摘要
蟋蟀浓核病毒(Acheta domesticus densovirus, AdDV)于1977年在瑞士首次被分离得到,在欧洲与美国曾多次引发疫情。蟋蟀虹彩病毒(cricket iridovirus, CrIV)于1996年在荷兰首次被发现,患病蟋蟀出现死亡率升高、繁殖力降低和寿命缩短的现象。家蟋蟀(Acheta domesticus)原产于西南亚,近几十年来作为爬宠食物引入我国。AdDV与CrIV是家蟋蟀常见的病原体,随着我国家蟋蟀繁育设施的不断完善与宠物市场规模的日益扩大,对家蟋蟀病原的研究愈发重要。
目的
了解AdDV与CrIV在我国的传播与流行现状,为控制病毒性病原体给家蟋蟀养殖业带来的危害,以及研发出有效的防治策略奠定理论基础。
方法
广泛收集国内不同地区人工养殖的家蟋蟀,进行病毒特异的PCR检测,经Sanger测序进一步确证患病蟋蟀的病毒病原体,同时对患病蟋蟀中肠、脂肪体等组织进行透射电镜(transmission electron microscopy, TEM)观察,确定病毒粒子的形态特征。
结果
AdDV病毒粒子为二十面体,近似球形,无囊膜,直径约20 nm,且在宿主细胞核内形成致密的染色质区,呈现典型的浓核病毒特征;CrIV病毒粒子呈二十面体,无囊膜,直径120-140 nm,在细胞质内形成类似晶格状的排列,呈现典型的虹彩病毒特征。病毒特异基因PCR检测发现,我国不同地区的家蟋蟀均能检出AdDV病毒,而绝大多数地区的家蟋蟀能检出CrIV病毒(91%)。已检测家蟋蟀中同时携带AdDV和CrIV病毒粒子的比率高达91%。
结论
本研究发现AdDV与CrIV已在我国蟋蟀养殖业中广泛流行。
家蟋蟀(Acheta domesticus L., house cricket)属于昆虫纲(Insecta)直翅目(Orthoptera)蟋蟀亚科(Gryllinae
家蟋蟀除了能作为爬宠饲料外,在减少和替代肉类方面也具有良好的应用前
蟋蟀浓核病毒(Acheta domesticus densovirus, AdDV)属于细小病毒科(Parvoviridae)浓核病毒亚科(Densovirinae),为无囊膜的正二十面体单链DNA病毒,直径约20 nm,于1977年首次从瑞士患病蟋蟀中分离出
蟋蟀虹彩病毒(cricket iridovirus, CrIV)属于虹彩病毒科(Iridoviridae)虹彩病毒属(Iridovirus),是无囊膜的二十面体颗粒,直径约130 nm,包含约140-210 kb的双链DNA,DNA的复制始于细胞核,但在细胞质中完成。1996年在荷兰Ermelo的一家商业蟋蟀养殖场(Kreca)的两种蟋蟀(Gryllus campestris L.和Acheta domesticus L.)的幼虫和成虫中发现了虹彩病毒,蟋蟀感染后出现了极高的死亡率,以及繁殖力和寿命大大缩短的现象。对病重蟋蟀的病理研究表明,这两种蟋蟀的脂肪体都明显肥大,解剖后显蓝色,这是虹彩病毒感染的典型症
2023年夏秋以来,国内家蟋蟀养殖户陆续发现家蟋蟀大批量死亡的现象,造成严重的经济损失。从养殖户描述的症状和传播情况来看,患病家蟋蟀具有传染性,推测是病毒病原引起的疫病。为调查国内养殖业家蟋蟀大批量死亡的病因,本研究收集了来自全国20个省市自治区的家蟋蟀进行病毒病原检测,以明确家蟋蟀发病的原因,为制定大规模家蟋蟀养殖所面临的病害防治策略奠定理论基础。
1 材料与方法
1.1 样品的来源
本研究所用的典型感染病毒蟋蟀样品XS1、XS2来自国内某蟋蟀养殖场。病毒普查蟋蟀样品(2-3龄)于2024年8月购自全国各地蟋蟀销售网店。大部分蟋蟀购回时为生活状态,少量已死亡。从每个网店样品中随机取10只蟋蟀解剖(仅少数店铺样品中有死亡蟋蟀,死亡蟋蟀取虫尸),取样后立即置于-20 ℃冰箱冻存,其余存活的蟋蟀置于养虫笼,室温下以干饲料和大白菜喂养。
1.2 引物序列
用于病毒检测的引物序列如
Virus target | Gene target | Primers | Primer sequences (5′→3′) | Amplicon size (bp) | References |
---|---|---|---|---|---|
Acheta domesticus densovirus (AdDV)-ssDNA | Capsid protein | Advp2-F | CGTAACCCGGATTATCT | 304 |
[ |
Advp-R | GGTCTTGCTACTCTAAATC | ||||
Acheta domesticus virus (AdV)-ssDNA | Capsid protein | AdVF | CAGCCATTCCTAATCCAGG | 356 |
[ |
AdVR | GTGTGCACGCACAATGGG | ||||
Cricket iridovirus (CrIV)-dsDNA | Major capsid protein | CrIV1 | GGTTTCATCGATATCGCCAC | 1 079 |
[ |
CrIV2 | GAAATTGAAAAATATATGTA |
1.3 蟋蟀样品的解剖及观察
准备数套已灭菌的解剖工具,每套工具仅用于解剖一个样品,防止交叉污染。从某养殖场典型感染病毒的蟋蟀样品XS1、XS2中随机取2-3只蟋蟀进行解剖。将蟋蟀分别置于75%乙醇、无菌PBS溶液中各清洗3次;转移至洁净蜡盘中,在酒精灯火焰附近解剖蟋蟀。用尖头手术剪剪开腹部,细大头针固定,解剖镜下观察血淋巴、肠道、脂肪体等组织。同时,分离肠道、脂肪体等组织内容物,并置于无菌EP管中,做好标记,-20 ℃冻存待用。从全国各地网店购买的蟋蟀样品均以同样方法进行取样及解剖。
1.4 DNA的提取
向蟋蟀组织内容物加入500 μL 5×TE Buffer,冰上研磨匀浆。取200 μL匀浆液,分别加入20 μL 10% SDS溶液,与20 μL 20 mg/mL蛋白酶K,50 ℃水浴2 h以上。加入等体积酚:氯仿:异戊醇(25:24:1,体积比)混匀,4 ℃、 12 000 r/min离心10 min收集上清,重复2次。再加入等体积氯仿:异戊醇(24:1,体积比)混合均匀,4 ℃、12 000 r/min离心5 min收集上清。与等体积异丙醇混匀,4 ℃、12 000 r/min离心 5 min。弃上清,加入70%乙醇洗涤2次,倒置于纸巾上干燥10-20 min。最后,加入30-50 μL ddH2O以溶解DNA,用NanoDrop分光光度计(ThermoFisher Scientific公司)检测DNA浓度及纯度,并保存于-20 ℃。
1.5 蟋蟀物种的鉴定
对蟋蟀样品进行形态观察。同时,使用真核生物18S rRNA基因通用引物EUK18 (5′- TGAGGATCCMGGTTGATYCTGCC-3′)和MO18S3′ (5′-CWDCBGCAGGTTCACCTAC-3′
1.6 病毒的PCR检测
利用病毒特异性引物对上述蟋蟀DNA进行PCR扩增,PCR反应体系(25 μL):上、下游引物(10 μmol/L)各0.5 μL,2×Rapid Taq Master Mix 12.5 μL,DNA 1 μL,ddH2O 10.5 μL。PCR反应条件:95 ℃ 3 min;95 ℃ 60 s,50 ℃ 30 s,72 ℃ 60 s,30个循环;72 ℃ 7 min。1%琼脂糖凝胶电泳检测PCR结果。
1.7 电镜样品的制备
取具有典型病毒感染症状的蟋蟀XS1样品,置于蜡盘固定,于解剖镜下对蟋蟀进行解剖。用无菌尖头手术剪剪开蟋蟀腹部,扒开表皮,用无菌镊子从表皮内壁挑取脂肪体组织,同时挑取中肠及其周围组织,分别置于1% OsO4溶液中固定,4 ℃保存。固定样品转交武汉赛维尔生物科技有限公司进行脱水、包埋、切片及透射电镜(transmission electron microscopy, TEM)观察,电镜制样方法详见文献[
2 结果与分析
2.1 蟋蟀物种的鉴定和患病蟋蟀的组织病理观察
蟋蟀的形态如

图1 蟋蟀的形态、鉴定及组织病理观察。A:蟋蟀的形态;B:蟋蟀样品XS1、XS2 18S rRNA基因的PCR扩增(泳道M:100 bp Plus DNA Marker;泳道1、2:蟋蟀XS1、XS2 DNA;泳道3:阴性对照);C:健康蟋蟀的腹腔;D:感病蟋蟀的腹腔(蓝色箭头所示组织呈现虹彩)。
Figure 1 The morphology, identification of the crickets and histopathological observation. A: The morphology of crickets; B: PCR amplification of crickets XS1, XS2 18S rRNA gene (Lane M: 100 bp Plus DNA Marker; Lanes 1, 2: Crickets XS1, XS2 DNA; Lane 3: Negative control); C: The abdominal cavity of healthy cricket;D: The abdominal cavity of infected cricket (the blue arrows show tissues with iridescence).
对健康蟋蟀和感病蟋蟀腹部进行解剖,健康蟋蟀血淋巴清亮,脂肪体、消化道、马氏管等组织清晰可见(
2.2 病毒检测结果
对典型感病蟋蟀样品XS1和XS2进行PCR检测,结果如

图2 蟋蟀样品XS1和XS2中病毒基因的PCR扩增。泳道M:100 bp Plus DNA Marker;泳道1、4、7:XS1;泳道2、5、8:XS2;泳道3、6、9:阴性对照。
Figure 2 PCR amplification of viral genes in cricket samples XS1 and XS2. Lane M: 100 bp Plus DNA Marker; Lanes 1, 4, 7: XS1; Lanes 2, 5, 8: XS2; Lanes 3, 6, 9: Negative control.
2.3 AdDV和CrIV的透射电镜观察
透射电镜观察结果如

图3 患病蟋蟀XS1中肠及其周围组织的透射电镜观察。A、C:患病蟋蟀中肠感染细胞的细胞核中出现很多电子致密的病毒发生基质(VS) (比例尺为5 μm) (N:细胞核);B、D:A、C图中黑框区域的局部放大,显示细胞核中电子致密的病毒发生基质(VS:病毒发生基质)。B图比例尺为2 μm,D图比例尺为 200 nm,D图箭头所指为AdDV病毒粒子。
Figure 3 Observation of the midgut and surrounding tissues of infected cricket XS1 with transmission electron microscope. A, C: There were many dense virogenic stroma (VS) in the nuclei of infected cricket midgut and surrounding tissue cells (scale bar: 5 μm) (N: Nucleus); B, D: The enlargement of black frames of A and C (VS: Virogenic stroma). The scale bar of B is 2 μm, the scale bar of D is 200 nm. Arrows in D show AdDV virus particles.

图4 患病蟋蟀XS1脂肪体组织的透射电镜观察。A:患病蟋蟀XS1的脂肪体组织(比例尺为5 μm);B:图A黑框区域的放大(比例尺为200 nm)。箭头所指为CrIV病毒粒子。
Figure 4 Observation of the fat body of infected cricket XS1 with transmission electron microscope. A: The fat body tissues of infected cricket XS1 (scale bar: 5 μm); B: The enlargement of the black frame of A (scale bar: 200 nm). Arrows show CrIV virus particles.
患病蟋蟀XS1脂肪体组织如
2.4 全国各地区家蟋蟀样品AdDV和CrIV的调查
对采自全国各地家蟋蟀网店蟋蟀样品(包括死亡蟋蟀和看似健康的蟋蟀)的两种病毒检测结果如
Region | Number of crickets | Positive rate of viruses (%) | ||
---|---|---|---|---|
Total | Tested | AdDV | CrIV | |
Shanghai | 60 | 10 | 80 | 60 |
Beijing | 25 | 10 | 80 | 80 |
Tianjing | 60 | 10 | 60 | 90 |
Xingtai, Hebei | 59 | 10 | 60 | 30 |
Shijiazhuang, Hebei | 60 | 10 | 80 | 0 |
Shenyang, Liaoning | 30 | 10 | 80 | 60 |
Qingdao, Shandong | 60 | 10 | 100 | 100 |
Zhoukou, Henan | 58 | 10 | 90 | 80 |
Xian, Shanxi | 60 | 10 | 100 | 50 |
Hefei, Anhui | 25 | 10 | 100 | 50 |
Nanchang, Jiangxi | 60 | 10 | 60 | 90 |
Xiamen, Fujian | 60 | 10 | 80 | 70 |
Hangzhou, Zhejiang | 30 | 10 | 90 | 80 |
Wuxi, Jiangsu | 60 | 10 | 90 | 90 |
Yancheng, Jiangsu | 60 | 10 | 100 | 30 |
Yichang, Hubei | 60 | 10 | 80 | 20 |
Changsha, Hunan | 60 | 10 | 70 | 90 |
Chengdu, Sichuan | 60 | 10 | 40 | 40 |
Foshan, Guangdong | 60 | 10 | 90 | 60 |
Guangzhou, Guangdong | 50 | 10 | 100 | 100 |
Guilin, Guangxi | 60 | 10 | 80 | 70 |
Haikou, Hainan | 50 | 10 | 80 | 60 |
Chuxiong, Yunnan | 60 | 10 | 100 | 0 |
3 讨论与结论
本研究发现AdDV和CrIV已在我国家蟋蟀养殖业中广泛流行。家蟋蟀起源于西南
对两种病毒衣壳蛋白部分序列的分析表明,CrIV与蜥蜴-蟋蟀虹彩病毒毒株Liz-CrIV_USDA_2019序列相似性达100.0%,而Liz-CrIV可通过口摄入感染昆虫,在爬行动物和两栖动物中引发疾
本研究对国内20多个地区家蟋蟀2-3龄幼虫的检测发现,AdDV与CrIV的隐性感染十分普遍,说明二者主要以隐蔽状态存在于家蟋蟀中,而这两种病毒的隐性感染普遍存在于敏感昆虫
在检测到病毒性疾病时,可以采取一些常见措施:一是去除病虫,防止病毒增
本研究首次报道在国内商业养殖的家蟋蟀中检测到蟋蟀浓核病毒AdDV和蟋蟀虹彩病毒CrIV,这两种病毒已经在国内不同地区家蟋蟀群体中广泛传播并产生致病感染或隐性感染,给养殖户造成了严重的经济损失。调查显示,国内中等规模的养殖场一年的经济损失就超过一百万元。AdDV和CrIV在家蟋蟀不同种群和直翅目不同亚科昆虫间很容易相互传染,且在调查取样过程中我们发现,不同地区销售门店售卖同一养殖场家蟋蟀的现象十分普遍,这也导致两种病毒迅速在国内传播。建立灵敏快速的病毒检测手段,研发有效的病毒防治策略对家蟋蟀的规模化养殖和应用意义重大,将是未来一个重要的研究方向。
参考文献
SULTANA R, SANAM S, KUMAR S, SHEIK SHAMSUDEEN R, SOOMRO F. A review of Gryllidae (Grylloidea) with the description of one new species and four new distribution records from the Sindh Province, Pakistan[J]. ZooKeys, 2021, 1078: 1-33. [百度学术]
CHEN Q, WEN M, LI JX, ZHOU HF, JIN S, ZHOU JJ, WANG YL, REN BZ. Involvement of heat shock protein 40 in the wing dimorphism of the house cricket Acheta domesticus[J]. Journal of Insect Physiology, 2019, 114: 35-44. [百度学术]
SZELEI J, WOODRING J, GOETTEL MS, DUKE G, JOUSSET FX, LIU KY, ZADORI Z, LI Y, STYER E, BOUCIAS DG, KLEESPIES RG, BERGOIN M, TIJSSEN P. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics[J]. Journal of Invertebrate Pathology, 2011, 106(3): 394-399. [百度学术]
史树森, 魏书琴, 刘建君, 袁海滨, 陈日照. 家蟋蟀生物学特性研究[M]//李典谟. 走向21世纪的中国昆虫学——中国昆虫学会2000年学术年会论文集. 宜昌: 中国科学技术出版社, 2000: 1131-1133. [百度学术]
SHI SS, WEI SQ, LIU JJ, YUAN HB, CHEN RZ. The study on biological characteristics of Acheta domesticus[M]//LI DM. Chinese Entomology towards the 2
陈琪. 家蟋蟀翅二型的分子机理研究[D]. 长春: 东北师范大学博士学位论文, 2019. [百度学术]
CHEN Q. Exploring the molecular mechanism of wing dimorphism in the house cricket (Acheta domesticus)[D]. Changchun: Doctoral Dissertation of Northeast Normal University, 2019 (in Chinese). [百度学术]
杜丽新. 家蟋蟀的落翅规律及其调控基因的初步研究[D]. 长春: 东北师范大学硕士学位论文, 2021. [百度学术]
DU LX. Pilot study on the regularity of wing-shed and its regulatory genes in the house cricket Acheta domesticus[D]. Changchun: Master’s Thesis of Northeast Normal University, 2021 (in Chinese). [百度学术]
付裕盈. 家蟋蟀飞行肌降解分子机理的初步研究[D]. 长春: 东北师范大学硕士学位论文, 2021. [百度学术]
FU YY. Preliminary study on molecular mechanism of flight muscle degradation of domestic crickets[D]. Changchun: Master’s Thesis of Northeast Normal University, 2021 (in Chinese) [百度学术]
刘安然, 胥婷婷, 宋丽美, 郝锡联, 朱慧, 任炳忠. 温度变化对家蟋蟀卵孵化率的影响[J]. 四川动物, 2020, 39(4): 401-407. [百度学术]
LIU AR, XU TT, SONG LM, HAO XL, ZHU H, REN BZ. Effects of temperature change on hatchability of Acheta domesticus eggs[J]. Sichuan Journal of Zoology, 2020, 39(4): 401-407 (in Chinese). [百度学术]
GRAY DA. Female house crickets, Acheta domesticus, prefer the chirps of large males[J]. Animal Behaviour, 1997, 54(6): 1553-1562. [百度学术]
ROCCHETTI G, FERRONATO G, SARV V, KERNER K, VENSKUTONIS PR, LUCINI L. Meat extenders from different sources as protein-rich alternatives to improve the technological properties and functional quality of meat products[J]. Current Opinion in Food Science, 2023, 49: 100967. [百度学术]
STULL VJ, FINER E, BERGMANS RS, FEBVRE HP, LONGHURST C, MANTER DK, PATZ JA, WEIR TL. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial[J]. Scientific Reports, 2018, 8(1): 10762. [百度学术]
BERTOLA M, MUTINELLI F. A systematic review on viruses in mass-reared edible insect species[J]. Viruses, 2021, 13(11): 2280. [百度学术]
DOSSEY AT, OPPERT B, CHU FC, LORENZEN MD, SCHEFFLER B, SIMPSON S, KOREN S, JOHNSTON JS, KATAOKA K, IDE K. Genome and genetic engineering of the house cricket (Acheta domesticus): a resource for sustainable agriculture[J]. Biomolecules, 2023, 13(4): 589. [百度学术]
PSARIANOS M, IRANSHAHI K, ROSSI S, GOTTARDI D, SCHLÜTER O. Quality evaluation of house cricket flour processed by electrohydrodynamic drying and pulsed electric fields treatment[J]. Food Chemistry, 2024, 441: 138276. [百度学术]
YEERONG K, CHANTAWANNAKUL P, ANUCHAPREEDA S, WANGTUEAI S, CHAIYANA W. Optimization of hydrolysis conditions, isolation, and identification of biologically active peptides derived from Acheta domesticus for antioxidant and collagenase inhibition[J]. Antioxidants, 2024, 13(3): 367. [百度学术]
LIM FS, GONZÁLEZ-CABRERA J, KEILWAGEN J, KLEESPIES RG, JEHLE JA, WENNMANN JT. Advancing pathogen surveillance by nanopore sequencing and genotype characterization of Acheta domesticus densovirus in mass-reared house crickets[J]. Scientific Reports, 2024, 14(1): 8525. [百度学术]
STYER EL, HAMM JJ. Report of a densovirus in a commercial cricket operation in the southeastern United States[J]. Journal of Invertebrate Pathology, 1991, 58(2): 283-285. [百度学术]
PHAM HT, IWAO H, SZELEI J, LI Y, LIU KY, BERGOIN M, TIJSSEN P. Comparative genomic analysis of Acheta domesticus densovirus isolates from different outbreaks in Europe, North America, and Japan[J]. Genome Announcements, 2013, 1(4): e00629-13. [百度学术]
KLEESPIES RG, TIDONA CA, DARAI G. Characterization of a new iridovirus isolated from crickets and investigations on the host range[J]. Journal of Invertebrate Pathology, 1999, 73(1): 84-90. [百度学术]
DUFFIELD KR, HUNT J, SADD BM, SAKALUK SK, OPPERT B, ROSARIO K, BEHLE RW, RAMIREZ JL. Active and covert infections of cricket iridovirus and Acheta domesticus densovirus in reared Gryllodes sigillatus crickets[J]. Frontiers in Microbiology, 2021, 12: 780796. [百度学术]
de MIRANDA JR, GRANBERG F, LOW M, ONORATI P, SEMBERG E, JANSSON A, BERGGREN Å. Virus diversity and loads in crickets reared for feed: implications for husbandry[J]. Frontiers in Veterinary Science, 2021, 8: 642085. [百度学术]
MORIYA S, DACKS JB, TAKAGI A, NODA S, OHKUMA M, DOOLITTLE WF, KUDO T. Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas[J]. The Journal of Eukaryotic Microbiology, 2003, 50(3): 190-197. [百度学术]
MEI C, SHI Y, WANG Y, QIU ZY, YANG H. Termitidicoccus mucosus gen. nov. sp. nov. a novel Verrucomicrobiota species isolated from Reticulitermes chinensis gives insights of high adaptability of symbiotic bacteria to termite gut ecosystem[J]. Research in Microbiology, 2024, 175(4): 104173. [百度学术]
LIU KY, LI Y, JOUSSET FX, ZADORI Z, SZELEI J, YU Q, PHAM HT, LÉPINE F, BERGOIN M, TIJSSEN P. The Acheta domesticus densovirus, isolated from the European house cricket, has evolved an expression strategy unique among parvoviruses[J]. Journal of Virology, 2011, 85(19): 10069-10078. [百度学术]
PAPP T, MARSCHANG RE. Detection and characterization of invertebrate iridoviruses found in reptiles and prey insects in Europe over the past two decades[J]. Viruses, 2019, 11(7): 600. [百度学术]
WEISSMAN DB, GRAY DA, PHAM HT, TIJSSEN P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster[J]. Zootaxa, 2012, 3504(1): 67-88. [百度学术]
HALLORAN A, HANBOONSONG Y, ROOS N, BRUUN S. Life cycle assessment of cricket farming in north-eastern Thailand[J]. Journal of Cleaner Production, 2017, 156: 83-94. [百度学术]
SEMBERG E, de MIRANDA JR, LOW M, JANSSON A, FORSGREN E, BERGGREN Å. Diagnostic protocols for the detection of Acheta domesticus densovirus (AdDV) in cricket frass[J]. Journal of Virological Methods, 2019, 264: 61-64. [百度学术]
MACIEL-VERGARA G, ROS VID. Viruses of insects reared for food and feed[J]. Journal of Invertebrate Pathology, 2017, 147: 60-75. [百度学术]
TAKACS J, BRYON A, JENSEN AB, van LOON JJA, ROS VID. Effects of temperature and density on house cricket survival and growth and on the prevalence of Acheta domesticus densovirus[J]. Insects, 2023, 14(7): 588. [百度学术]
HEDGES LM, BROWNLIE JC, O’NEILL SL, JOHNSON KN. Wolbachia and virus protection in insects[J]. Science, 2008, 322(5902): 702. [百度学术]
FERNANDEZ-CASSI X, SÖDERQVIST K, BAKEEVA A, VAGA M, DICKSVED J, VAGSHOLM I, JANSSON A, BOQVIST S. Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions[J]. Journal of Insects as Food and Feed, 2020, 6(4): 429-440. [百度学术]
JUST F, ESSBAUER S, AHNE W, BLAHAK S. Occurrence of an invertebrate iridescent-like virus (Iridoviridae) in reptiles[J]. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary Public Health, 2001, 48(9): 685-694. [百度学术]
SENEM JV, TORQUATO EFB, de FÁTIMA CHASKO RIBEIRO L, BRANCALHÃO RMC. Cytopathology of the trachea of Bombyx mori (Lepidoptera: Bombycidae) to Bombyx mori nucleopolyhedrovirus[J]. Micron, 2016, 80: 39-44. [百度学术]
SIMPSON AA, CHIPMAN PR, BAKER TS, TIJSSEN P, ROSSMANN MG. The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 Å resolution[J]. Structure, 1998, 6(11): 1355-1367. [百度学术]
BURAND JP, HUNTER WB. RNAi: future in insect management[J]. Journal of Invertebrate Pathology, 2013, 112: S68-S74. [百度学术]