摘要
目的
探究油脂积累型模式藻株莱茵衣藻(Chlamydomonas reinhardtii)响应环烷酸胁迫的生理生化适应机制。
方法
通过研究高光富氮和高光限氮条件下,典型环烷酸——环己烷甲酸(cyclohexanecarboxylic acid, CHCA)暴露对高初始密度培养的莱茵衣藻生长、光合活性、培养液pH值、氮磷元素吸收及脂质、碳水化合物、蛋白质、色素等生理生化组分的影响,以全面评估莱茵衣藻对CHCA的耐受性。
结果
在高光富氮条件下,CHCA暴露显著促进了莱茵衣藻对磷元素的吸收,同时显著增加了C16:0脂肪酸的相对丰度,而降低了C18:3n3脂肪酸的相对丰度;而在高光限氮条件下,CHCA暴露显著抑制了莱茵衣藻的光合活性以及对磷元素的吸收,但并未对其脂肪酸组成产生显著影响。此外,无论是高光富氮还是高光限氮条件下,CHCA暴露均未对莱茵衣藻的生长、培养液pH值以及脂质、碳水化合物、蛋白质和叶绿素含量产生明显影响。
结论
微藻对环境胁迫的耐受性可通过生长曲线直观表征,并可通过藻细胞的生长、光合活性、氮磷吸收及关键生化组分综合考量进行评估。高光富氮条件通过促进磷元素吸收和改变脂肪酸组成,增强了莱茵衣藻对环烷酸的耐受性;而高光限氮条件则通过抑制光合活性和磷元素吸收,减弱了莱茵衣藻对环烷酸的耐受性。这些发现可为筛选与构建高度耐受环烷酸的藻株培养策略提供借鉴。
环烷酸是环烷烃的羧基衍生物,以无环、单环和多环脂环族羧酸的复杂混合物形式天然存在油砂尾矿和原油采油废水中,能对细菌、藻类、原生动物、无脊椎动物、鱼类和哺乳动物等多种生物产生毒性作
Ruffell
前期研究发现,在弱光富氮标准生长条件下,环己烷甲酸(cyclohexanecarboxylic acid, CHCA)暴露能显著抑制模式绿藻莱茵衣藻(Chlamydomonas reinhardtii)的生长和光合活性,还能显著改变其脂肪酸组
本研究以油脂积累型莱茵衣藻(淀粉合成缺陷株)为研究对象,分别在高光富氮和限氮条件下,对比表征CHCA暴露对高初始密度接种的藻细胞生长、光合活性、培养液pH值、色素组成、氮磷元素吸收、生化组分(脂质、碳水化合物和蛋白质)、脂肪酸组成及其生物标志物的影响。相关结果有助于进一步阐明莱茵衣藻对环烷酸暴露的响应机理,从而为环烷酸高效降解的机制解析和耐受藻种/株培养策略的构建提供科学基础。
1 材料与方法
1.1 藻种(株)预培养
选用的莱茵衣藻淀粉合成缺陷株BAFJ5 (cw15 sta6, CC4348)购自美国莱茵衣藻中心(http:// www.chlamycollection.org/)。实验前,在三羟甲基氨基甲烷-乙酸盐-磷酸盐(Tris-acetate-phosphate, TAP)培养基中25 ℃、120 r/min振荡培养,继代培养体积为150 mL,培养周期为3-4 d。培养条件为初始接种光密度值(OD750)为0.1 (藻细胞密度约为1×1
1.2 莱茵衣藻对CHCA的耐受性实验
考虑到某采油废水处理厂二级气浮出水的环烷酸浓度在50 mg/L左右,据文献报道,采油废水中环烷酸浓度通常不高于100 mg/
莱茵衣藻对CHCA的耐受性实验通过阶段培养实现:第一阶段为弱光富氮条件 (LL+N)下的低初始密度培养,以收集足够藻细胞用于CHCA暴露实验;第二阶段为高光富氮或限氮(HL+N或HL-N)条件下的高初始密度培养。第一阶段的光照强度为80 μmol/(
1.3 藻细胞生长、光合活性和培养液pH值测定
利用紫外-可见分光光度计(PerkinElmer公司)测定藻细胞培养液在750 nm下的光密度值(OD750),采用质量差法测定藻细胞干重密度:将2-10 mL藻细胞培养液过滤至预称重的玻璃纤维滤膜(孔径1.2 μm,Whatman公司),60 ℃烘干至恒重(净生物质量≥2 mg)。
通过叶绿素荧光仪(Water-PAM WALZ公司)测定藻细胞光系统II (photosystem II, PS II)的最大光量子产率Fv/Fm。采用pH计(Mettler toledo公司)测定藻细胞培养液的pH值。
1.4 藻细胞色素含量测定
采用乙醇萃取法测定藻细胞色素含
(1) |
(2) |
(3) |
(4) |
式中:Chl为叶绿素,Car为类胡萝卜素,18.08A649+ 6.63A665和(1 000A470-3.27Chl a-104Chl b)/229分别为色素提取液中叶绿素和类胡萝卜素浓度(μg/mL),n为稀释倍数,DCW (dry cell weight density)表示藻细胞干重密度(mg/mL)。
1.5 藻细胞培养液氮磷元素浓度测定
藻细胞培养液中氮和磷元素浓度的测定参照《中华人民共和国国家环境保护标准》(HJ 535—2009和HJ 670—2013
1.6 藻细胞脂肪酸分析
藻细胞脂肪酸分析参考改进后的一步酸催化酯化
每种脂肪酸的相对含量计算如
(5) |
(6) |
式中:Pi为每种脂肪酸的相对质量;Mi为每克藻细胞中某种脂肪酸的含量(mg/g),Ai为每种脂肪酸的峰面积;∑Ai为所有脂肪酸峰面积之和;As为内标十七烷酸甲酯的峰面积;Ms为内标十七烷酸甘油三酯的质量(mg);Ma为藻细胞的质量(mg)。
1.7 藻细胞碳水化合物和蛋白质含量测定
藻细胞碳水化合物含量采用改进的蒽酮比色
(7) |
藻细胞蛋白质含量采用改进的考马斯亮蓝比色
(8) |
1.8 数据处理
实验数据利用Origin 2022软件进行绘图,并使用SPSS 27.0软件进行统计分析。结果以平均值±标准偏差(n=3)表示。不同浓度CHCA处理组之间进行单因素方差分析(analysis of variance, ANOVA),当差异显著时,采用Tukey多重比较分析,以*P<0.05表示数据间差异显著。
2 结果与分析
2.1 CHCA暴露对莱茵衣藻生长、光合活性及培养液pH值的影响
在高光富氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻OD750均增加了4倍,细胞干重均增加了2倍、光合活性(Fv/Fm)保持稳定,培养液pH值上升了11%-13% (

图1 CHCA暴露对莱茵衣藻生长(A、B)、光合活性(C)及其培养液pH值(D)的影响
Figure 1 Effects of CHCA exposure on growth (A, B), photosynthetic activity (C), and pH value of culture medium (D) in Chlamydomonas reinhardtii. HL+N: High light and nitrogen repletion; HL–N: High light and nitrogen depletion; CHCA concentrations include 0, 50 and 100 mg/L. Values are mean±SD (n=3).
在高光限氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻OD750分别增加了25%、12%和13%;在第2天和第3天,暴露于100 mg/L CHCA的莱茵衣藻OD750显著高于0 mg/L和50 mg/L CHCA;而在第5天和第6天,暴露于50 mg/L和100 mg/L CHCA的莱茵衣藻OD750显著低于0 mg/L CHCA (下降了9%-11%) (
在高光限氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻Fv/Fm分别降低了21%、58%和49% (
2.2 CHCA暴露对莱茵衣藻氮磷元素吸收的影响
在高光富氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻培养液中氮和磷元素浓度均先急剧降低,随后缓慢降低。氮元素浓度降低了96%-97%,磷元素浓度降低了45%-58% (

图2 CHCA暴露对莱茵衣藻氮元素(A)和磷元素(B)吸收的影响
Figure 2 Effects of CHCA exposure on uptake of nitrogen (A) and phosphorus (B) in Chlamydomonas reinhardtii. Values are mean±SD (n=3).
在高光限氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻培养液中磷元素浓度整体维持相对稳定(
2.3 CHCA暴露对莱茵衣藻生化组分含量的影响
在高光富氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻脂肪酸总含量显著增加了16%-22% (

图3 CHCA暴露对莱茵衣藻生化组分含量的影响
Figure 3 Effects of CHCA exposure on contents of biochemical components in Chlamydomonas reinhardtii. Values are mean±SD (n=3). Different letters indicate significant differences (P<0.05).
在高光限氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻脂肪酸总含量增加至初始值的2-3倍(
在高光富氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻叶绿素(

图4 CHCA暴露对莱茵衣藻叶绿素(A)和类胡萝卜素(B)含量的影响
Figure 4 Effects of CHCA exposure on contents of chlorophylls (A) and carotenoids (B) in Chlamydomonas reinhardtii. Values are mean±SD (n=3).
2.4 CHCA暴露对莱茵衣藻脂肪酸组成的影响
在高光富氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻中,主要脂肪酸C16:0的相对丰度显著增加了18%-27%,而C18:3n3的相对丰度显著降低了26%-34%。此外,C16:2n6和C18:2n6的相对丰度分别显著增加了8-10倍和2倍。在第6天,暴露于100 mg/L CHCA的莱茵衣藻中,C16:0的相对丰度较0 mg/L CHCA显著增加了13%,而C18:3n3的相对丰度显著降低了11%。然而,暴露于50 mg/L和100 mg/L CHCA的莱茵衣藻脂肪酸组成之间无显著差异(

图5 CHCA暴露对莱茵衣藻脂肪酸组成的影响。A:高光富氮;B:高光限氮。
Figure 5 Effects of CHCA exposure on the fatty acid composition in Chlamydomonas reinhardtii. A: High light and nitrogen repletion (HL+N); B: High light and nitrogen depletion (HL-N). Values are mean±SD (n=3). Different letters indicate significant differences (P<0.05).
在高光限氮条件下培养6 d内,暴露于0、50和100 mg/L CHCA的莱茵衣藻中,主要脂肪酸C16:4n3和C18:3n3的相对丰度分别显著降低63%和38%-41%,而C18:1n9和C18:1n7的相对丰度分别显著增加38%-59%和51%-54%。在第6天,暴露于50 mg/L和100 mg/L CHCA的莱茵衣藻脂肪酸组成与0 mg/L CHCA无显著差异,且不同浓度CHCA之间也无显著差异(
3 讨论
环烷酸广泛存在于石油工业废水中,对多种水生生物具有毒性作用。有效去除环烷酸是石油工业废水处理的关键挑战之
3.1 环烷酸暴露对微藻生长的影响
微藻能够耐受环烷酸暴露环境条件的最直接和最有利表征是维持较高的生物质产率。前期研究表明,在弱光富氮培养的3 d内,暴露于50 mg/L和100 mg/L CHCA的低初始密度BAFJ5的OD750分别降低至对照组的72%和42
研究表明,莱茵衣藻野生株暴露于10-100 mg/L油砂环烷酸组分(naphthenic acid fraction components, NAFCs)时,其生长速率逐渐受到抑制;而当NAFCs浓度高达100 mg/L时,缺壁株CC400的生长速率才开始受到显著抑制;类似地,缺壁株CC3395的生长速率在NAFCs≤100 mg/L时也未受到明显影
3.2 环烷酸暴露对微藻光合活性的影响
叶绿素荧光参数PS II的最大光量子转化效率(Fv/Fm)能有效表征高等植物和藻类应对营养盐和高光
3.3 环烷酸暴露对微藻吸收氮磷元素的影响
微藻的生长与氮磷吸收特性密切相关,其中氮是生命体的必需元素,是蛋白质和遗传物质的必备元素;磷是生物膜和遗传物质的重要组成元素,是微藻生长和增殖不可或缺的元
3.4 环烷酸暴露对微藻生化组分及脂肪酸组成的影响
微藻富含蛋白质、油脂、碳水化合物、色素等多样化的高值营养成分,是食品、化工、农业、转化医学及环境健康与生态工程应用领域的重要绿色原料或工具生
此外,有机体脂肪酸对环境变化非常敏
综上所述,由图
由此推测,莱茵衣藻对环烷酸胁迫的耐受性可能与氮元素浓度及藻细胞初始接种密度有关。微藻的光合作用速率受限于氮浓度,氮的可利用性会影响微藻在光合作用中获取CO2和能量的能力,进而导致其生长、光合活性甚至营养盐吸收能力受到不同程度的影响,从而调控其对环烷酸胁迫的耐受性。在低接种密度下,莱茵衣藻主要通过改变生长和脂肪酸组成来响应环烷酸胁
4 结论
在高光富氮培养条件下,CHCA暴露能显著促进莱茵衣藻对磷元素的吸收,同时分别显著增加饱和脂肪酸C16:0和显著降低多不饱和脂肪酸C18:3n3的相对丰度,进而提高了其对环烷酸的耐受性;而在高光限氮培养条件下,CHCA暴露未对其脂肪酸组成产生明显影响,但能显著抑制莱茵衣藻的光合活性以及对磷元素的吸收,导致其对环烷酸的耐受性有所降低。氮元素可能是莱茵衣藻耐受环烷酸的重要调控因素。这些结果可为筛选与构建高度耐受环烷酸的藻株培养策略提供借鉴。
作者贡献声明
杨淼:研究构思和设计、实验操作、数据处理与分析、论文撰写与修改;雷恒萍:实验操作、数据处理与分析;杨子艺:实验操作;吴朦:实验操作;魏诗骐:协助实验操作;谢玺:研究构思和设计、数据分析、论文修改;宫正:研究构思和设计、论文修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
MORANDI GD, WISEMAN SB, PEREIRA A, MANKIDY R, GAULT IGM, MARTIN JW, GIESY JP. Effects-directed analysis of dissolved organic compounds in oil sands process-affected water[J]. Environmental Science & Technology, 2015, 49(20): 12395-12404. [百度学术]
BROWN LD, ULRICH AC. Oil sands naphthenic acids: a review of properties, measurement, and treatment[J]. Chemosphere, 2015, 127: 276-290. [百度学术]
TANG JX, HOAGLAND KD, SIEGFRIED BD. Uptake and bioconcentration of atrazine by selected freshwater algae[J]. Environmental Toxicology and Chemistry, 1998, 17(6): 1085-1090. [百度学术]
MILES SM, ASIEDU E, BALABERDA AL, ULRICH AC. Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds[J]. Chemosphere, 2020, 258: 127281. [百度学术]
RUFFELL SE, FRANK RA, WOODWORTH AP, BRAGG LM, BAUER AE, DEETH LE, MÜLLER KM, FARWELL AJ, DIXON DG, SERVOS MR, McCONKEY BJ. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics[J]. Ecotoxicology and Environmental Safety, 2016, 133: 373-380. [百度学术]
YU XX, LEE K, ULRICH AC. Model naphthenic acids removal by microalgae and base mine lake cap water microbial inoculum[J]. Chemosphere, 2019, 234: 796-805. [百度学术]
WOODWORTH APJ, FRANK RA, McCONKEY BJ, MÜLLER KM. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates[J]. Ecotoxicology and Environmental Safety, 2012, 86: 156-161. [百度学术]
AGUILAR M, RICHARDSON E, TAN B, WALKER G, DUNFIELD PF, BASS D, NESBØ C, FOGHT J, DACKS JB. Next-generation sequencing assessment of eukaryotic diversity in oil sands tailings ponds sediments and surface water[J]. Journal of Eukaryotic Microbiology, 2016, 63(6): 732-743. [百度学术]
CUMULATIVE ENVIRONMENTAL MANAGEMENT ASSOCIATION CEMA). End pit lakes guidance document 2012[Z]. 2012, https://www.cclmportal.ca/resource/end-pit-lakes-guidance-document-2012. [百度学术]
LEUNG SS, MacKINNON MD, SMITH REH. The ecological effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region[J]. Aquatic Toxicology, 2003, 62(1): 11-26. [百度学术]
LEUNG SS, MacKINNON MD, SMITH RE. Aquatic reclamation in the Athabasca, Canada, oil sands: naphthenate and salt effects on phytoplankton communities[J]. Environmental Toxicology and Chemistry, 2001, 20(7): 1532-1543. [百度学术]
BEDDOW J, JOHNSON RJ, LAWSON T, BRECKELS MN, WEBSTER RJ, SMITH BE, ROWLAND SJ, WHITBY C. The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris[J]. Chemosphere, 2016, 145: 416-423. [百度学术]
GOFF KL, HEADLEY JV, LAWRENCE JR, WILSON KE. Assessment of the effects of oil sands naphthenic acids on the growth and morphology of Chlamydomonas reinhardtii using microscopic and spectromicroscopic techniques[J]. Science of the Total Environment, 2013, 442: 116-122. [百度学术]
LIN ZH, ZHANG HX, ZHAO XY, QU TF, CHEN J, GUAN C, ZHONG Y, HOU CZ, TANG XX, WANG Y. ROS-mediated time-varying cytotoxic effects on Phaeodactylum tricornutum under the stress of commercial naphthenic acids[J]. Ecotoxicology and Environmental Safety, 2022, 243: 114014. [百度学术]
YANG M, MA JY, YU SH, XIE KP, ZHANG WD, ZHANG ED, WANG QZ, XIE X, GONG Z. Glycerolipid remodeling is crucial for acclimation to naphthenic acid exposure in Chlorella pyrenoidosa and Chlamydomonas reinhardtii[J]. Algal Research, 2023, 72: 103098. [百度学术]
ZHANG HX, TANG XX, SHANG JG, ZHAO XY, QU TF, WANG Y. The effect of naphthenic acids on physiological characteristics of the microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis[J]. Environmental Pollution, 2018, 240: 549-556. [百度学术]
ZHANG HX, HU YR, YANG LK, LIN ZH, ZHAO XY, CHEN J, TANG XX, WANG Y. Transcriptome aberration in marine microalgae Phaeodactylum tricornutum induced by commercial naphthenic acids[J]. Environmental Pollution, 2021, 268: 115735. [百度学术]
ZHANG HX, ZHOU YM, KONG Q, DONG WL, LIN ZH. Toxicity of naphthenic acids on the chlorophyll fluorescence parameters and antioxidant enzyme activity of Heterosigma akashiwo[J]. Antioxidants, 2021, 10(10): 1582. [百度学术]
林治豪, 张焕新, 唐学玺, 王影. 环烷酸对淡水微藻生理生化特征的影响[J]. 海洋与湖沼, 2023, 54(1): 87-97. [百度学术]
LIN ZH, ZHANG HX, TANG XX, WANG Y. Effect of naphthenic acid on physiological and biochemical characteristics of freshwater microalgae[J]. Oceanologia et Limnologia Sinica, 2023, 54(1): 87-97 (in Chinese). [百度学术]
YANG M, XIE X, KONG FT, XIE KP, YU SH, MA JY, XUE S, GONG Z. Differences in glycerolipid response of Chlamydomonas reinhardtii starchless mutant to high light and nitrogen deprivation stress under three carbon supply regimes[J]. Frontiers in Plant Science, 2022, 13: 860966. [百度学术]
SAMANIPOUR S, REID MJ, RUNDBERGET JT, FROST TK, THOMAS KV. Concentration and distribution of naphthenic acids in the produced water from offshore Norwegian north sea oilfields[J]. Environmental Science & Technology, 2020, 54(5): 2707-2714. [百度学术]
JESPERSEN AM, CHRISTOFFERSEN K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent[J]. Archiv für Hydrobiologie, 1987, 109: 445-454. [百度学术]
环境保护部. 水质-氨氮的测定-纳氏试剂分光光度法: HJ 535—2009[S]. 中华人民共和国国家环境保护标准, 2009. [百度学术]
MINISTRY OF ENVIRONMENT PROTECTION. Water quality-determination of ammonia nitrogen-Nessler’s reagent spectrophotometry: HJ 535—2009[S]. National Environmental Protection Standards of the People’s Republic of China, 2009. [百度学术]
环境保护部. 水质-磷酸盐和总磷的测定-连续流动-钼酸铵分光光度法: HJ 670—2013[S]. 中华人民共和国国家环境保护标准, 2013. [百度学术]
MINISTRY OF ENVIRONMENT PROTECTION. Water quality-determination of orthophosphate and total phosphorus-continuous flow analysis (CFA) and ammonium molybdate spectrophotometry: HJ 670—2013[S]. National Environmental Protection Standards of the People’s Republic of China, 2013. [百度学术]
LIU J, LIU YN, WANG HT, XUE S. Direct transesterification of fresh microalgal cells[J]. Bioresource Technology, 2015, 176: 284-287. [百度学术]
KLEIN U, BETZ A. Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusii[J]. Plant Physiology, 1978, 61(6): 953-956. [百度学术]
BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2): 248-254. [百度学术]
WANG BL, WAN Y, GAO YX, YANG M, HU JY. Determination and characterization of oxy-naphthenic acids in oilfield wastewater[J]. Environmental Science & Technology, 2013, 47(16): 9545-9554. [百度学术]
Dos REIS LL, de OLIVEIRA GONÇALVES ALHO L, de ABREU CB, GEBARA RC, da SILVA MANSANO A, da GRAÇA GAMA MELÃO M. Effects of cadmium and cobalt mixtures on growth and photosynthesis of Raphidocelis subcapitata (Chlorophyceae)[J]. Aquatic Toxicology, 2022, 244: 106077. [百度学术]
OTHMAN HB, LEBOULANGER C, FLOC’H EL, MABROUK HH, HLAILI AS. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: does cell size really matter?[J]. Journal of Hazardous Materials, 2012, 243: 204-211. [百度学术]
CALABRESE EJ, BALDWIN LA, HOLLAND CD. Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment[J]. Risk Analysis, 1999, 19(2): 261-281. [百度学术]
史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣. 植物叶片氮分配及其影响因子研究进展[J]. 生态学报, 2015, 35(18): 5909-5919. [百度学术]
SHI ZM, TANG JC, CHENG RM, LUO D, LIU SR. A review of nitrogen allocation in leaves and factors in its effects[J]. Acta Ecologica Sinica, 2015, 35(18): 5909-5919 (in Chinese). [百度学术]
俞群娣, 王亚军, 余新威, 刘寅政, 李叶, 方力, 陈成吉, 罗红宇. 微小亚历山大藻(Alexandrium minutum)的氮磷吸收、生长、产毒动态变化[J]. 海洋与湖沼, 2018, 49(2): 346-351. [百度学术]
YU QD, WANG YJ, YU XW, LIU YZ, LI Y, FANG L, CHEN CJ, LUO HY. Dynamics of absorption of nitrogen and phosphorus, growth and toxin productivity in Alexandrium minutum[J]. Oceanologia et Limnologia Sinica, 2018, 49(2): 346-351 (in Chinese). [百度学术]
桂召龙, 李毅, 沈捷, 黄翔峰. 采油废水人工湿地处理效果及植物作用分析[J]. 环境工程, 2011, 29(2): 5-9. [百度学术]
GUI ZL, LI Y, SHEN J, HUANG XF. Treatment efficiency of oilfield produced wastewater by constructed wetland and the role of plants[J]. Environmental Engineering, 2011, 29(2): 5-9 (in Chinese). [百度学术]
张萍, 方淳, 朱思涵, 韩松, 李凯, 王志康. 生活污水处理中微藻的优选及氮、磷转化研究[J]. 生态环境学报, 2021, 30(8): 1706-1715. [百度学术]
ZHANG P, FANG C, ZHU SH, HAN S, LI K, WANG ZK. Optimization of microalgae species and nitrogen and phosphorus conversion for domestic sewage treatment[J]. Ecology and Environmental Sciences, 2021, 30(8): 1706-1715 (in Chinese). [百度学术]
GONÇALVES AMM, MESQUITA AF, VERDELHOS T, COUTINHO JAP, MARQUES JC, GONÇALVES F. Fatty acids’ profiles as indicators of stress induced by of a common herbicide on two marine bivalves species: Cerastoderma edule (Linnaeus, 1758) and Scrobicularia plana (da Costa, 1778)[J]. Ecological Indicators, 2016, 63: 209-218. [百度学术]
FILIMONOVA V, GONÇALVES F, MARQUES JC, TROCH MD, GONÇALVES AMM. Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review[J]. Ecological Indicators, 2016, 67: 657-672. [百度学术]
LI-BEISSON Y, THELEN JJ, FEDOSEJEVS E, HARWOOD JL. The lipid biochemistry of eukaryotic algae[J]. Progress in Lipid Research, 2019, 74: 31-68. [百度学术]
FAYYAZ M, CHEW KW, SHOW PL, LING TC, NG IS, CHANG JS. Genetic engineering of microalgae for enhanced biorefinery capabilities[J]. Biotechnology Advances, 2020, 43: 107554. [百度学术]