摘要
浅水湖泊沉积物中的有机质降解是调控碳循环与温室气体排放的关键过程,但沉水植物残体降解过程对微生物群落长期演替的调控机制尚未明晰。
目的
探究在长时间尺度下沉水植物残体降解对微生物群落的驱动机制。
方法
通过4年的微宇宙模拟实验,研究太湖沉积物中竹叶眼子菜(Potamogeton wrightii)残体降解的动态过程,详细解析了有机质组分演变、胞外酶活性对微生物群落演替的动态影响。
结果
易降解有机质组分(labile organic matter pool, LP)的快速消耗伴随β-葡萄糖苷酶活性激增,而难降解有机质组分(recalcitrant organic matter pool, RP)累积与酚氧化酶活性滞后响应耦合。微生物群落呈现显著功能分异,芽孢杆菌门(Bacillota)和担子菌门(Basidiomycota)分别主导细菌与真菌群落难降解有机质的降解,揭示了木质素类聚合物降解的代谢分工。方差分解表明易降解有机质与难降解有机质都能独立解释微生物群落差异性,凸显有机质的化学复杂度对功能类群的筛选作用。
结论
沉水植物残体降解显著驱动了微宇宙培养体系的微生物群落结构演替,微生物群落组成与有机质组分呈现出协同变化的趋势,并促进了具有不同生长策略的微生物生长。本研究阐明了沉水植物残体降解过程中微生物功能差异与有机质组分复杂度的动态互作规律,为浅水湖泊碳稳定性评估及生态修复提供了理论依据。
淡水湖泊沉积物作为水生生态系统中碳循环的关键角色,其有机质降解过程在很大程度上影响着全球碳库的稳定以及温室气体排放的平
沉水植物作为浅水湖泊生态系统的重要组成部分,其死亡后残体降解的时间差异性直接影响着微生物群落功能与碳储
近年来,沉积物中有机质降解对微生物群落的驱动机制的相关研究取得了诸多进展。Banerjee
为此,本研究以太湖这一典型的浅水湖泊作为研究对象,通过4年长时间尺度的微宇宙室内模拟实验,追踪沉水植物(竹叶眼子菜)残体降解过程中有机质组分演变、胞外酶活性动态变化及微生物群落的演替规律,旨在揭示有机质降解对微生物群落演替的驱动机制。
1 材料与方法
1.1 样品采集
本研究于2016年7月采集太湖东部东太湖湖区(31°09′30′′N,120°35′30′′E)的表层沉积物(0-10 cm)及上覆水。沉积物经均质化处理,剔除砾石与贝壳后,于4 ℃暗保存;水样经0.45 μm滤膜过滤去除悬浮颗粒。同步采集优势沉水植物竹叶眼子菜,风干后粉碎过100目筛(粒径≤150 μm)备用。
1.2 试验设计
实验装置采用自制的高密度聚乙烯反应器,上口外直径560 mm,下口外直径440 mm,高700 mm,容积约为160 L。每个反应器中加入100 kg的太湖沉积物和1 kg的竹叶眼子菜粉末,充分混匀后注入过滤湖水构建模拟系
样品名称 Sample name | 采样时间 Sample time |
---|---|
SP1 | 2016-10-18 |
SP2 | 2017-04-16 |
SP3 | 2017-07-25 |
SP4 | 2018-01-21 |
SP5 | 2018-06-30 |
SP6 | 2018-12-07 |
SP7 | 2019-04-06 |
SP8 | 2019-07-05 |
SP9 | 2019-10-03 |
SP10 | 2020-03-01 |
SP11 | 2020-05-30 |
SP12 | 2020-09-07 |
本研究以易降解有机质组分(labile organic matter pool, LP)与难降解有机质组分(recalcitrant organic matter pool, RP)作为主要测定指标:其中,LP代表微生物能够快速利用的碳源(如纤维素、半纤维素),其动态反映碳循环的短期通量;RP (如木质素)的累积表征长期碳封存潜
1.3 有机质组分测定
1.3.1 总有机碳(total organic carbon, TOC)测定
采用重铬酸钾外加热法测定TOC含
1.3.2 易降解有机质(LP)和难降解有机质(RP)的测定
参照Rovira
1.4 胞外酶活性测定
1.4.1 外切葡聚糖酶(exoglucanase, Cex)活性测定
取1.0 g鲜重沉积物,用0.05 mol/L的醋酸钠缓冲液(pH 5.0)稀释至10 mL,使用均质器制备悬浮液。取1 mL悬浮液到离心管中,加入1 mL抑制剂和1 mL对硝基苯基-β-d-纤维二糖苷(p-nitrophenyl β-d-cellobioside, pNPC)。在50 ℃下反应30 min后,5 000 r/min 离心20 min,随后将上清液倒入25 mL比色管中,加入1 mL浓度2%的碳酸钠(Na2CO3),定容至25 mL,静置20 min;用分光光度计在410 nm处测量吸光度。以对硝基苯酚(p-nitrophenol, pNP)为标准物质,绘制标准曲
1.4.2 β-葡萄糖苷酶(β-glucosidase, BG)活性测定
沉积物样品处理与Cex活性测定相同。在离心管中加入1 mL悬浮液和1 mL pNPG,在 50 ℃下反应30 min后,5 000 r/min离心20 min。随后将上清液倒入25 mL比色管中,加入1 mL浓度2%的碳酸钠(Na2CO3)溶液,定容至25 mL,静置20 min。用分光光度计在410 nm处测量吸光度。以pNP为标准物质,绘制标准曲
1.4.3 酚氧化酶(phenol oxidase, POX)活性测定
取1 g沉积物,稀释至10 mL,调匀成悬浮液。在离心管中加入2.0 mL悬浮液。在每个离心管中加入2.0 mL 0.01 mol/L的L-3,4-二羟基苯丙氨酸(L-3,4-dihydroxyphenylalanine, L-DOPA)溶液或2.5 mL蒸馏水(空白),涡旋后在20 ℃下振荡1 h。随后在5 ℃、12 000 r/min离心5 min,上清液于460 nm比色:每隔1 min读数1次,读6-10次。酶活性由每1 min光密度的变化表
(1) |
式中:ΔOD460为吸光度变化值,即每隔1 min读取的数值的平均变化量;1.66 μmo
1.4.4 过氧化物酶(peroxidase, POD)活性测定
沉积物样品处理与POX测定相同。在离心管中加入2.0 mL悬浮液。在每个离心管中加入2.0 mL 0.01 mol/L的L-DOPA溶液和0.25 mL 0.3%的H2O2或2.5 mL蒸馏水(空白),涡旋后在20 ℃下振荡1 h。随后在5 ℃、12 000 r/min离心5 min,上清液于460 nm比色:每隔1 min读数1次,读6-10次。以每1 min光密度变化值表示酶活性大
1.5 DNA提取、高通量测序和数据分析
按照制造商的标准操作方案,使用E.Z.N.A. Soil DNA试剂盒(Omega Bio-Tek公司)从沉积物样品中抽提基因组DNA。沉积物样品DNA抽提后,验证其完整性。细菌16S rRNA基因使用引物338F/806R进行PCR扩增,真菌ITS使用引物ITS1F/ITS2R进行PCR扩
使用fastp软
1.6 统计分析
使用Excel 2016软件对试验原始数据进行初步整理与统计。微生物群落α多样性指数(Shannon指数、Chao指数)通过mothur软
2 结果与分析
2.1 有机质组分的动态变化与胞外酶活性特征
在4年的微生物长期驯化实验中,不同驯化时间的沉积物中有机质组分含量变化如

图1 太湖沉积物中TOC、LP与RP含量在4年间的动态变化
Figure 1 Dynamics of TOC, LP and RP contents in Taihu Lake sediment over 4 years.
此外,在微生物驯化实验过程中,外切葡聚糖酶、β-葡萄糖苷酶、酚氧化酶与过氧化物酶的酶活性均与驯化时间呈现显著的正相关关系(

图2 太湖沉积物中胞外酶活性(POX、POD、BG、Cex)在4年间的动态变化
Figure 2 Dynamics of extracellular enzyme activities (POX, POD, BG, Cex) in Taihu Lake sediments over 4 years.
2.2 微生物群落多样性与结构差异
2.2.1 微生物群落多样性
通过对样品的多样性指数计算(

图3 太湖沉积物中细菌与真菌群落的α多样性(Shannon、Chao指数)随时间变化情况。A:细菌Shannon指数;B:细菌Chao指数;C:真菌Shannon指数;D:真菌Chao指数。横坐标为驯化实验的第1-4年(Y1-Y4),箱式图中的横线表示中间值。
Figure 3 Temporal variations in alpha diversity (Shannon index and Chao index) of bacterial and fungal communities in Taihu Lake sediments. A: Bacterial Shannon index; B: Bacterial Chao index; C: Fungal Shannon index; D: Fungal Chao index. The horizontal coordinates are for the first to the fourth year (Y1-Y4) of the domestication experiment, and the horizontal lines in the box plots indicate intermediate values.
2.2.2 微生物群落结构
细菌群落中的主要优势菌门为芽孢杆菌门(Bacillota)、假单胞菌门(Pseudomonadota)、绿屈挠菌门(Chloroflexota)、酸杆菌门(Acidobacteriota)和脱硫杆菌门(Desulfobacterota)。微生物相对丰度的分布规律揭示了长期驯化的微生物群落组成存在差异,这种差异主要体现在优势菌群的相对比例变化上。在驯化1年后假单胞菌门的丰度占比最高(28%),然后依次为绿屈挠菌门(14%)、酸杆菌门(13%)和脱硫杆菌门(9%),芽孢杆菌门最少,只有6%。微生物经过4年的驯化后,芽孢杆菌门的丰度占比增长至46%,而假单胞菌门降低至10% (

图4 太湖沉积物细菌(A)与真菌(B)群落的门水平物种组成与驯化时间的关系
Figure 4 Relationship between the species composition of bacterial (A) and fungal (B) communities at the phylum level and the time of domestication in Taihu Lake sediments.

图5 太湖沉积物细菌(A)与真菌(B)群落的门水平物种组成差异显著性分析
Figure 5 Significance analysis of the difference in species composition at the phylum level between bacterial (A) and fungal (B) communities in Taihu Lake sediments. * P<0.05.
从属分类水平来看,细菌与真菌群落在驯化1年后的第一优势菌属分别为热脱硫弧菌纲未分类属(norank_f__norank_o__norank_c__Thermodesulfovibrionia)和赤霉菌属(Gibberella)。在经过为期4年的驯化实验后,微生物群落结构发生了显著变化,毛球菌属(Trichococcus)和节担菌属(Wallemia)的含量显著增加,分别成为了细菌与真菌群落的第一优势菌属(

图6 太湖沉积物细菌(A)与真菌(B)群落的属水平物种组成的时间动态分析
Figure 6 Temporal dynamics of genus-level species composition of bacterial (A) and fungal (B) communities in Taihu Lake sediments.
2.3 环境因子对微生物群落的驱动机制
2.3.1 微生物多样性对不同有机质组分的响应
通过线性回归分析(

图7 太湖沉积物细菌群落的有机质组分(LP、RP、TOC)与微生物群落多样性(Shannon指数、Chao指数、PCoA分析)的线性回归模型。A:LP与Shannon指数;B:LP与Chao指数;C:LP与PCoA分析;D:RP与Shannon指数;E:RP与Chao指数;F:RP与PCoA分析;G:TOC与Shannon指数;H:TOC与Chao指数;I:TOC与PCoA分析。
Figure 7 Linear regression models of organic matter fractions (LP, RP, TOC) and microbial community diversity (Shannon index, Chao index, PCoA analysis) of bacterial communities in Taihu Lake sediment. A: LP with Shannon index; B: LP with Chao index; C: LP with PCoA analysis; D: RP with Shannon index; E: RP with Chao index; F: RP with PCoA analysis; G: TOC with Shannon index; H: TOC with Chao index; I: TOC with PCoA analysis.
不同有机质组分对真菌群落的α多样性以及PCoA分析的影响均呈现出了非对称性特征(

图8 太湖沉积物真菌群落的有机质组分(LP、RP、TOC)与微生物群落多样性(Shannon、Chao指数、PCoA分析)的线性回归模型。A:LP与Shannon指数;B:LP与Chao指数;C:LP与PCoA分析;D:RP与Shannon指数;E:RP与Chao指数;F:RP与PCoA分析;G:TOC与Shannon指数;H:TOC与Chao指数;I:TOC与PCoA分析。
Figure 8 Linear regression models of organic matter fractions (LP, RP, TOC) and microbial community diversity (Shannon index, Chao index, PCoA analysis) of fungal communities in Taihu Lake sediment. A: LP with Shannon index; B: LP with Chao index; C: LP with PCoA analysis; D: RP with Shannon index; E: RP with Chao index; F: RP with PCoA analysis; G: TOC with Shannon index; H: TOC with Chao index; I: TOC with PCoA analysis.
2.3.2 微生物群落结构对不同有机质组分的响应
通过相关性热图分析(

图9 太湖沉积物中细菌(A)与真菌(B)群落的门水平OTU Spearman秩相关热图
Figure 9 Spearman’s rank correlation heatmap of phylum-level OTUs for bacterial (A) and fungal (B) communities in Taihu Lake sediments. *: 0.01<P≤0.05; **: 0.001<P≤0.01; ***: P≤0.001.
基于Bray-Curtis距离的dbRDA分析进一步验证了这一微生物群落结构差异规律(

图10 太湖沉积物中细菌(A)与真菌(B)群落结构的环境驱动机制
Figure 10 Environmental drivers of bacterial (A) and fungal (B) community structure in Taihu Lake sediments.
2.3.3 环境驱动因子的方差分解分析(variance partitioning analysis, VPA)解析
通过VPA量化了太湖沉积物细菌群落产生差异性的环境驱动因素。RP可以独立解释细菌群落产生差异性的27.939 5%,证明沉积物中如木质素类等结构复杂的有机质组分,对芽孢杆菌门等功能菌群有明显选择作用。LP独立解释群落差异性的26.562 0%,反映了在植物残体降解前期LP对假单胞菌门等能分解糖类的功能菌群有较强促进作用,TOC独立解释群落差异性的12.009 0%,说明总有机碳能够通过提供碳源间接影响菌群结构。LP与RP的负交互作用(-34.776 6%)表明两者存在显著的拮抗关系(

图11 太湖沉积物细菌(A)与真菌(B)群落的环境驱动因子的VPA解析
Figure 11 Variance partitioning analysis (VPA) of environmental drivers shaping bacterial (A) and fungal (B) community structures in sediments of Taihu Lake.
真菌群落的VPA分析显示,RP独立解释群落差异性26.499 0%,揭示了RP通过木质素类等难降解成分对真菌功能菌群如担子菌门有很强的筛选作用。LP独立解释群落差异性19.207 0%,但LP和RP对细菌群落差异性的产生呈负交互作用(-19.837 5%),说明LP的高可利用性可能会抑制真菌对RP的代谢投入量。TOC独立解释群落差异性0.880 1%,表明了总有机碳对真菌群落的直接影响比较小(
3 讨论
3.1 有机质组分与酶活性的动态耦合
本研究通过长达4年的微宇宙模拟实验,旨在揭示太湖沉积物中沉水植物残体的降解过程对微生物群落演替的驱动机制。研究显示,竹叶眼子菜残体长期降解过程中的有机质组分构成随微生物群落驯化时间的变化同步发生改变(
3.2 微生物群落演替的阶段性特征
本研究采集的沉积物的初始微生物群落多样性(Shannon指数)较高,随着植物残体的降解群落多样性降低(
已有研究表明,湖泊生态系统的沉积物中水生植物残体降解主要在厌氧环境下进行,即厌氧菌主导了植物残体的降
3.3 环境因子的驱动机制
3.3.1 LP与RP的拮抗作用机制
环境因子驱动的VPA分析结果显示,RP独立解释细菌和真菌群落变化差异的比例高于LP以及TOC (
3.3.2 功能基因与有机质降解的关联
微生物功能基因的表达差异是驱动有机质降解的关键因素。其中,芽孢杆菌门中的束毛球菌属通过厌氧发酵途径将纤维素转化为短链脂肪酸,其基因组中富集的纤维小体基因簇显著提高了底物结合效
4 结论
本研究发现水生植物残体——竹叶眼子菜的降解过程存在显著的时间差异性,其动态变化主要受微生物代谢偏好以及有机质组分的拮抗作用共同调控,这一现象驱动微生物群落发生阶段性演替。在植物残体降解过程中,微生物群落与有机质组分及含量协同变化,共同影响微生物群落的演替方向。本研究通过长时间尺度的微宇宙模拟实验,表征了太湖沉积物中微生物群落演替对沉水植物降解过程的响应机制,为浅水湖泊生态修复以及应对湖泊退化问题提供了理论指导。
作者贡献声明
姚伟:实验操作,数据收集,数据分析,撰写文章,修改文章;宋天顺:提供技术支持,参与论文讨论,审阅文章;宋娜:提出概念,研究设计,获取基金,监督管理,审阅文章。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
GUDASZ C, BASTVIKEN D, STEGER K, PREMKE K, SOBEK S, TRANVIK LJ. Temperature-controlled organic carbon mineralization in lake sediments[J]. Nature, 2010, 466(7305): 478-481. [百度学术]
刘新, 黄庆慧, 江和龙, 宋娜. 浅水湖泊沉积物中水生植物残体降解过程及微生物群落变化[J]. 生态环境学报, 2016, 25(3): 489-495. [百度学术]
LIU X, HUANG QH, JIANG HL, SONG N. The decomposition processes of aquatic plant residue and the change of microbial community structure in a Shallow Lake sediment[J]. Ecology and Environmental Sciences, 2016, 25(3): 489-495 (in Chinese). [百度学术]
徐思南, 吴自军, 张喜林, 孙伟香, 耿威, 曹红, 翟滨, 孙治雷. 海洋沉积物碳循环过程数值模型的研究进展[J]. 地球科学, 2024, 49(4): 1431-1447. [百度学术]
XU SN, WU ZJ, ZHANG XL, SUN WX, GENG W, CAO H, ZHAI B, SUN ZL. Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments[J]. Earth Science, 2024, 49(4): 1431-1447 (in Chinese). [百度学术]
SONG N, YAN ZS, CAI HY, JIANG HL. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake[J]. Hydrobiologia, 2013, 714(1): 131-144. [百度学术]
秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243. [百度学术]
QIN BQ. Shallow lake limnology and control of eutrophication in Lake Taihu[J]. Journal of Lake Sciences, 2020, 32(5): 1229-1243 (in Chinese). [百度学术]
HU WP, JØRGENSEN SE, ZHANG FB. A vertical-compressed three-dimensional ecological model in Lake Taihu, China[J]. Ecological Modelling, 2006, 190(3-4): 367-398. [百度学术]
CHENG LJ, XUE B, ZAWISZA E, YAO SC, LIU JL, LI LL. Effects of environmental change on subfossil Cladocera in the subtropical shallow freshwater East Taihu Lake, China[J]. Catena, 2020, 188: 104446. [百度学术]
耿荣妹, 胡小贞, 许秋瑾, 冯胜, 薛彦君. 太湖东岸湖滨带水生植物特征及影响因素分析[J]. 环境科学与技术, 2016, 39(12): 17-23. [百度学术]
GENG RM, HU XZ, XU QJ, FENG S, XUE YJ. The features of aquatic macrophytes and its influent factors of lakeside zone in the east of Lake Taihu[J]. Environmental Science & Technology, 2016, 39(12): 17-23 (in Chinese). [百度学术]
LIANG C, SCHIMEL JP, JASTROW JD. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105. [百度学术]
KOYAMA M, YAMAMOTO S, ISHIKAWA K, BAN S, TODA T. Anaerobic digestion of submerged macrophytes: chemical composition and anaerobic digestibility[J]. Ecological Engineering, 2014, 69: 304-309. [百度学术]
徐达, 金伟, 尉艺, 王春柳, 朱伯淞, 化柯, 周攀, 刘新. 沉水植物残体堆积量对沉积物理化性质的影响: 以马来眼子菜为例[J]. 中国环境科学, 2023, 43(3): 1360-1367. [百度学术]
XU D, JIN W, WEI Y, WANG CL, ZHU BS, HUA K, ZHOU P, LIU X. The influence of the accumulation of submerged plant residues on the physicochemical properties of sediments: a case study of Malayan cabbage[J]. China Environmental Science, 2023, 43(3): 1360-1367 (in Chinese). [百度学术]
BANERJEE S, KIRKBY CA, SCHMUTTER D, BISSETT A, KIRKEGAARD JA, RICHARDSON AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology and Biochemistry, 2016, 97: 188-198. [百度学术]
SINSABAUGH RL, HILL BH, FOLLSTAD SHAH JJ. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. [百度学术]
LI XD, SU LB, JING M, WANG KQ, SONG CG, SONG YL. Nitrogen addition restricts key soil ecological enzymes and nutrients by reducing microbial abundance and diversity[J]. Scientific Reports, 2025, 15: 5560. [百度学术]
WANG XY, LIANG C, MAO JD, JIANG YJ, BIAN Q, LIANG YT, CHEN Y, SUN B. Microbial keystone taxa drive succession of plant residue chemistry[J]. The ISME Journal, 2023, 17(5): 748-757. [百度学术]
SHI JW, YANG L, LIAO Y, LI JW, JIAO S, SHANGGUAN ZP, DENG L. Soil labile organic carbon fractions mediate microbial community assembly processes during long-term vegetation succession in a semiarid region[J]. iMeta, 2023, 2(4): e142. [百度学术]
LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68. [百度学术]
WANG CQ, KUZYAKOV Y. Mechanisms and implications of bacterial-fungal competition for soil resources[J]. The ISME Journal, 2024, 18(1): wrae073. [百度学术]
LI ZC, LI X, WANG X, MA J, XU J, XU XG, HAN RM, ZHOU YW, YAN XC, WANG GX. Isotopic evidence revealing spatial heterogeneity for source and composition of sedimentary organic matters in Taihu Lake, China[J]. Ecological Indicators, 2020, 109: 105854. [百度学术]
ROVIRA P, VALLEJO VR. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107(1-2): 109-141. [百度学术]
KOURTEV PS, EHRENFELD JG, HUANG WZ. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey[J]. Soil Biology and Biochemistry, 2002, 34(9): 1207-1218. [百度学术]
CAPORASO JG, LAUBER CL, WALTERS WA, BERG-LYONS D, LOZUPONE CA, TURNBAUGH PJ, FIERER N, KNIGHT R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(supplement_1): 4516-4522. [百度学术]
GARDES M, BRUNS TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts[J]. Molecular Ecology, 1993, 2(2): 113-118. [百度学术]
REN Y, YU G, SHI CP, LIU LM, GUO Q, HAN C, ZHANG D, ZHANG L, LIU BX, GAO H, ZENG J, ZHOU Y, QIU YH, WEI J, LUO YC, ZHU FJ, LI XJ, WU Q, LI B, FU WY, et al. Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. iMeta, 2022, 1(2): e12. [百度学术]
HAN C, SHI CP, LIU LM, HAN JC, YANG QQ, WANG Y, LI XD, FU WY, GAO H, HUANG HS, ZHANG XL, YU KG. Majorbio Cloud 2024: update single-cell and multiomics workflows[J]. iMeta, 2024, 3(4): e217. [百度学术]
CHEN SF, ZHOU YQ, CHEN YR, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. [百度学术]
MAGOČ T, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. [百度学术]
EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. [百度学术]
WANG Q, GARRITY GM, TIEDJE JM, COLE JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. [百度学术]
SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, VAN HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. [百度学术]
SEGATA N, IZARD J, WALDRON L, GEVERS D, MIROPOLSKY L, GARRETT WS, HUTTENHOWER C. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60. [百度学术]
章磊, 徐祎萌, 白美霞, 周燕, 秦华, 徐秋芳, 陈俊辉. 生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响[J]. 浙江农林大学学报, 2024, 41(3): 506-516. [百度学术]
ZHANG L, XU YM, BAI MX, ZHOU Y, QIN H, XU QF, CHEN JH. Effects of biochar combined with organic amendments on carbon composition and eco-enzymatic stoichiometry of red soil[J]. Journal of Zhejiang A&F University, 2024, 41(3): 506-516 (in Chinese). [百度学术]
KIM JI, YANG YR, KANG H. Fluorometric assay for phenol oxidase activity in soils and its controlling variables[J]. Applied Soil Ecology, 2024, 195: 105240. [百度学术]
YANG ZC, ZHOU Q, SUN HM, JIA LX, ZHAO L, WU WZ. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: a pilot-scale study[J]. Water Research, 2021, 196: 117067. [百度学术]
MANICI LM, CAPUTO F, de SABATA D, FORNASIER F. The enzyme patterns of Ascomycota and Basidiomycota fungi reveal their different functions in soil[J]. Applied Soil Ecology, 2024, 196: 105323. [百度学术]
ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, DA ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUÉ D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480. [百度学术]
FERNANDES CG, SAWANT SC, MULE TA, KHADYE VS, LALI AM, ODANETH AA. Enhancing cellulases through synergistic β-glucosidases for intensifying cellulose hydrolysis[J]. Process Biochemistry, 2022, 120: 202-212. [百度学术]
ZHANG ZX, HAO M, YU QH, DUN XJ, XU JW, GAO P. The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests[J]. Science of the Total Environment, 2023, 881: 163492. [百度学术]
CHEN RR, SENBAYRAM M, BLAGODATSKY S, MYACHINA O, DITTERT K, LIN XG, BLAGODATSKAYA E, KUZYAKOV Y. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2356-2367. [百度学术]
SONG N, JIANG HL. Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: dual role of solar irradiation[J]. Water Research, 2020, 172: 115516. [百度学术]
DE BOER W, FOLMAN LB, SUMMERBELL RC, BODDY L. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4): 795-811. [百度学术]
SUBIRATS J, SHARPE H, TOPP E. Fate of Clostridia and other spore-forming Firmicute bacteria during feedstock anaerobic digestion and aerobic composting[J]. Journal of Environmental Management, 2022, 309: 114643. [百度学术]
HE MQ, CAO B, LIU F, BOEKHOUT T, DENCHEV TT, SCHOUTTETEN N, DENCHEV CM, KEMLER M, GORJÓN SP, BEGEROW D, VALENZUELA R, DAVOODIAN N, NISKANEN T, VIZZINI A, REDHEAD SA, RAMÍREZ-CRUZ V, PAPP V, DUDKA VA, DUTTA AK, GARCÍA-SANDOVAL R, et al. Phylogenomics, divergence times and notes of orders in Basidiomycota[J]. Fungal Diversity, 2024, 126(1): 127-406. [百度学术]
MATANGE K, RAJAEI V, CAPERA-ARAGONES P, COSTNER JT, ROBERTSON A, KIM JS, PETROV AS, BOWMAN JC, WILLIAMS LD, FRENKEL-PINTER M. Evolution of complex chemical mixtures reveals combinatorial compression and population synchronicity[J]. Nature Chemistry, 2025, 17(4): 590-597. [百度学术]