB849254 2023 [55]
A. zeae 玉米叶Leaves of Zea mays 德国Germany MB283372, CBS 767.71 1973 [56]

(待续)

N/A:无相关信息。

N/A: Not applicable.

目前分子标记技术已广泛应用于短梗霉的物种鉴定和进化分析,常用的标记基因包括内部转录间隔区(internal transcribed spacer, ITS)、核糖体大亚基(28S rRNA)、延伸因子-1α (elongation factor-1α, EF-1α)、RNA聚合酶II第二大亚基(DNA-directed RNA polymerase II subunit, RPB2)和β-微管蛋白(β-tubulin)等。Gostinčar[

2]通过多位点DNA序列分析,重新界定了出芽短梗霉、产黑色素短梗霉、A. subglacialeA. namibiae这4个种,说明短梗霉在基因组层面呈现出特异性分化特征;通过DNA序列差异可以快速识别具有遗传差异的新菌种。例如,对45个出芽短梗霉分离株进行的系统发育分析显示,不同分支呈现出不同的菌落特征、普鲁兰多糖产量和木聚糖酶活[58]。在NCBI数据库中已上传的182个短梗霉基因组中,多数出芽短梗霉为单倍体,而产黑色素短梗霉为二倍体,这与Černoša[59]的研究结果一致。此外,短梗霉基因组中含有大量不同家族的胞外酶和糖转运蛋白,以及高亲和力钾离子通道蛋白等,是其能够利用多种糖类物质的重要基[2]。同时,基因组中还含有普鲁兰多糖、聚苹果酸、铁载体、低聚糖、黑色素等代谢产物合成关键的基因,其中普鲁兰多糖和聚苹果酸合成相关基因具有较高的保守性,但黑色素合成基因则表现出一定的差[60]。此外,仍有大量基因未得到完全注释,可能含有与短梗霉环境适应性和代谢产物相关的新基因或调控元件。我们对耐热型短梗霉的基因组分析还发现,其含有丰富的抗氧化酶和热休克蛋白编码基因,这可能是应对热休克反应的重要遗传基础。

2 短梗霉的丰富代谢产物资源

2.1 短梗霉发酵特性

短梗霉基因组中存在大量与碳水化合物分解代谢相关的分泌蛋白和糖转运蛋白编码基[

2]。它能够利用葡萄糖、木糖等单糖以及分解淀粉、纤维素等多糖为小分子糖[7,61-63]。例如,可以利用马铃薯废料合成普鲁兰多糖[64]。短梗霉基因组包含由环境因素和细胞内信号途径介导的调控基因,当碳源、氮源等营养物质比例发生变化时,可触发基因表达调控网络,进而调节产物合成基因的转录和翻译水[65]。与其他模式真菌相比,短梗霉的发酵温度在25-30 ℃之间,培养基成分相对简单;相较于丝状真菌,短梗霉细胞在发酵过程中呈单细胞形态,不易结块,混合传质效率高,易于进行工程发酵放[66-67]。此外,短梗霉能够产生酿酒酵母无法合成的纤维素酶、木聚糖酶等多种生物质处理相关酶,这更有利于构建生物质综合炼制加工体[68]

2.2 短梗霉主要代谢产物

目前,关于短梗霉代谢产物的研究主要聚焦于菌株的代谢工程改造及过程优化。表2列举了短梗霉的主要产物及其发酵水平。普鲁兰多糖主要由出芽短梗霉发酵生产,多种工业加工废料均可作为底物。例如,出芽短梗霉BL06以蔗糖发酵可产140.2 g/L普鲁兰多糖,分子量达3.3×106 Da[

69]。出芽短梗霉与产黑色素短梗霉均具备较强的合成聚苹果酸的能力,且可利用的碳源种类多样。出芽短梗霉7012D3N5的聚苹果酸产量为已报道的短梗霉中最高水平,达194.3 g/L[73]。产黑色素的菌种主要为产黑色素短梗霉,但部分出芽短梗霉的细胞壁中也可积累黑色[76,82]。短梗霉还可产生结构多样的liamocin糖脂,这些糖脂具有不同的生物学活[83]。此外,短梗霉还能合成富马酸,如出芽短梗霉DH177菌株可产93.9 g/L的富马[4]。这些研究表明,短梗霉在工业发酵生产中具有巨大的潜力。

表2  部分短梗霉主要产物
Table 2  The reported metabolites of Aureobasidium spp.

主要产物

Main product

菌种名

Strain

底物碳源

Substrate carbon source

发酵温度

Fermentationtemperature(℃)

发酵时间

Fermentationtime (h)

产量

Yield (g/L)

菌株来源

Strain source

参考文献

References

普鲁兰多糖

Pullulan

出芽短梗霉A. pullulans BL06 蔗糖 Sucrose 28±2 120 140.2 落叶Fallen leaves [69]
出芽短梗霉A. pullulans MTCC 6994 脱油米糠 De-oiled rice bran 30 168 54.8 植物叶片Plant leaves [70]
出芽短梗霉A. pullulans 201253 马铃薯淀粉水解物Potato starch hydrolysate 28 120 54.6 N/A [71]
出芽短梗霉A. pullulans AZ-6 甘蔗糖蜜 Sugarcane molasses 28 N/A 33.6 橄榄 Olive [72]

聚苹果酸

Poly(malic acid)

出芽短梗霉A. pullulans 7012D3N5 葡萄糖 Glucose 25 156 194.3 植物 Plant [73]
产黑色素短梗霉A. melanogenum GXZ-6 麦芽糖浆 Malt syrup 30 360 124.1 植物 Plant [74]
出芽短梗霉A. pullulans YJ 6-11 木糖 Xylose 25 156 80.4 植物 Plant [75]

黑色素

Melanin

产黑色素短梗霉A. melanogenum XJ5-1 葡萄糖Glucose N/A N/A N/A 沙漠土壤 Desert soil [16]
出芽短梗霉A. pullulans 53LC7 蔗糖Sucrose 27 156 16.3 樱花 Cherry blossoms [76]
Liamocin 产黑色素短梗霉A. melanogenum M39 葡萄糖Glucose 28 156 43.0 红树林 Mangrove [77]
出芽短梗霉A. pullulans NRRL 62042 蔗糖Sucrose 28 168 8.6 树叶 Leaf [78]
产黑色素短梗霉A. melanogenum SK25 木糖Xylose 28 N/A 7.8 植物 Plant [79]
出芽短梗霉A. pullulans NRRL 50380 多元醇Polyols 28 168 <4.0 N/A [80]

富马酸

Fumaric acid

A. pullulans var. aubasidani DH177 e-PYC 葡萄糖Glucose 28 168 93.9 锦带花叶Leaves of Weigela florida [81]

N/A:无相关信息。

N/A: Not applicable.

2.3 其他次级代谢产物的发现

随着对短梗霉研究的不断深入,其次级代谢产物日益丰富,且具备显著的生物活性。例如,在摩洛哥叶来源的出芽短梗霉菌丝提取物中鉴定出了新的酰胺类物质pestalotiopamide E和相应的新酸类pestalotiopin B,以及吲哚代谢物、异萘酸、氢萘衍生[

84]。从出芽短梗霉发酵产物中分离得到的新型灰黄霉素(griseofulvin)衍生物可抑制多种植物病原真[6]。在出芽短梗霉S2的挥发性有机化合物(volatile organic compounds, VOCs)中鉴定出的2-苯乙醇、2-庚醇以及乙酸辛酯等还对灰霉病菌具有抑制作[85]。从产黑色素短梗霉LUO5中分离出了新的C10和C12脂肪族δ-内酯以及脂肪酸甲[86]。此外,短梗霉还可产生天然抗氧化剂麦角硫[87]。这些发现不仅丰富了短梗霉代谢产物的种类,还拓宽了其工业应用场景,为开发新型生物制品和生物防治手段提供了思路和资源。

3 短梗霉资源的跨领域应用研究

3.1 短梗霉底盘细胞构建和生物技术应用研究

3.1.1 底盘细胞构建研究

短梗霉因其强大的环境适应性和广泛的碳源利用能力,在生物合成领域受到了广泛关注。随着基因组学技术的不断进步,短梗霉的底盘开发取得了显著进展。国内外多个研究团队已对不同种的短梗霉进行了深入的测序分析,揭示了其基因组特征和基因分布信息,并发现了一系列与关键代谢途径相关的基因,为后续的代谢工程提供了靶点。例如,Wang[

88]通过对出芽短梗霉的基因组分析,成功鉴定出了重要的转录激活因子Cmr1和聚酮合酶(polyketide synthase, PKS)等下游关键基因,并通过敲除和过表达实验,进一步阐明了Cmr1在黑色素合成中的关键调控作用。

早期的短梗霉底盘开发主要依赖于同源重组技术。研究者们通过同源重组方法,成功将潮霉素磷酸转移酶(hygromycin phosphotranferase, HPT)基因靶向整合至出芽短梗霉HN6.2的l-鸟氨酸-N5-羟化酶基因SidA的开放阅读框中,从而有效破坏了该基[

89]。此外,基于同源重组的一步法还实现了III型PKS基因的敲除和糖脂转运蛋白基因GltP的敲[90]。然而,同源重组技术存在效率低、工作量大等问题,且选择标记难以去除,这限制了进一步的基因操作。为此,研究者们引入了其他模式生物的基因操作技术并进行了改进。例如,借鉴真菌遗传转化中常用的根癌农杆菌(Agrobacterium tumefaciens)介导转化法,将外源DNA高效整合入出芽短梗霉基因组,并用于构建基因组突变[91]。为了去除抗性标记,研究者们还构建了一种Cre/loxP重组系统,虽然该方法在多次基因敲除后能实现较高的抗性标记丢失率,但会在基因组上留下loxP位[92]。随着CRISPR/Cas9系统的引入,短梗霉的基因编辑效率得到了显著提升,且实现了无标记的基因编辑。Zhang[93]利用尿苷5′-单磷酸合成酶(uridine monophosphate synthetase, UMPS)基因作为反向选择标记,开发了出芽短梗霉的CRISPR/Cas9基因编辑方法,显著提高了敲除效率。此外,通过将Cas9-RNA复合物直接转入短梗霉菌株中,还可进行多重基因组编辑,并最大限度地降低了脱靶效[94]。短梗霉底盘细胞构建的逐渐成熟,为其在生物合成领域的进一步应用奠定了坚实的基础。

3.1.2 代谢工程调控策略与应用

短梗霉的代谢工程调控策略主要集中在碳代谢和信号通路调控等领域。从碳源高效利用的角度来看,短梗霉凭借其独特的基因编码体系包括多种转运蛋白和代谢酶,能够广泛摄取和利用单糖、多糖以及复杂碳源。通过优化关键酶的表达和活性,可以进一步增强细胞的碳源利用率。例如,通过过表达短梗霉木糖代谢途径中的木糖还原酶和木糖脱氢酶,可以显著提高木糖的利用效率和脂质产物的积[

95]

在碳通量和限速步骤调控方面,通过调控代谢途径中的关键酶活性以及阻断竞争代谢途径,可以优化代谢流。糖酵解中的关键酶和副产物合成相关基因均会对普鲁兰多糖的合成产生影[

96]。其中,UDP-葡萄糖焦磷酸化酶作为关键限速酶,受到环磷酸腺苷-蛋白激酶A (cyclic adenosine monophosphate-protein kinase A, cAMP-PKA)信号通路中转录激活因子Msn2的调[97]。此外,敲除聚苹果酸合酶(polymalate synthase, PMAs)基因和PKS基因也对普鲁兰多糖产量的提升发挥积极作[69]。在聚苹果酸合成方面,通过敲除普鲁兰合成酶、黑色素合成酶和甘氨酸合成酶的编码基因,可以将碳通量导向聚苹果酸合成途径,从而极大提高聚苹果酸的生产率,产量可达194.3 g/L,且回收后的苹果酸纯度可达99.7%[73]。同时,还原型TCA循环(reductive tricarboxylic acid cycle, rTCA)中辅因子与CO2的参与可调节苹果酸的代谢通量,进而影响聚苹果酸的合[98]。在以甘油和乙醇为底物进行发酵时,启动子工程可有效平衡甘油代谢和rTCA通路中的代谢通量,并维持底物利用和聚苹果酸合成的高效性及稳定[99]。在工业生产中,黑色素作为副产物会影响下游产品的外观和纯化,因此通过紫外诱变和副产物通路敲除等方法可以减少黑色素的生成,从而提高产品质量和效[73,100]

转录调控在短梗霉的代谢过程中也起着关键作用。聚苹果酸的合成受到钙调磷酸酶响应锌指转录因子(calcineurin-responsive zinc finger transcription factor, CRZ1)、雷帕霉素靶蛋白复合物(target of rapamycin complex 1, Torc1)、磷酸泛酰巯基乙胺基转移酶(phosphopantetheinyl transferases, PPTase)和GATA型转录因子Gat1等多重调[

101-103]。特异性转录激活因子Cat8还可通过调节乙醛酸分流途径,提高以乙醇为底物时聚苹果酸的产[104]。细胞壁完整性(cell wall integrity, CWI)信号通路中的转录激活因子Cmr1可特异性结合PKS1,从而调控黑色素的生物合[105]。同时,PKS还受到PPTase的激活和调控,且PPTase编码基因Npg1Pks1受到氮源和葡萄糖的抑[106]。GATA型转录因子NsdD负向调控黑色素的合成,但正向调控聚苹果酸和普鲁兰多糖的生物合[107]。这些研究表明,通过协同调控代谢过程,可以精准调节产物的合成,从而充分发挥底盘的优势和潜力。

3.2 短梗霉代谢产物在药物递送与治疗领域的应用

3.2.1 高分子产物在药物递送体系中的应用

普鲁兰多糖和聚苹果酸等高分子材料作为药物缓释载体,在提升药效和降低毒副作用方面具有重要意义。普鲁兰多糖因其高亲水性和生物可降解性,被广泛应用于制备药物载体,以实现药物的控释、改善药物的稳定性和增强生物利用[

108-110]。例如,在DNA递送方面,聚乙烯亚胺与普鲁兰多糖偶联制备的载体可将DNA高效递送至靶细[111]。质粒DNA偶联普鲁兰多糖和精胺的非病毒基因载体,可在肿瘤细胞中有效表[112]。叶酸-聚乙烯亚胺修饰的普鲁兰多糖还可用于pDNA/siRNA的靶向递送,且具备良好的靶向性和低细胞毒[113]。此外,以普鲁兰多糖制备的改性天然聚合物材料,能够递送水飞蓟素等黄酮类化合物,并提升药物的吸附和释放速[114]

聚苹果酸因其生物可降解性、低免疫原性和可修饰性等特性,在癌症诊断和药物靶向运送研究中展现出广泛应用前[

110]。例如,通过β-聚-l-苹果酸纳米平台共价连接吗啉反义寡核苷酸(antisense oligonucleotides, AONs)、靶向抗TfR单克隆抗体及赫赛汀(曲妥珠单抗),实现了对HER2/neu阳性乳腺癌的有效治[115]。基于β-聚-l-苹果酸的新型纳米成像剂能够穿过血脑屏障,对癌细胞实施高效纳米成像并完成特异性AONs的递[116]。此外,聚苹果酸还可用作骨质疏松症治疗的钙载体,聚苹果酸钙治疗能够减轻骨质疏松模型小鼠的运动疲劳程度,缓解骨质疏松症状并改善成骨细胞分[117]。然而,这些高分子产物在体内的长期稳定性、潜在的免疫原性和细胞毒性等方面仍有待进一步的评估与研究。

3.2.2 生物活性产物的应用

短梗霉的代谢产物和改性产物具有抗菌抗炎、抗癌和免疫调节等多种生物活性。基于普鲁兰多糖、聚赖氨酸衍生物、茶多酚等制备的多功能水凝胶可用于感染性伤口的修[

118]。由氧化普鲁兰多糖、季铵化壳聚糖和小球藻等制备的复合水凝胶还可用于伤口的抗菌消炎和慢性愈合监[119]。Liamocin具备抗链球菌感染活性,且不同多元醇头基的liamocins展现出差异化的抗菌和抗癌活性,因此对liamocin进行结构改造和功能化修饰有望推动其在抗菌药物定向开发中的应[80,120]。此外,liamocin还可转化为马索亚内酯,其对多种丝状真菌和酵母菌具有抗菌活性,同时还具备抗癌、抗病毒和抗炎潜[121-122]

在抗癌与免疫调节方面,短梗霉的代谢产物同样展现出应用潜力。例如,从出芽短梗霉中提取的1,3-β-d葡聚糖能够在体外诱导DBA/2小鼠脾细胞分泌Th1细胞因子及Th17细胞因子,作为潜在的免疫刺激[

123]。出芽短梗霉TD-062的发酵提取物在骨髓瘤和乳腺癌细胞中表现出与姜黄素相近的抗癌活性,其中含有角鲨烯、豆甾醇等抗癌成[124]

3.3 短梗霉活体细胞在生物防治与生态农业中的应用

3.3.1 短梗霉生物防治应用

当前我国在生物防治领域取得了显著进展。截至2024年4月,国内登记的20种微生物新农药中,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)占据了7种,而真菌微生物仅有5种。生防微生物的应用受到环境因素的制约,如湿度、pH、温度等,这些因素会影响其生长代谢;真菌作为生防微生物体系的重要组成部分,在农业应用中也面临环境适应性挑[

125]。然而,短梗霉作为农业可用的真菌,因其极端环境的适应性和耐受性,展现出了巨大的生防潜力和优势。例如,在落叶分解生态系统中,短梗霉呈现出高丰度,并与多数核心细菌类群呈负相关,显示出其在生态竞争中的独特优[126]。在欧洲甜樱桃病虫害的研究中,短梗霉与其他子囊菌门真菌在健康组织中丰度较高,被认为是樱桃胶质病的潜在拮抗[127]

短梗霉在梨火疫病的防治中已有成功案例。Blossom Protect™ (出芽短梗霉)通过诱导植物全身获得性耐药途径基因的表达,提高了植物自身的防御和抗病性,有效降低了火疫病的发生[

128-129]。德国研发的BoniProtect™ (出芽短梗霉)能够有效控制储存过程中病原体对果实的侵[130]。在田间试验中,Blossom Protect™对梨火疫病的控制率高达81%,优于对照生防菌株Cystofilobasidium infirmominiatum 58%的控制[131]。部分研究表明,克雷伯氏菌(Klebsiella sp.) TN50、类芽孢杆菌(Paenibacillus sp.) HN89、假单胞杆菌(Pseudomonas sp.) SN37和贝莱斯芽胞杆菌(Bacillus velezensis) JE4对梨火疫病的防效分别为64%、52%、36%和73%,而农用链霉素的防效为61%[132-133]。由此可见,出芽短梗霉在防控梨火疫病方面具有明显优势。

短梗霉在果蔬采前和采后病害防治中也发挥着重要作用。例如,出芽短梗霉L1和L8能将褐腐病的发生率分别降低95%和80%[

134]。出芽短梗霉AP2和PL5则可有效降低接种白雾病致病菌的苹果在储存期和保质期内的发病[135]。此外,出芽短梗霉产生的VOCs能抑制链核盘菌(Monilinia spp.)、灰葡萄孢菌(Botrytis cinerea)、青霉菌(Penicillium spp.)等病原菌的菌丝体生长和分生孢子萌发,从源头上降低了病原菌的侵染风[136-137]

3.3.2 生物防治作用机制

短梗霉的生防作用机制具有多元性和复杂性的特点,涉及营养和空间竞争、铁载体和抗菌物质合成、植物抗性诱导以及果实机械防御强化等多个方[

137-140]。例如,多种短梗霉菌株的VOCs可抑制病原菌,其中3-甲基-1-丁醇对灰霉病菌的拮抗效果尤为突[138]。环境适应性、宿主抗性诱导、生物膜形成以及VOCs产生是出芽短梗霉S2防治番茄灰霉病菌的重要作用机[85]。增加外源氨基酸浓度会使出芽短梗霉Ach1-1对扩展青霉的防治效果显著降低,表明营养竞争在其中发挥了重要作[141]。短梗霉还能产生几丁质酶、β-1,3-葡聚糖酶及蛋白酶等多种酶类,增强了其对植物病原菌的抑制能[142-143]。在控制苹果灰霉病菌和扩展青霉的研究中,出芽短梗霉提高了果实中β-1,3-葡聚糖酶、几丁质酶和过氧化物酶的活性,有利于对病原体的拮[144]

在促进植物健康和根际微生态调控方面,短梗霉与土壤中植物根系的共生有利于植物的健康生长和增产。例如,出芽短梗霉产生的吲哚-3-乙酸(indole-3-acetic acid, IAA)可改变拟南芥生长素诱导基因的表达,促进拟南芥侧根的形成,并增强根系对水分和养分的吸[

145]。出芽短梗霉AP1不仅能抑制莴苣病原菌Rhizoctonia solani,还能促进莴苣叶和根的生[146]。这些研究为短梗霉在农业中根际共生应用提供了理论依据和实践指导,并且利用微胶囊等制剂对短梗霉进行有效包裹,可增强其在复杂应用环境中的稳定性和存活率。

3.4 短梗霉及其代谢产物在食品工业中的应用

3.4.1 多糖类产物的应用

短梗霉合成的普鲁兰多糖和β-1,3-1,6-葡聚糖在食品工业中得到了广泛应用。普鲁兰多糖含有大量羟基,具备良好的亲水性和保湿性,兼具无毒、无味、可降解等特点,已被注册为食品添加剂,凭借其良好的成膜性和稳定性,普鲁兰多糖还被用于食品包装,以延长食品的保鲜[

147]。例如,基于普鲁兰多糖、明胶和山梨酸钾制备的可食用薄膜对多种微生物具有抑菌活性,可防止食物腐败和霉[148]。花青素封装于乳酸链球菌素/明胶/普鲁兰多糖生物气凝胶中,有利于抗氧化活性的稳定,并且能够响应pH变化,指示食品的新鲜[149]。由普鲁兰多糖、结冷胶、楮实子等制备的pH响应活性薄膜具有抗氧化和抗菌能力,可应用于鱼类保鲜和新鲜度检[150]。此外,将普鲁兰多糖添加到玉米淀粉中,能够保护其颗粒完整性,减少油炸后的吸油量,并提升食品的感官品[151]

β-1,3-1,6-葡聚糖作为天然免疫调节剂,可预防非酒精性脂肪肝和抗食物过敏,在功能性食品开发领域具有良好的应用潜[

152-155]。由出芽短梗霉产生的β-1,3-1,6-葡聚糖相比其他来源的β-葡聚糖,支化程度更高,功能作用相[155-156]。市场上多品牌乳粉和饮品中均添加了酵母β-葡聚糖。日本大创公司开发了来源于出芽短梗霉的β-1,3-1,6-葡聚糖作为功能食品配[157]。可以预见,短梗霉多糖类产物在食品创新与品质提升方面将带来新机遇。

3.4.2 食品加工中的应用潜力

短梗霉所产生的代谢酶类具有独特的功能特性。例如,出芽短梗霉产生的木聚糖酶具有耐盐、耐乙醇和嗜酸特性,可以应用于酿造和海产品加[

158]。产黑色素短梗霉来源的单宁酶具备热稳定性和高比活等特性,可高效催化各种没食子酸酯的降[159]。出芽短梗霉FRR 5284能够用作全细胞生物催化剂,在胞内高效生产低聚果糖酶,将糖蜜转化为高附加值的低聚果[160]A. leucospermi来源的丝氨酸肽酶在低温储存210 d后仍能保持较高的活性,可应用于奶酪加[161]。此外,短梗霉还具备在短时间内大量积累生物量的能力,能够利用廉价底物生长合成蛋白质,在单细胞蛋白合成方面具有潜力。例如,出芽短梗霉发酵豆粕能提高其蛋白水平,可用于生产鱼类高蛋白饲[162]

4 总结与展望

在双碳目标的驱动下,绿色生物制造致力于以可持续的生物生产方式替代传统高能耗、高碳排放的工业制造模式,从源头上实现“碳减排”。短梗霉作为一类独特的酵母样真菌,是绿色生物制造的优势微生物资源。短梗霉能够利用非发酵性碳源(如甘油、乙醇等)合成生物可降解高分子聚合物,如聚苹果酸,是一种有效的碳经济生物合成方式。同时,在利用木质纤维素水解物、工业生产废料等可再生生物质资源合成一系列高值化合物方面,短梗霉也展现出了独特优势。例如,其具有天然的木糖代谢途径和多重代谢调节网络,对绿色生物制造具有重要意义。

为实现大规模绿色生产应用,菌株底盘的开发和设计仍需完善。例如,需要挖掘新的功能基因和调控元件,以实现底盘细胞的精准设计。同时,由于菌株代谢涉及多重调控机制,亟需开发更高效的全局调控策略。目前,研究主要集中于出芽短梗霉和产黑色素短梗霉,但仍有大量新种的生理生化特性和基因组相关工作尚待填补。由于工业生产中的菌种需适应温度波动、高渗透压、pH变化、溶氧变化等环境因素,提高菌种的发酵鲁棒性至关重要。此外,尽管短梗霉能够利用廉价的工业加工废料,但底物转化效率低和细胞耐受性差等问题仍需解决。Li[

7]通过实验室适应性进化策略,成功增强了出芽短梗霉对高盐和低pH值的细胞耐受性,并实现了无钙废物污染的苹果酸回收,为绿色可持续的生物炼制提供了一条可行路线。未来,随着人工智能和多组学技术的发展,构建智能代谢网络模型将为菌种设计提供更为科学的指导。

在发酵过程控制和产物分离纯化方面仍面临技术瓶颈。短梗霉生产过程中副产物的合成会降低目标产物的代谢流和产率。在下游分离纯化过程中,发酵液的高黏度以及蛋白质和无机盐等杂质的干扰,也是工业化进程的制约因素。通过代谢工程改造策略减少副产物可以从上游降低产物分离纯化的难度。Li[

73]已通过代谢工程改造得到了一株高纯度聚苹果酸生产的出芽短梗霉菌株,通过水相结晶法提取的L-苹果酸纯度高达99.7%。未来,结合先进的过程控制技术,通过大数据挖掘和模型化控制,有望实现高效智能的规模化绿色生产。

从菌株和产品的安全性与有效性角度出发,短梗霉菌株和部分代谢产物在药理机制、临床验证以及生物防控机制等方面还需深入研究。在不同场景下应用的菌株需符合严格的法规和标准,并且需系统评估其代谢产物的毒理学特性,尤其是对人体健康和生态环境的长期影响。总之,短梗霉在未来生物制造领域和绿色低碳循环经济体系中具有广阔的应用前景。

作者贡献声明

杨玉:论文撰写和修改;Ndabacekure Odoline:数据收集;刘温馨:数据收集;徐兴然:论文修改;邹祥:论文审查和编辑。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

ZALAR P, GOSTINČAR C, de HOOG GS, URŠIČ V, SUDHADHAM M, GUNDE-CIMERMAN N. Redefinition of Aureobasidium pullulans and its varieties[J]. Studies in Mycology, 2008, 61: 21-38. [百度学术] 

2

GOSTINČAR C, OHM RA, KOGEJ T, SONJAK S, TURK M, ZAJC J, ZALAR P, GRUBE M, SUN H, HAN J, SHARMA A, CHINIQUY J, NGAN CY, LIPZEN A, BARRY K, GRIGORIEV IV, GUNDE-CIMERMAN N. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species[J]. BMC Genomics, 2014, 15: 549. [百度学术] 

3

ZOU X, LI SS, WANG P, LI BQ, FENG YY, YANG ST. Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes[J]. Critical Reviews in Biotechnology, 2021, 41(2): 216-228. [百度学术] 

4

WANG GY, BAI TT, MIAO ZG, NING WG, LIANG WX. Simultaneous production of single cell oil and fumaric acid by a newly isolated yeast Aureobasidium pullulans var. aubasidani DH177[J]. Bioprocess and Biosystems Engineering, 2018, 41(11): 1707-1716. [百度学术] 

5

GAO Q, CLEVES AE, WANG X, LIU YZ, BOWEN SA, WILLIAMSON RT, JAIN AN, SHERER E, REIBARKH M. Solution cis-proline conformation of IPCs inhibitor aureobasidin A elucidated via NMR-based conformational analysis[J]. Journal of Natural Products, 2022, 85(6): 1449-1458. [百度学术] 

6

LV JH, YAO L, LI SY, YE MY, LI D, LI CT, LI Y. Three new griseofulvin derivatives from Aureobasidium pullulans[J]. Natural Product Research, 2024. DOI: https://doi.org/10.1080/14786419.2024.2312428. [百度学术] 

7

LI BY, LI BQ, WANG P, FENG YY, XU XR, ZHANG YJ, ZOU X. Bio-refinery of xylose processing wastes for green polymalic acid production and l-malic acid recovery by engineered Aureobasidium pullulans in a non-waste-disposal system[J]. Chemical Engineering Journal, 2023, 454: 140533. [百度学术] 

8

PRASONGSUK S, SULLIVAN RF, KUHIRUN M, EVELEIGH DE, PUNNAPAYAK H. Thailand habitats as sources of pullulan-producing strains of Aureobasidium pullulans[J]. World Journal of Microbiology and Biotechnology, 2005, 21(4): 393-398. [百度学术] 

9

OCHMIAN I, PRZEMIENIECKI SW, BŁASZAK M, TWARUŻEK M, LACHOWICZ-WIŚNIEWSKA S. Antioxidant, nutritional properties, microbiological, and health safety of juice from organic and conventional ‘solaris’ wine (Vitis vinifera L.) farming[J]. Antioxidants, 2024, 13(10): 1214. [百度学术] 

10

NOVÁKOVÁ A, HUBKA V, VALINOVÁ Š, KOLAŘÍK M, HILLEBRAND-VOICULESCU AM. Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study[J]. Folia Microbiologica, 2018, 63(1): 43-55. [百度学术] 

11

JIANG H, XUE SJ, LI YF, LIU GL, CHI ZM, HU Z, CHI Z. Efficient transformation of sucrose into high pullulan concentrations by Aureobasidium melanogenum TN1-2 isolated from a natural honey[J]. Food Chemistry, 2018, 257: 29-35. [百度学术] 

12

NASR S, MOHAMMADIMEHR M, GERANPAYEH VAGHEI M, AMOOZEGAR MA, SHAHZADEH FAZELI SA. Aureobasidium mangrovei sp. nov., an ascomycetous species recovered from Hara protected forests in the Persian Gulf, Iran[J]. Antonie Van Leeuwenhoek, 2018, 111(9): 1697-1705. [百度学术] 

13

MA ZC, FU WJ, LIU GL, WANG ZP, CHI ZM. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4865-4873. [百度学术] 

14

LIU J, LIU ZQ, CHI ZM, ZHANG L, ZHANG DC. Intraspecific diversity of Aureobasidium pullulans strains from different marine environments[J]. Journal of Ocean University of China, 2009, 8(3): 241-246. [百度学术] 

15

CAMPANA R, FANELLI F, SISTI M. Role of melanin in the black yeast fungi Aureobasidium pullulans and Zalaria obscura in promoting tolerance to environmental stresses and to antimicrobial compounds[J]. Fungal Biology, 2022, 126(11/12): 817-825. [百度学术] 

16

JIANG H, LIU NN, LIU GL, CHI Z, WANG JM, ZHANG LL, CHI ZM. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments[J]. Extremophiles, 2016, 20(4): 567-577. [百度学术] 

17

JIANG H, CHEN TJ, CHI Z, HU Z, LIU GL, SUN Y, ZHANG SH, CHI ZM. Macromolecular pullulan produced by Aureobasidium melanogenum 13-2 isolated from the Taklimakan desert and its crucial roles in resistance to the stress treatments[J]. International Journal of Biological Macromolecules, 2019, 135: 429-436. [百度学术] 

18

TURK M, GOSTINČAR C. Glycerol metabolism genes in Aureobasidium pullulans and Aureobasidium subglaciale[J]. Fungal Biology, 2018, 122(1): 63-73. [百度学术] 

19

冯莹莹, 徐兴然, 邹祥. 钙调磷酸酶信号调控真菌生长代谢、毒力及抗逆性能[J]. 微生物学报, 2021, 61(12): 3844-3855. [百度学术] 

FENG YY, XU XR, ZOU X. Calcineurin signaling cascade regulates fungal growth, metabolism, virulence and stress resistance[J]. Acta Microbiologica Sinica, 2021, 61(12): 3844-3855 (in Chinese). [百度学术] 

20

LIU L, YU B, SUN WJ, LIANG CC, YING HJ, ZHOU SM, NIU HQ, WANG YB, LIU D, CHEN Y. Calcineurin signaling pathway influences Aspergillus niger biofilm formation by affecting hydrophobicity and cell wall integrity[J]. Biotechnology for Biofuels, 2020, 13: 54. [百度学术] 

21

HAKKAART X, LIU YY, HULST M, EL MASOUDI A, PEUSCHER E, PRONK J, van GULIK W, DARAN-LAPUJADE P. Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: slow growth, low pH, and high CO2 levels[J]. Biotechnology and Bioengineering, 2020, 117(3): 721-735. [百度学术] 

22

PRASONGSUK S, LOTRAKUL P, ALI I, BANKEEREE W, PUNNAPAYAK H. The current status of Aureobasidium pullulans in biotechnology[J]. Folia Microbiologica, 2018, 63(2): 129-140. [百度学术] 

23

PIERRE V, BOYER B. Sur un basidiomycète inférieur, parasite des grains de raisins[J]. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 1891, 112: 1148-1150. [百度学术] 

24

THAMBUGALA KM, ARIYAWANSA HA, LI YM, BOONMEE S, HONGSANAN S, TIAN Q, SINGTRIPOP C, BHAT DJ, CAMPORESI E, JAYAWARDENA R, LIU ZY, XU JC, CHUKEATIROTE E, HYDE KD. Dothideales[J]. Fungal Diversity, 2014, 68(1): 105-158. [百度学术] 

25

WIJAYAWARDENE NN, CROUS PW, KIRK PM, HAWKSWORTH DL, BOONMEE S, BRAUN U, DAI DQ, DIEDERICH P, DISSANAYAKE A, DOILOM M, HONGSANAN S, GARETH JONES EB, GROENEWALD JZ, JAYAWARDENA R, LAWREY JD, LIU JK, LÜCKING R, MADRID H, MANAMGODA DS, MUGGIA L, et al. Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names[J]. Fungal Diversity, 2014, 69(1): 1-55. [百度学术] 

26

WANG CB, JIANG N, TU Y, ZHU YQ, XUE H, LI Y. Aureobasidium aerium (Saccotheciaceae, Dothideales), a new yeast-like fungus from the air in Beijing, China[J]. Phytotaxa, 2022, 544(2): 185-192. [百度学术] 

27

BENNETT FT. On Dematium pullulans de b. and its ascigerous stage[J]. Annals of Applied Biology, 1928, 15(3): 371-391. [百度学术] 

28

HERMANIDES-NIJHOF EJ. Aureobasidium and allied genera[J]. Studies in Mycology, 1977, 15: 141-177. [百度学术] 

29

PUNNAPAYAK H, SUDHADHAM M, PRASONGSUK S, PICHAYANGKURA S. Characterization of Aureobasidium pullulans isolated from airborne spores in Thailand[J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30(2): 89-94. [百度学术] 

30

LEE DH, CHO SE, OH JY, CHO EJ, KWON S. A novel species of Aureobasidium (Dothioraceae) recovered from Acer pseudosieboldianum in Korea[J]. Journal of Asia-Pacific Biodiversity, 2021, 14(4): 657-661. [百度学术] 

31

TAN Y, STEINRUCKEN T. Nomenclatural novelties[J]. Index of Australian Fungi, 2024, 36: 1-21. [百度学术] 

32

PITKÄRANTA M, RICHARDSON MD. Molecular Detection of Human Fungal Pathogens[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2011: 37-48. [百度学术] 

33

HAELEWATERS D, URBINA H, BROWN S, NEWERTH-HENSON S, CATHERINE AIME M. Isolation and molecular characterization of the romaine lettuce phylloplane mycobiome[J]. Journal of Fungi, 2021, 7(4): 277. [百度学术] 

34

JIANG N, FAN XL, TIAN CM. Identification and characterization of leaf-inhabiting fungi from Castanea plantations in China[J]. Journal of Fungi, 2021, 7(1): 64. [百度学术] 

35

COOKE WB. A taxonomic study in the “black yeasts”[J]. Mycopathologia et Mycologia Applicata, 1962, 17(1): 1-43. [百度学术] 

36

CROUS PW, OSIECK ER, SHIVAS RG, TAN YP, BISHOP-HURLEY SL, ESTEVE-RAVENTÓS F, LARSSON E, LUANGSA-ARD JJ, PANCORBO F, BALASHOV S, BASEIA IG, BOEKHOUT T, CHANDRANAYAKA S, COWAN DA, CRUZ RF, CZACHURA P, deLa PEÑA-LASTRA S, DOVANA F, DRURY B, FELL J, et al. Fungal planet description sheets: 1478-1549[J]. Persoonia, 2023, 50: 158-310. [百度学术] 

37

MÜLLER G. Die gattung Sporotrichum link. Eine taxonomische und morphologische studie der bei mensch und tier vorkommenden species. II[J]. Wissenschaftliche Zeitschrift Der Humboldt Universitat Zu Berlin, 1964, 13: 844-860. [百度学术] 

38

JIA SL, MA Y, CHI Z, LIU GL, HU Z, CHI ZM. Genome sequencing of a yeast-like fungal strain P6, a novel species of Aureobasidium spp.: insights into its taxonomy, evolution, and biotechnological potentials[J]. Annals of Microbiology, 2019, 69(13): 1475-1488. [百度学术] 

39

PANDE A, GHATE N. Three new Hyphomycetes from paper factory effluent[J]. Biovigyanam Journal of Life Sciences, 1985, 11(1): 113-114. [百度学术] 

40

WU F, FENG ZX, WANG MM, WANG QM. Proposal of four new Aureobasidium species for exopolysaccharide production[J]. Journal of Fungi, 2023, 9(4): 447. [百度学术] 

41

ARZANLOU M. Aureobasidium iranianum, a new species on bamboo from Iran[J]. Mycosphere, 2012, 3(4): 404-408. [百度学术] 

42

PRABHUGAONKAR A, PRATIBHA J. Aureobasidium khasianum (Aureobasidiaceae) a novel species with distinct morphology[J]. Phytotaxa, 2018, 374(3): 257-262. [百度学术] 

43

CROUS PW, SUMMERELL BA, SWART L, DENMAN S, TAYLOR JE, BEZUIDENHOUT CM, PALM ME, MARINCOWITZ S, GROENEWALD JZ. Fungal pathogens of Proteaceae[J]. Persoonia, 2011, 27: 20-45. [百度学术] 

44

CRISAN A, HODISAN I. Contributii la cunoasterea florei micologice din Valea Fenesului (raion alba). I[J]. Contributii Botanice, 1964: 81-87. [百度学术] 

45

CROUS PW, OSIECK ER, JURJEVI, BOERS J, van IPEREN AL, STARINK-WILLEMSE M, DIMA B, BALASHOV S, BULGAKOV TS, JOHNSTON PR, MOROZOVA OV, PINRUAN U, SOMMAI S, ALVARADO P, DECOCK CA, LEBEL T, MCMULLAN-FISHER S, MORENO G, SHIVAS RG, ZHAO L, et al. Fungal planet description sheets: 1284-1382[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2021, 47: 178-374. [百度学术] 

46

ONETTO CA, SCHMIDT SA, ROACH MJ, BORNEMAN AR. Comparative genome analysis proposes three new Aureobasidium species isolated from grape juice[J]. FEMS Yeast Research, 2020, 20(6): foaa052. [百度学术] 

47

JIANG N, LIANG YM, TIAN CM. Aureobasidium pini sp. nov. from pine needle in China[J]. Phytotaxa, 2019, 402(4): 199-206. [百度学术] 

48

DENNIS C, BUHAGIAR RWM. Comparative study of Aureobasidium pullulans, A. prunorum sp. nov. and Trichosporon pullulans[J]. Transactions of the British Mycological Society, 1973, 60(3): 567-IN12. [百度学术] 

49

COOKE WB. An ecological life history of Aureobasidium pullulans (de Bary) Arnaud[J]. Mycopathologia et Mycologia Applicata, 1959, 12(1): 1-45. [百度学术] 

50

CARMICHAEL JW. Cerebral mycetoma of trout due to a Phialophora-like fungus[J]. Medical Mycology, 1967, 5(2): 120-123. [百度学术] 

51

PETERSON SW, MANITCHOTPISIT P, LEATHERS TD. Aureobasidium thailandense sp. nov. isolated from leaves and wooden surfaces[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_2): 790-795. [百度学术] 

52

CROUS PW, CARNEGIE AJ, WINGFIELD MJ, SHARMA R, MUGHINI G, NOORDELOOS ME, SANTINI A, SHOUCHE YS, BEZERRA JP, DIMA B, GUARNACCIA V, IMREFI I, JURJEVIĆ Ž, KNAPP DG, KOVÁCS GM, MAGISTÀ D, PERRONE G, RÄMÄ T, REBRIEV YA, SHIVAS RG, et al. Fungal planet description sheets: 868-950[J]. Persoonia, 2019, 42: 291-473. [百度学术] 

53

VIALA PP, BOYER G. Une nouvelle maladie des raisins[J]. Revue Générale de Botanique, 1891, 3: 369-371. [百度学术] 

54

MCALPINE D, ROBINSON GH. Additions to the fungi on the vine in Australia[M]. Melbourne: R.S. Brain, Government Printer, 1890: 15-22. [百度学术] 

55

HYDE KD, NORPHANPHOUN C, MA J, YANG HD, ZHANG JY, DU TY, GAO Y, GOMES de FARIAS AR, HE SC, HE YK, LI C, LI JY, LIU XF, LU L, SU HL, TANG X, TIAN XG, WANG SY, WEI DP, XU RF, et al. Mycosphere notes 387-412: novel species of fungal taxa from around the world[J]. Mycosphere, 2023, 14(1): 663-744. [百度学术] 

56

COOKE WB, de HOOG GS, HERMANIDES-NIJHOF EJ. The black yeasts and allied Hyphomycetes[J]. Mycologia, 1977, 69(6): 1242. [百度学术] 

57

刘小胖, 王红岩, 张宁, 李炳学. 出芽短梗霉细胞多形性及影响细胞分化因素探索[J]. 微生物学通报, 2019, 46(6): 1461-1469. [百度学术] 

LIU XP, WANG HY, ZHANG N, LI BX. Exploration of cell polymorphisms and factors influencing cell differentiation of Aureobasidium pullulans[J]. Microbiology China, 2019, 46(6): 1461-1469 (in Chinese). [百度学术] 

58

MANITCHOTPISIT P, LEATHERS TD, PETERSON SW, KURTZMAN CP, LI XL, EVELEIGH DE, LOTRAKUL P, PRASONGSUK S, DUNLAP CA, VERMILLION KE, PUNNAPAYAK H. Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans[J]. Mycological Research, 2009, 113(10): 1107-1120. [百度学术] 

59

ČERNOŠA A, SUN XH, GOSTINČAR C, FANG C, GUNDE-CIMERMAN N, SONG ZW. Virulence traits and population genomics of the black yeast Aureobasidium melanogenum[J]. Journal of Fungi, 2021, 7(8): 665. [百度学术] 

60

王永康, 宋晓丹, 李晓荣, 杨尚天, 邹祥. 聚苹果酸生产菌出芽短梗霉CCTCC M2012223的全基因组测序及序列分析[J]. 微生物学报, 2017, 57(1): 97-108. [百度学术] 

WANG YK, SONG XD, LI XR, YANG ST, ZOU X. Complete genome sequencing of polymalic acid-producing strain Aureobasidium pullulans CCTCC M2012223[J]. Acta Microbiologica Sinica, 2017, 57(1): 97-108 (in Chinese). [百度学术] 

61

VIEIRA MM, KADOGUCHI E, SEGATO F, da SILVA SS, CHANDEL AK. Production of cellulases by Aureobasidium pullulans LB83: optimization, characterization, and hydrolytic potential for the production of cellulosic sugars[J]. Preparative Biochemistry & Biotechnology, 2021, 51(2): 153-163. [百度学术] 

62

GAUTÉRIO GV, da SILVA LGG, HÜBNER T, da ROSA RIBEIRO T, KALIL SJ. Xylooligosaccharides production by crude and partially purified xylanase from Aureobasidium pullulans: biochemical and thermodynamic properties of the enzymes and their application in xylan hydrolysis[J]. Process Biochemistry, 2021, 104: 161-170. [百度学术] 

63

YU XH, GU ZX. Direct production of feruloyl oligosaccharides and hemicellulase inducement and distribution in a newly isolated Aureobasidium pullulans strain[J]. World Journal of Microbiology & Biotechnology, 2014, 30(2): 747-755. [百度学术] 

64

SINGH RS, KAUR N, KENNEDY JF. Pullulan production from agro-industrial waste and its applications in food industry: a review[J]. Carbohydrate Polymers, 2019, 217: 46-57. [百度学术] 

65

CHI Z, KONG CC, WANG ZZ, WANG Z, LIU GL, HU Z, CHI ZM. The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp.[J]. Biotechnology Advances, 2022, 55: 107898. [百度学术] 

66

GU SY, WU TJ, ZHAO JQ, SUN T, ZHAO Z, ZHANG L, LI JG, TIAN CG. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila[J]. Microbial Biotechnology, 2024, 17(2): e14410. [百度学术] 

67

XI YY, XU HT, ZHAN T, QIN Y, FAN FY, ZHANG XL. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient l-malic acid production at low pH[J]. Metabolic Engineering, 2023, 75: 170-180. [百度学术] 

68

WANG P, JIA SL, LIU GL, CHI Z, CHI ZM. Aureobasidium spp. and their applications in biotechnology[J]. Process Biochemistry, 2022, 116: 72-83. [百度学术] 

69

CHEN SY, ZHENG HC, GAO JQ, SONG H, BAI WQ. High-level production of pullulan and its biosynthesis regulation in Aureobasidium pullulans BL06[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1131875. [百度学术] 

70

SINGH RS, KAUR N. Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans[J]. Food Science and Biotechnology, 2019, 28(5): 1507-1520. [百度学术] 

71

AN C, MA SJ, CHANG F, XUE WJ. Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose[J]. Brazilian Journal of Microbiology, 2017, 48(1): 180-185. [百度学术] 

72

AKDENIZ OKTAY B, BOZDEMIR MT, ÖZBAŞ ZY. Evaluation of some agro-industrial wastes as fermentation medium for pullulan production by Aureobasidium pullulans AZ-6[J]. Current Microbiology, 2022, 79(3): 93. [百度学术] 

73

LI BQ, HE JZ, ZUO KJ, XU XR, ZOU X. Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid[J]. Bioresource Technology, 2024, 414: 131578. [百度学术] 

74

ZENG W, ZHANG B, LI MX, DING S, CHEN GG, LIANG ZQ. Development and benefit evaluation of fermentation strategies for poly(malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6[J]. Bioresource Technology, 2019, 274: 479-487. [百度学术] 

75

ZOU X, YANG J, TIAN X, GUO MJ, LI ZH, LI YZ. Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6-11 strain[J]. Process Biochemistry, 2016, 51(1): 16-23. [百度学术] 

76

LIN CY, LU PQ, MA JQ, KAN T, HAN X, LIU SP, JI ZW, MAO J. Investigation into the production of melanin from by-products of Huangjiu brewing[J]. Foods, 2024, 13(19): 3063. [百度学术] 

77

TANG RR, CHI Z, JIANG H, LIU GL, XUE SJ, HU Z, CHI ZM. Overexpression of a pyruvate carboxylase gene enhances extracellular liamocin and intracellular lipid biosynthesis by Aureobasidium melanogenum M39[J]. Process Biochemistry, 2018, 69: 64-74. [百度学术] 

78

MANITCHOTPISIT P, WATANAPOKASIN R, PRICE NPJ, BISCHOFF KM, TAYEH M, TEERAWORAWIT S, KRIWONG S, LEATHERS TD. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity[J]. World Journal of Microbiology & Biotechnology, 2014, 30(8): 2199-2204. [百度学术] 

79

SAIKA A, FUKUOKA T, MIKOME S, KONDO Y, HABE H, MORITA T. Screening and isolation of the liamocin-producing yeast Aureobasidium melanogenum using xylose as the sole carbon source[J]. Journal of Bioscience and Bioengineering, 2020, 129(4): 428-434. [百度学术] 

80

PRICE NP, BISCHOFF KM, LEATHERS TD, COSSÉ AA, MANITCHOTPISIT P. Polyols, not sugars, determine the structural diversity of anti-streptococcal liamocins produced by Aureobasidium pullulans strain NRRL 50380[J]. The Journal of Antibiotics, 2017, 70(2): 136-141. [百度学术] 

81

WEI X, ZHANG M, WANG GY, LIU GL, CHI ZM, CHI Z. The ornithine-urea cycle involves fumaric acid biosynthesis in Aureobasidium pullulans var. aubasidani, a green and eco-friendly process for fumaric acid production[J]. Synthetic and Systems Biotechnology, 2023, 8(1): 33-45. [百度学术] 

82

TOLEDO AV, FRANCO MEE, YANIL LOPEZ SM, TRONCOZO MI, SAPARRAT MCN, BALATTI PA. Melanins in fungi: types, localization and putative biological roles[J]. Physiological and Molecular Plant Pathology, 2017, 99: 2-6. [百度学术] 

83

LEATHERS TD, PRICE NPJ, BISCHOFF KM, MANITCHOTPISIT P, SKORY CD. Production of novel types of antibacterial liamocins by diverse strains of Aureobasidium pullulans grown on different culture media[J]. Biotechnology Letters, 2015, 37(10): 2075-2081. [百度学术] 

84

EL-AMRANI M, EBADA SS, GAD HA, PROKSCH P. Pestalotiopamide E and pestalotiopin B from an endophytic fungus Aureobasidium pullulans isolated from Aloe vera leaves[J]. Phytochemistry Letters, 2016, 18: 95-98. [百度学术] 

85

SHI Y, ZHAO QH, XIN Y, YANG QY, DHANASEKARAN S, ZHANG XY, ZHANG HY. Aureobasidium pullulans S2 controls tomato gray mold and produces volatile organic compounds and biofilms[J]. Postharvest Biology and Technology, 2023, 204: 112450. [百度学术] 

86

DONG HY, WANG Y, ZHANG XY, ZHANG M, YANG LH, ZOU ZB, LI Y, XIE MM, YANG XW, WANG B. Chemical constituents from the deep-sea-derived fungus Aureobasidium melanogenum LUO5[J]. Chemistry & Biodiversity, 2024, 21(6): e202400507. [百度学术] 

87

FUJITANI Y, ALAMGIR KM, TANI A. Ergothioneine production using Methylobacterium species, yeast, and fungi[J]. Journal of Bioscience and Bioengineering, 2018, 126(6): 715-722. [百度学术] 

88

WANG W, ZHANG K, LIN CY, ZHAO SS, GUAN JQ, ZHOU W, RU X, CONG H, YANG Q. Influence of Cmr1 in the regulation of antioxidant function melanin biosynthesis in Aureobasidium pullulans[J]. Foods, 2023, 12(11): 2135. [百度学术] 

89

CHI Z, WANG XX, MA ZC, BUZDAR MA, CHI ZM. The unique role of siderophore in marine-derived Aureobasidium pullulans HN6.2[J]. Biometals, 2012, 25(1): 219-230. [百度学术] 

90

GUO J, WANG YH, LI BZ, HUANG SY, CHEN YF, GUO XW, XIAO DG. Development of a one-step gene knock-out and knock-in method for metabolic engineering of Aureobasidium pullulans[J]. Journal of Biotechnology, 2017, 251: 145-150. [百度学术] 

91

涂光伟, 王永康, 冯骏, 李晓荣, 郭美锦, 邹祥. 农杆菌介导的出芽短梗霉遗传转化及高效筛选聚苹果酸高产菌株[J]. 生物工程学报, 2015, 31(7): 1063-1072. [百度学术] 

TU GW, WANG YK, FENG J, LI XR, GUO MJ, ZOU X. Agrobacterium tumefaciens-mediated transformation of Aureobasidium pullulans and high-efficient screening for polymalic acid producing strain[J]. Chinese Journal of Biotechnology, 2015, 31(7): 1063-1072 (in Chinese). [百度学术] 

92

ZHANG Z, LU Y, CHI Z, LIU GL, JIANG H, HU Z, CHI ZM. Genome editing of different strains of Aureobasidium melanogenum using an efficient Cre/loxp site-specific recombination system[J]. Fungal Biology, 2019, 123(10): 723-731. [百度学术] 

93

ZHANG Y, FENG J, WANG P, XIA J, LI XR, ZOU X. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans[J]. Gene, 2019, 709: 8-16. [百度学术] 

94

KREUTER J, STARK G, MACH RL, MACH-AIGNER AR, ZIMMERMANN C. Fast and efficient CRISPR-mediated genome editing in Aureobasidium using Cas9 ribonucleoproteins[J]. Journal of Biotechnology, 2022, 350: 11-16. [百度学术] 

95

HUO T, WANG CT, YU TF, WANG DM, LI M, ZHAO D, LI XT, FU JD, XU ZS, SONG XY. Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis[J]. Scientific Reports, 2021, 11(1): 4024. [百度学术] 

96

WANG QQ, LIN J, ZHOU QZ, PENG J, ZHANG Q, WANG JH. Hyper-production of pullulan by a novel fungus of Aureobasidium melanogenum ZH27 through batch fermentation[J]. International Journal of Molecular Sciences, 2023, 25(1): 319. [百度学术] 

97

YANG G, LIU GL, WANG SJ, CHI ZM, CHI Z. Pullulan biosynthesis in yeast-like fungal cells is regulated by the transcriptional activator Msn2 and cAMP-PKA signaling pathway[J]. International Journal of Biological Macromolecules, 2020, 157: 591-603. [百度学术] 

98

ZOU X, TU GW, ZAN ZQ. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223[J]. Bioprocess and Biosystems Engineering, 2014, 37(10): 2131-2136. [百度学术] 

99

HE JZ, ZUO KJ, CHEN HJ, XU XR, ZOU X. Design a reducing CO2 emission system using nonfermentable substrates for carbon-economic biosynthesis of poly-2-hydrobutanedioic acid[J]. Chemical Engineering Journal, 2024, 487: 150597. [百度学术] 

100

LIU F, ZHANG JH, ZHANG LJ, DIAO MQ, LING PX, WANG FS. Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans[J]. International Journal of Biological Macromolecules, 2021, 177: 252-260. [百度学术] 

101

WANG K, CHI Z, LIU GL, QI CY, JIANG H, HU Z, CHI ZM. A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921[J]. International Journal of Biological Macromolecules, 2020, 156: 1053-1063. [百度学术] 

102

WANG YK, SONG XD, ZHANG YJ, WANG BC, ZOU X. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans[J]. Microbial Cell Factories, 2016, 15(1): 146. [百度学术] 

103

SONG XD, WANG YK, WANG P, PU GH, ZOU X. GATA-type transcriptional factor Gat1 regulates nitrogen uptake and polymalic acid biosynthesis in polyextremotolerant fungus Aureobasidium pullulans[J]. Environmental Microbiology, 2020, 22(1): 229-242. [百度学术] 

104

WANG P, LI BQ, LI BY, YANG J, XU XR, YANG ST, ZOU X. Carbon-economic biosynthesis of poly-2-hydrobutanedioic acid driven by nonfermentable substrate ethanol[J]. Green Chemistry, 2022, 24(17): 6599-6612. [百度学术] 

105

JIANG H, CHI Z, LIU GL, HU Z, ZHAO SZ, CHI ZM. Melanin biosynthesis in the desert-derived Aureobasidium melanogenum XJ5-1 is controlled mainly by the CWI signal pathway via a transcriptional activator Cmr1[J]. Current Genetics, 2020, 66(1): 173-185. [百度学术] 

106

JIANG H, LIU GL, CHI Z, WANG JM, ZHANG LL, CHI ZM. Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert[J]. Gene, 2017, 602: 8-15. [百度学术] 

107

CHI Z, WEI X, GE N, JIANG H, LIU GL, CHI ZM. NsdD, a GATA-type transcription factor is involved in regulation and biosynthesis of macromolecules melanin, pullulan, and polymalate in Aureobasidium melanogenum[J]. International Journal of Biological Macromolecules, 2024, 268: 131820. [百度学术] 

108

FENG JW, DENG X, HAO P, ZHU ZD, LI T, YUAN XW, HU J, WANG Y. Intra-articular injection of platinum nanozyme-loaded silk fibroin/pullulan hydrogels relieves osteoarthritis through ROS scavenging and ferroptosis suppression[J]. International Journal of Biological Macromolecules, 2024, 280: 135863. [百度学术] 

109

MURAOKA D, HARADA N, HAYASHI T, TAHARA Y, MOMOSE F, SAWADA SI, MUKAI SA, AKIYOSHI K, SHIKU H. Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity[J]. ACS Nano, 2014, 8(9): 9209-9218. [百度学术] 

110

LJUBIMOVA JY, SUN T, MASHOUF L, LJUBIMOV AV, ISRAEL LL, LJUBIMOV VA, FALAHATIAN V, HOLLER E. Covalent nano delivery systems for selective imaging and treatment of brain tumors[J]. Advanced Drug Delivery Reviews, 2017, 113: 177-200. [百度学术] 

111

REKHA MR, SHARMA CP. Hemocompatible pullulan-polyethyleneimine conjugates for liver cell gene delivery: in vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency[J]. Acta Biomaterialia, 2011, 7(1): 370-379. [百度学术] 

112

THOMSEN LB, LICHOTA J, KIM KS, MOOS T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion[J]. Journal of Controlled Release, 2011, 151(1): 45-50. [百度学术] 

113

WANG JY, DOU BR, BAO YM. Efficient targeted pDNA/siRNA delivery with folate-low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier[J]. Materials Science and Engineering: C, 2014, 34: 98-109. [百度学术] 

114

IWANIEC J, NIZIOŁEK K, POLANOWSKI P, SŁOTA D, KOSIŃSKA E, SADLIK J, MIERNIK K, JAMPILEK J, SOBCZAK-KUPIEC A. Polyethylene glycol/pullulan-based carrier for silymarin delivery and its potential in biomedical applications[J]. International Journal of Molecular Sciences, 2024, 25(18): 9972. [百度学术] 

115

INOUE S, DING H, PORTILLA-ARIAS J, HU JW, KONDA B, FUJITA M, ESPINOZA A, SUHANE S, RILEY M, GATES M, PATIL R, PENICHET ML, LJUBIMOV AV, BLACK KL, HOLLER E, LJUBIMOVA JY. Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity[J]. Cancer Research, 2011, 71(4): 1454-1464. [百度学术] 

116

PATIL R, LJUBIMOV AV, GANGALUM PR, DING H, PORTILLA-ARIAS J, WAGNER S, INOUE S, KONDA B, REKECHENETSKIY A, CHESNOKOVA A, MARKMAN JL, LJUBIMOV VA, LI DB, PRASAD RS, BLACK KL, HOLLER E, LJUBIMOVA JY. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain[J]. ACS Nano, 2015, 9(5): 5594-5608. [百度学术] 

117

LI FL, XIE X, XU XR, ZOU X. Water-soluble biopolymers calcium polymalate derived from fermentation broth of Aureobasidium pullulans markedly alleviates osteoporosis and fatigue[J]. International Journal of Biological Macromolecules, 2024, 268: 132013. [百度学术] 

118

ZHAO NY, YUAN WZ. Injectable and self-healable hydrogel based on pullulan polysaccharide loading platelet-rich plasma and metal-phenol network nanoparticles for infectious wound healing[J]. International Journal of Biological Macromolecules, 2024, 279: 135361. [百度学术] 

119

LIU TS, LEI H, QU LL, ZHU CH, MA XX, FAN DD. Algae-inspired chitosan-pullulan-based multifunctional hydrogel for enhanced wound healing[J]. Carbohydrate Polymers, 2025, 347: 122751. [百度学术] 

120

KANG XX, JIA SL, WEI X, ZHANG M, LIU GL, HU Z, CHI Z, CHI ZM. Liamocins biosynthesis, its regulation in Aureobasidium spp., and their bioactivities[J]. Critical Reviews in Biotechnology, 2022, 42(1): 93-105. [百度学术] 

121

ZHANG HQ, CHI Z, LIU GL, ZHANG M, HU Z, CHI ZM. Metschnikowia bicuspidate associated with a milky disease in Eriocheir sinensis and its effectitve treatment by Massoia lactone[J]. Microbiological Research, 2021, 242: 126641. [百度学术] 

122

SANG QN, PAN Y, JIANG ZH, WANG YR, ZHANG HY, HU P. HPLC determination of Massoia lactone in fermented Cordyceps sinensis mycelium Cs-4 and its anticancer activity in vitro[J]. Journal of Food Biochemistry, 2020, 44(9): e13336. [百度学术] 

123

RUI TD, YOSHIKAWA M, TAKAO KG, TANIOKA A, ISHIBASHI KI, ADACHI Y, TSUBAKI K, OHNO N. A highly branched 1,3-beta-d-glucan extracted from Aureobasidium pullulans induces cytokine production in DBA/2 mouse-derived splenocytes[J]. International Immunopharmacology, 2009, 9(12): 1431-1436. [百度学术] 

124

CHATURVEDI S, SARETHY IP. GC-MS-based metabolite fingerprinting reveals the presence of novel anticancer compounds in the microcolonial fungus Aureobasidium sp. TD-062 from the under-explored Thar Desert[J]. Natural Product Research, 2024. DOI: https://doi.org/10.1080/14786419.2024.2418450. [百度学术] 

125

梁静盈, 梁俊峰, 陈言柳, 何茜. 撕裂蜡孔菌(Emmia lacerata) SR5抑菌特性及生防潜力评价[J]. 微生物学通报, 2023, 50(7): 2923-2936. [百度学术] 

LIANG JY, LIANG JF, CHEN YL, HE Q. Antifungal characteristics and biocontrol potential of Emmia lacerata SR5[J]. Microbiology China, 2023, 50(7): 2923-2936 (in Chinese). [百度学术] 

126

KHOMUTOVSKA N, JASSER I, SARAPULTSEVA P, SPIRINA V, ZAITSEV A, MASŁOWIECKA J, ISIDOROV VA. Seasonal dynamics in leaf litter decomposing microbial communities in temperate forests: a whole-genome-sequencing-based study[J]. PeerJ, 2024, 12: e17769. [百度学术] 

127

ZHOU T, HUANG XJ, ZHU DY, TANG Y, XU HL, RAN FR, ULLAH H, TAN JL. Comparative analysis of microbial communities in diseased and healthy sweet cherry trees (Prunus avium L.)[J]. Microorganisms, 2024, 12(9): 1837. [百度学术] 

128

JOHNSON KB, TEMPLE TN, KC A, ELKINS RB. Refinement of nonantibiotic spray programs for fire blight control in organic pome fruit[J]. Plant Disease, 2022, 106(2): 623-633. [百度学术] 

129

ZENG Q, JOHNSON KB, MUKHTAR S, NASON S, HUNTLEY R, MILLET F, YANG CH, AMINE HASSANI M, ZUVERZA-MENA N, SUNDIN GW. Aureobasidium pullulans from the fire blight biocontrol product, blossom protect, induces host resistance in apple flowers[J]. Phytopathology, 2023, 113(7): 1192-1201. [百度学术] 

130

SPADARO D, DROBY S. Development of biocontrol products for postharvest diseases of fruit: the impoCst antagonists[J]. Trends in Food Science & Technology, 2016, 47: 39-49. [百度学术] 

131

TEMPLE TN, THOMPSON EC, UPPALA S, GRANATSTEIN D, JOHNSON KB. Floral colonization dynamics and specificity of Aureobasidium pullulans strains used to suppress fire blight of pome fruit[J]. Plant Disease, 2020, 104(1): 121-128. [百度学术] 

132

鲁晏宏, 郝金辉, 罗明, 黄伟, 盛强, 王宁, 詹发强, 龙宣杞, 包慧芳. 梨火疫病拮抗菌筛选及温室防效测定[J]. 微生物学通报, 2021, 48(10): 3690-3699. [百度学术] 

LU YH, HAO JH, LUO M, HUANG W, SHENG Q, WANG N, ZHAN FQ, LONG XQ, BAO HF. Screening of antagonistic bacteria against Erwinia amylovora and its control effect in greenhouse[J]. Microbiology China, 2021, 48(10): 3690-3699 (in Chinese). [百度学术] 

133

徐琳赟, 古丽孜热·曼合木提, 韩剑, 蒋萍, 黄伟, 罗明. 香梨内生拮抗细菌的筛选及对梨火疫病的生防潜力[J]. 西北植物学报, 2021, 41(1): 132-141. [百度学术] 

XU LY, GULIZZIER M, HAN J, JIANG P, HUANG W, LUO M. Screening of endophytic antagonistic bacteria from ‘kuerlexiangli’ pear and their biocontrol potential against fire blight disease[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 132-141 (in Chinese). [百度学术] 

134

Di FRANCESCO A, CALASSANZIO M, RATTI C, MARI M, FOLCHI A, BARALDI E. Molecular characterization of the two postharvest biological control agents Aureobasidium pullulans L1 and L8[J]. Biological Control, 2018, 123: 53-59. [百度学术] 

135

REMOLIF G, SCHIAVON G, GARELLO M, SPADARO D. Efficacy of postharvest application of Aureobasidium pullulans to control white haze on apples and effect on the fruit mycobiome[J]. Horticulturae, 2024, 10(9): 927. [百度学术] 

136

Di FRANCESCO A, UGOLINI L, LAZZERI L, MARI M. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens[J]. Biological Control, 2015, 81: 8-14. [百度学术] 

137

Di FRANCESCO A, di FOGGIA M, BARALDI E. Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits[J]. Food Microbiology, 2020, 87: 103395. [百度学术] 

138

Di FRANCESCO A, ZAJC J, GUNDE-CIMERMAN N, APREA E, GASPERI F, PLACÌ N, CARUSO F, BARALDI E. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape[J]. World Journal of Microbiology & Biotechnology, 2020, 36(11): 171. [百度学术] 

139

MUNUSAMY K, VADIVELU J, TAY ST. A study on Candida biofilm growth characteristics and its susceptibility to aureobasidin A[J]. Revista Iberoamericana de Micologia, 2018, 35(2): 68-72. [百度学术] 

140

Di FRANCESCO A, BARALDI E. How siderophore production can influence the biocontrol activity of Aureobasidium pullulans against Monilinia laxa on peaches[J]. Biological Control, 2021, 152: 104456. [百度学术] 

141

BENCHEQROUN SK, BAJJI M, MASSART S, LABHILILI M, EL JAAFARI S, JIJAKLI MH. In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients[J]. Postharvest Biology and Technology, 2007, 46(2): 128-135. [百度学术] 

142

CASTORIA R, de CURTIS F, LIMA G, CAPUTO L, PACIFICO S, de CICCO V. Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action[J]. Postharvest Biology and Technology, 2001, 22(1): 7-17. [百度学术] 

143

NARAYANASAMY P. Biological management of diseases of crops. Volume 1: characteristics of biological control agents[M]. Dordrecht: Springer Netherlands, 2013. [百度学术] 

144

IPPOLITO A, EL GHAOUTH A, WILSON CL, WISNIEWSKI M. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses[J]. Postharvest Biology and Technology, 2000, 19(3): 265-272. [百度学术] 

145

SUN PF, FANG WT, SHIN LY, WEI JY, FU SF, CHOU JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.[J]. PLoS One, 2014, 9(12): e114196. [百度学术] 

146

CIGNOLA R, CARMINATI G, NATOLINO A, di FRANCESCO A. Effects of bioformulation prototype and bioactive extracts from Agaricus bisporus spent mushroom substrate on controlling Rhizoctonia solani of Lactuca sativa L.[J]. Frontiers in Plant Science, 2024, 15: 1466956. [百度学术] 

147

MUTHUSAMY S, ANANDHARAJ SJ, KUMAR PS, MEGANATHAN Y, VO DN, VAIDYANATHAN VK, MUTHUSAMY S. Microbial pullulan for food, biomedicine, cosmetic, and water treatment: a review[J]. Environmental Chemistry Letters, 2022, 20(5): 3199-3234. [百度学术] 

148

KOWALCZYK D, KORDOWSKA-WIATER M, KARAŚ M, ZIĘBA E, MĘŻYŃSKA M, WIĄCEK AE. Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends[J]. Food Hydrocolloids, 2020, 101: 105539. [百度学术] 

149

YANG ZC, WU ML, QIN ZQ, WU D, CHEN KS. Multi-functional pH-sensing/antioxidant/antibacterial bioaerogels with long-term activity of loaded anthocyanin for the smart packaging of food[J]. International Journal of Biological Macromolecules, 2024, 279: 135389. [百度学术] 

150

BIAN ZT, WU XQ, SUN XJ, HUANG XR, ZHUO X, WANG HY, KOMARNENI S, ZHANG KY, NI ZH, HU GZ. Gellan gum and pullulan-based films with triple functionalities of antioxidant, antibacterial and freshness indication properties for food packaging[J]. International Journal of Biological Macromolecules, 2024, 278: 134825. [百度学术] 

151

CHEN L, McCLEMENTS DJ, ZHANG ZP, ZHANG RJ, BIAN XL, JIN ZY, TIAN YQ. Effect of pullulan on oil absorption and structural organization of native maize starch during frying[J]. Food Chemistry, 2020, 309: 125681. [百度学术] 

152

FUJIKURA D, MURAMATSU D, TOYOMANE K, CHIBA S, DAITO T, IWAI A, KOUWAKI T, OKAMOTO M, HIGASHI H, KIDA H, OSHIUMI H. Aureobasidium pullulans-cultured fluid induces IL-18 production, leading to Th1-polarization during influenza A virus infection[J]. Journal of Biochemistry, 2018, 163(1): 31-38. [百度学术] 

153

AOKI S, IWAI A, KAWATA K, MURAMATSU D, UCHIYAMA H, OKABE M, IKESUE M, MAEDA N, UEDE T. Oral administration of the Aureobasidium pullulans-derived β-glucan effectively prevents the development of high fat diet-induced fatty liver in mice[J]. Scientific Reports, 2015, 5: 10457. [百度学术] 

154

KIMURA Y, SUMIYOSHI M, SUZUKI T, SUZUKI T, SAKANAKA M. Inhibitory effects of water-soluble low-molecular-weight β-(1,3-1,6) d-glucan purified from Aureobasidium pullulans GM-NH-1A1 strain on food allergic reactions in mice[J]. International Immunopharmacology, 2007, 7(7): 963-972. [百度学术] 

155

KAWATA K, IWAI A, MURAMATSU D, AOKI S, UCHIYAMA H, OKABE M, HAYAKAWA S, TAKAOKA A, MIYAZAKI T. Stimulation of macrophages with the β-glucan produced by Aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)[J]. PLoS One, 2015, 10(4): e0124809. [百度学术] 

156

RUI TD, TANIOKA A, IWASAWA H, HATASHIMA K, SHOJI Y, ISHIBASHI KI, ADACHI Y, YAMAZAKI M, TSUBAKI K, OHNO N. Structural characterisation and biological activities of a unique type beta-d-glucan obtained from Aureobasidium pullulans[J]. Glycoconjugate Journal, 2008, 25(9): 851-861. [百度学术] 

157

鈴木利雄, 西川孝治, 中村誠司, 鈴木隆浩. 機能性食品素材に向けた黒酵母由来高純度β-1,3-1,6-グルカンの開発[J]. 応用糖質科学, 2012, 2(1): 51-60. [百度学术] 

158

YEGIN S. Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry[J]. Food Chemistry, 2017, 221: 67-75. [百度学术] 

159

LIU L, GUO J, ZHOU XF, LI Z, ZHOU HX, SONG WQ. Characterization and secretory expression of a thermostable tannase from Aureobasidium melanogenum T9: potential candidate for food and agricultural industries[J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 769816. [百度学术] 

160

KHATUN MS, HARRISON MD, SPEIGHT RE, O’HARA IM, ZHANG ZY. Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain[J]. Biochemical Engineering Journal, 2020, 163: 107747. [百度学术] 

161

Da SILVA RR, DUFFECK CE, BOSCOLO M, Da SILVA R, GOMES E. Milk clotting and storage-tolerant peptidase from Aureobasidium leucospermi LB86[J]. Process Biochemistry, 2019, 85: 206-212. [百度学术] 

162

BALDWIN EL, KARKI B, ZAHLER JD, RINEHART M, GIBBONS WR. Submerged vs. solid-state conversion of soybean meal into a high protein feed using Aureobasidium pullulans[J]. Journal of the American Oil Chemists’ Society, 2019, 96(9): 989-998. [百度学术]