摘要
目的
明确混合添加生物炭和Fe3O4介导的青稞秸秆厌氧消化产甲烷的最优工艺参数,并探究混合添加生物炭和Fe3O4在木质纤维素类废弃物厌氧消化应用中的可行性。
方法
以青稞秸秆为原料,通过单因素试验和响应面法对混合添加生物炭和Fe3O4介导的青稞秸秆厌氧消化产甲烷工艺进行优化。利用宏基因组技术分析消化过程中的微生物群落结构和甲烷代谢途径。
结果
经响应面模型验证试验得到最优工艺条件为:总固体含量6.32%、生物炭与Fe3O4混合比6.83:3.17、接种比(接种污泥与青稞秸秆挥发性固体量的比值) 2.51。在该条件下,基于挥发性固体计算的累积甲烷产量实测值为269.04 mL/g,与预测值(265.95 mL/g)的相对误差小于5%,验证了模型的有效性。该优化条件下的混合添加处理能显著提高青稞秸秆的产甲烷能力(P<0.05),效果与化学预处理相当,同时提升了乙酸含量,并减少了丙酸和丁酸的积累。宏基因组分析显示,拟杆菌门未分类属(unclassified_Bacteroidota)、未分类细菌(unclassified_Bacteria)、梭菌属(Clostridium)、丝状杆菌属(Fibrobacter)等细菌类群,以及甲烷八叠球菌属(Methanosarcina)、甲烷丝菌属(Methanothrix)等乙酸营养型产甲烷菌的相对丰度增加,促进了乙酸的利用并强化了微生物间的种间直接电子传递(direct interspecies electron transfer, DIET)。甲烷代谢途径分析表明,混合添加生物炭和Fe3O4的消化系统强化了乙酸营养型产甲烷途径,从而提升了甲烷产量。
结论
响应面法能较好地优化混合添加生物炭和Fe3O4介导的青稞秸秆厌氧消化产甲烷工艺。混合添加生物炭和Fe3O4是一种高效且环境友好的木质纤维素类废弃物处理方法,有助于提升生物甲烷的产量。
随着能源危机的加剧和环境污染问题的日益严峻,寻求可持续且环境友好的解决方案变得至关重要。厌氧消化作为一种能够将有机固废进行生物转化的技术,不仅能够减轻有机固废对环境的压力,还能产生清洁能
现阶段,导电材料因其成本低廉、易于获取以及对环境的友好性,在提升厌氧消化性能方面引起了广泛关注,尤其是碳基和铁基材料。生物炭、活性炭等碳基材料,凭借其高比表面积和多孔结构,能够有效吸附有机物,促进微生物代谢活动,并增强微生物间的种间直接电子传递(direct interspecies electron transfer, DIET),但其性能受热解温度的影响,进而影响甲烷产
响应面法作为一种统计优化工具,在厌氧消化领域得到了广泛应用,有助于探究不同参数对甲烷产量的综合影响。除了碳基和铁基材料混合比外,总固体含量和接种比等参数也是影响甲烷产量的重要因
1 材料与方法
1.1 材料
青稞秸秆取自青海大学农林科学院实验地。自然风干后,剪碎至0.5 cm左右,并于阴凉通风处保存备用。接种污泥取自青海知源特色农业开发有限责任公司以羊粪为原料稳定运行的农用沼气池。污泥取回后,经(37±0.5) ℃厌氧培养1-2周,直至不再产气,以减小背景甲烷产量。发酵原料及接种污泥的特性见
Materials | Total solids (%) | Volatile solids (%) | pH | Lignocellulose (%) |
---|---|---|---|---|
Hulless barley straw | 93.97±0.11 | 92.64±0.27 | - | 75.42±0.91 |
Inoculum | 7.38±0.16 | 2.97±0.26 | 7.48±0.42 | - |
生物炭购自上海谱智环境科技有限公司,纯度约为90%;Fe3O4购自上海麦克林生化科技有限公司,纯度在99%以上。
1.2 试验设计
厌氧消化试验采用全自动甲烷潜力测试仪MultiTalent 203进行。该仪器主要由3部分组成:发酵反应器、酸性气体吸附装置和多通道微压超低流量测试装置。发酵反应器包括恒温水浴锅、15个500 mL发酵瓶和机械搅拌系统,主要作用是为样品发酵提供受控环境,并实现均匀混合。酸性气体吸附装置内装有3 mol/L的NaOH溶液,用于吸收消化过程中产生的CO2和H2S等酸性气体,仅允许CH4通过,并加入pH指示剂监控溶液的酸结合能力。多通道微压超低流量测试装置基于液体位移和浮力原理监测CH4体积,气体流经时产生数字脉冲,由嵌入式数据采集系统记录和分析结果。在设定温度为(37±0.5) ℃的恒温条件下,通过机械搅拌系统每3 min自动搅拌1次,每次搅拌持续0.5 min,以确保反应器内物料均匀混合。各处理的物料添加总量为400 g,并根据处理要求添加接种污泥、青稞秸秆以及相应比例的生物炭和Fe3O4。整个发酵周期设定为19 d,每个处理均设置3组,记录数据。
1.2.1 单因素试验
在生物炭和Fe3O4混合添加量为8% (基于总固体)的基础上,固定生物炭与Fe3O4混合比为5:5、总固体含量为6%以及接种比(接种污泥与青稞秸秆挥发性固体量的比值)为2.5,设计5组不同生物炭与Fe3O4混合比,分别为1:9、3:7、5:5、7:3和9:1。同时,分别设置不同总固体含量(2%、4%、6%、8%、10%)和不同接种比(1.5、2.0、2.5、3.0、3.5)。
1.2.2 响应面试验
结合单因素试验结果确定中心值,以生物炭与Fe3O4混合比、总固体含量和接种比3个因素作为自变量,以青稞秸秆厌氧消化累积甲烷产量为响应值,采用Box-Behnken法设计三因素三水平的响应面优化试验。对应物料的添加量见
Treatment group | Inoculum addition (mL) | Hulless barley straw addition (g) | Biochar addition (g) | Fe3O4 addition (g) | Distilled water addition (mL) |
---|---|---|---|---|---|
1 | 179.92 | 2.89 | 0.90 | 0.38 | 217.20 |
2 | 359.84 | 5.78 | 1.79 | 0.77 | 34.38 |
3 | 190.70 | 2.04 | 0.90 | 0.38 | 207.26 |
4 | 381.41 | 4.08 | 1.79 | 0.77 | 14.51 |
5 | 186.24 | 2.39 | 0.64 | 0.64 | 211.37 |
6 | 372.48 | 4.78 | 1.28 | 1.28 | 22.73 |
7 | 186.24 | 2.39 | 1.15 | 0.13 | 211.37 |
8 | 372.48 | 4.78 | 2.30 | 0.26 | 22.73 |
9 | 269.88 | 4.33 | 0.96 | 0.96 | 125.79 |
10 | 286.05 | 3.06 | 0.96 | 0.96 | 110.88 |
11 | 269.88 | 4.33 | 1.73 | 0.19 | 125.79 |
12 | 286.05 | 3.06 | 1.73 | 0.19 | 110.88 |
13 | 279.36 | 3.59 | 1.34 | 0.58 | 117.05 |
14 | 279.36 | 3.59 | 1.34 | 0.58 | 117.05 |
15 | 279.36 | 3.59 | 1.34 | 0.58 | 117.05 |
16 | 279.36 | 3.59 | 1.34 | 0.58 | 117.05 |
17 | 279.36 | 3.59 | 1.34 | 0.58 | 117.05 |
1.2.3 对比验证试验
响应面优化完成后,对优化后的混合添加生物炭和Fe3O4处理(记为ZT)、单独添加生物炭(Z)、单独添加Fe3O4 (T)和未加任何导电材料的处理(CK)进行对比验证试验,并采集各处理不同时间的发酵液进行挥发性脂肪酸(volatile fatty acids, VFAs)测定。
1.3 试验指标测定
总固体(total solid, TS)和挥发性固体(volatile solid, VS)分别采用烘干法和灼烧
1.4 宏基因组分析
选取对比验证试验中的ZT、Z、T和CK 4个处理作为研究对象,分别采集各处理消化前期(第4天)和末期(第19天)的样品,共8个,于-80 ℃保存备用。样品的基因组DNA采用的磁珠法粪便基因组DNA提取试剂盒(北京百泰克生物技术有限公司)进行提取。宏基因组测序工作由杭州联川生物技术股份有限公司完成,采用Illumina NovaSeq 6000 PE150测序平台进行高通量测序。测序数据经拼接、过滤、质量剪切等优化处理后,得到的reads使用MEGAHIT进行组装成contig序列,通过MetaGeneMark预测编码区域,形成Unigenes集。Unigenes的蛋白序列通过Diamond软件与NR数据库(http://ncbi.nlm.nih.gov/)比对,进行物种注释,并与KEGG数据库(http://www.kegg.jp/)进行比对,获取功能注释信息。
2 结果与讨论
2.1 混合添加生物炭和Fe3O4的单因素试验结果
由

图1 不同因素对累积甲烷产量的影响。A:生物炭与Fe3O4混合比;B:总固体含量;C:接种比。
Figure 1 Effect of different factors on cumulative methane production. A: Biochar and Fe3O4 mixing ratio; B: Total solids content; C: Inoculation ratio.
2.2 混合添加生物炭和Fe3O4的响应面模型及方差分析
Box-Behnken试验设计及其结果如
Runs | Factors | Cumulative methane production (mL/g) | ||
---|---|---|---|---|
Biochar and Fe3O4 mixing ratio | Total solids content (%) | Inoculation ratio | ||
1 | 7:3 | 4 | 2.0 | 179.42 |
2 | 7:3 | 8 | 2.0 | 227.65 |
3 | 7:3 | 4 | 3.0 | 218.84 |
4 | 7:3 | 8 | 3.0 | 195.81 |
5 | 5:5 | 4 | 2.5 | 190.28 |
6 | 5:5 | 8 | 2.5 | 225.18 |
7 | 9:1 | 4 | 2.5 | 195.89 |
8 | 9:1 | 8 | 2.5 | 202.86 |
9 | 5:5 | 6 | 2.0 | 189.54 |
10 | 5:5 | 6 | 3.0 | 216.56 |
11 | 9:1 | 6 | 2.0 | 197.26 |
12 | 9:1 | 6 | 3.0 | 189.92 |
13 | 7:3 | 6 | 2.5 | 268.06 |
14 | 7:3 | 6 | 2.5 | 261.95 |
15 | 7:3 | 6 | 2.5 | 261.98 |
16 | 7:3 | 6 | 2.5 | 270.48 |
17 | 7:3 | 6 | 2.5 | 262.85 |
Y=265.06-4.45A+8.38B+3.41C-6.98AB-8.59AC-17.81BC-34.31
如
Source of variation | Sum of squares | Degress of freedom | Mean squared | F-value | P-value | Significance |
---|---|---|---|---|---|---|
Model | 16 526.26 | 9 | 1 836.25 | 110.74 | <0.000 1 | ** |
A | 158.69 | 1 | 158.69 | 9.57 | 0.017 5 | * |
B | 562.30 | 1 | 562.30 | 33.91 | 0.000 6 | ** |
C | 92.89 | 1 | 92.89 | 5.60 | 0.049 8 | * |
AB | 195.02 | 1 | 195.02 | 11.76 | 0.011 0 | * |
AC | 295.15 | 1 | 295.15 | 17.80 | 0.003 9 | ** |
BC | 1 269.50 | 1 | 1 269.50 | 76.56 | <0.000 1 | ** |
| 4 956.75 | 1 | 4 956.75 | 298.94 | <0.000 1 | ** |
| 3 115.29 | 1 | 3 115.29 | 187.88 | <0.000 1 | ** |
| 4 429.12 | 1 | 4 429.12 | 267.12 | <0.000 1 | ** |
Residual | 116.07 | 7 | 16.58 | |||
Lack of fit | 53.65 | 3 | 17.88 | 1.15 | 0.432 3 | |
Pure error | 62.42 | 4 | 15.60 | |||
Cor total | 16 642.32 | 16 |
2.3 混合添加生物炭和Fe3O4的响应面优化分析
如

图2 各因素交互作用的响应面图。A:生物炭与Fe3O4混合比和总固体含量;B:生物炭与Fe3O4混合比和接种比;C:总固体含量和接种比。
Figure 2 Response surface plots of factor interactions. A: Biochar and Fe3O4 mixing ratio and total solids content; B: Biochar and Fe3O4 mixing ratio and inoculation ratio; C: Total solids content and inoculation ratio.
综上所述,总固体含量对累积甲烷产量的影响较大,而生物炭与Fe3O4混合比在调节甲烷产量方面起到了关键作用,这与
2.4 混合添加生物炭和Fe3O4的对比验证结果
2.4.1 日产甲烷量和累积甲烷量
如

图3 不同处理的甲烷产量。A:日产甲烷量;B:累积甲烷产量(不同小写字母代表组间显著差异,P<0.05)。
Figure 3 Methane production in the different treatments. A: Daily methane production; B: Cumulative methane production (different lowercase letters indicate significant differences between treatments, P<0.05).
秸秆等木质纤维素类废弃物由于其复杂的结构,在通过生物转化生成甲烷时可能会遇到阻
2.4.2 不同处理VFAs的动态变化
在厌氧消化的不同阶段,VFAs的组成和浓度会发生变化。在厌氧过程的初期,由于水解和酸化作用的增强,系统中的大分子有机物被分解并转化为乙酸、丙酸和丁酸等VFAs。随着消化过程的深入,产甲烷菌的活性逐渐提升,消耗部分VFAs,导致其浓度逐渐降

图4 不同处理VFAs的动态变化
Figure 4 Variation of VFAs in the different treatments.
2.5 混合添加生物炭和Fe3O4对微生物群落的影响
如
Samples | Number of clean reads | Contigs total | N50 length (bp) | Q20 (%) | Q30 (%) | G+C content (%) |
---|---|---|---|---|---|---|
ZT-4 | 67 785 818 | 307 135 | 2 583 | 98.49 | 95.11 | 45.96 |
Z-4 | 65 872 418 | 265 595 | 2 721 | 98.56 | 95.31 | 45.07 |
T-4 | 67 890 442 | 314 295 | 2 660 | 98.49 | 95.11 | 45.94 |
CK-4 | 68 331 462 | 305 864 | 2 386 | 98.50 | 95.14 | 46.28 |
ZT-19 | 65 265 230 | 278 625 | 2 529 | 98.44 | 94.97 | 48.34 |
Z-19 | 67 738 036 | 262 914 | 2 832 | 98.60 | 95.45 | 48.19 |
T-19 | 68 664 516 | 302 205 | 2 578 | 98.50 | 95.16 | 48.98 |
CK-19 | 69 662 246 | 315 778 | 2 507 | 98.68 | 95.69 | 49.13 |

图5 不同处理微生物属水平上的组成。A:细菌;B:古菌。
Figure 5 Composition at the microbial genus level in the different treatments. A: Bacteria; B: Archaea.
与细菌类似,古菌获得了9个类群(除others外),且在第4天的相对丰度较高(
2.6 混合添加生物炭和Fe3O4对甲烷代谢途径的影响
在厌氧消化前期,丙酮酸的转化过程对有机物的水解酸化至关重要。如


图6 不同处理对甲烷代谢途径的影响。A:主要代谢途径;B:相关酶基因丰度。
Figure 6 Effect of different treatments on methane metabolism pathways. A: Major metabolic pathways; B: Related enzyme gene abundance.
甲烷的生成主要通过2种机制进行:乙酸脱羧和二氧化碳还原。在甲烷生成过程中,与产甲烷途径相关的酶基因丰度较高。乙酸营养型产甲烷途径是甲烷生成的关键途径之一。在此过程中,乙酸通过乙酸激酶(EC: 2.7.2.1)和磷酸乙酰转移酶(EC: 2.3.1.8)的催化作用转化为乙酰辅酶A,或者通过乙酰辅酶A合成酶(EC: 6.2.1.1)直接生成乙酰辅酶A。随后,乙酰辅酶A在乙酰辅酶A羧化酶(EC: 2.3.1.169)的作用下转化为5-甲基四氢甲烷蝶呤,并通过一系列反应最终生成甲烷。如
氢营养型产甲烷途径同样是一条重要的甲烷生成途径。在此途径中,甲酰甲烷呋喃脱氢酶(EC: 1.2.7.12)能够催化CO2生成甲酰甲烷呋喃。随后,甲酰甲烷呋喃依次在四氢甲烷蝶呤甲酰转移酶(EC: 2.3.1.101)、次甲基甲酰四氢甲烷蝶呤环化水解酶(EC: 3.5.4.27)、亚甲基四氢甲烷蝶呤脱氢酶(EC: 1.5.98.1)、亚甲基四氢甲烷蝶呤还原酶(EC: 1.5.98.2)以及辅酶F420氢化酶(EC: 1.12.98.1)的作用下转化为5-甲基四氢甲烷蝶呤(
四氢甲烷蝶呤S-甲基转移酶(EC: 2.1.1.86)和甲基辅酶M还原酶(EC: 2.8.4.1)是甲烷生成途径中的关键功能酶,同样在第4天丰度更高。与CK相比,这两种酶基因在添加导电材料的样品中的丰度均升高,其中在ZT样品中增幅更为明显,分别为41.46%和31.50% (
3 结论
响应面法可用于优化混合添加生物炭和Fe3O4的青稞秸秆厌氧消化产甲烷工艺。通过响应面模型验证试验,确定的最佳工艺条件为:总固体含量6.32%、生物炭与Fe3O4混合比6.83:3.17、接种比2.51。在该条件下,累积甲烷产量达到269.04 mL/g,与采用化学预处理方法相当,同时促进了有机物向乙酸的转化。此外,在混合添加处理中,与水解酸化功能相关的细菌类群以及与产甲烷菌存在互营关系的细菌类群的相对丰度增加,并且富集了乙酸营养型产甲烷菌(如甲烷八叠球菌属和甲烷丝菌属)。甲烷代谢途径分析表明,混合添加处理增强了乙酸营养型产甲烷途径,从而提升了甲烷产量。本研究表明,混合添加生物炭和Fe3O4是一种高效且环境友好的木质纤维素类废弃物处理方法,可用于生物甲烷的高效生产。
作者贡献声明
张智伟:样品采集、实验操作、数据分析、论文撰写;刘海林:数据分析、论文指导与修改;李屹:数据分析、论文修改;杜中平:样品采集;韩睿:实验构思与设计、数据分析、论文指导与修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
KARKI R, CHUENCHART W, SURENDRA KC, SHRESTHA S, RASKIN L, SUNG S, HASHIMOTO A, KUMAR KHANAL S. Anaerobic co-digestion: current status and perspectives[J]. Bioresource Technology, 2021, 330: 125001. [百度学术]
柳丽, 杜中平, 李屹, 陈来生, 韩睿. NaOH预处理对青稞秸秆厌氧发酵特性的影响[J]. 中国农业科技导报, 2022, 24(8): 192-200. [百度学术]
LIU L, DU ZP, LI Y, CHEN LS, HAN R. Effect of NaOH pretreatment on anaerobic fermentation characteristics of hulless barley straw[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 192-200 (in Chinese). [百度学术]
LIU L, DU ZP, LI Y, HAN R. Effects of urea addition on anaerobic digestion characteristics of hulless barley straw pretreated with KOH[J]. Journal of Material Cycles and Waste Management, 2023, 25(1): 479-489. [百度学术]
孙嘉臣, 李子富, 朱立新. NaOH和沼液浸泡预处理对麦糠厌氧发酵的强化作用比较[J]. 环境工程技术学报, 2019, 9(5): 603-608. [百度学术]
SUN JC, LI ZF, ZHU LX. Comparison of enhancements of NaOH and liquid digestate soaking pretreatments for the anaerobic digestion of wheat husk[J]. Journal of Environmental Engineering Technology, 2019, 9(5): 603-608 (in Chinese). [百度学术]
赵烁, 李莹, 王震, 陈丽. 木质纤维素预处理方法的研究进展[J]. 中国造纸, 2024, 43(8): 29-38. [百度学术]
ZHAO S, LI Y, WANG Z, CHEN L. Research progress of lignocellulose pretreatment methods[J]. China Pulp & Paper, 2024, 43(8): 29-38 (in Chinese). [百度学术]
BOLAN S, HOU DY, WANG LW, HALE L, EGAMBERDIEVA D, TAMMEORG P, LI R, WANG B, XU JP, WANG T, SUN HW, PADHYE LP, WANG HL, SIDDIQUE KHM, RINKLEBE J, KIRKHAM MB, BOLAN N. The potential of biochar as a microbial carrier for agricultural and environmental applications[J]. Science of the Total Environment, 2023, 886: 163968. [百度学术]
VALENTIN MT, LUO G, ZHANG SC, BIAŁOWIEC A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 146. [百度学术]
AMBAYE TG, VACCARI M, van HULLEBUSCH ED, AMRANE A, RTIMI S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater[J]. International Journal of Environmental Science and Technology, 2021, 18(10): 3273-3294. [百度学术]
ZHENG S, YANG F, HUANG W, LEI Z, ZHANG Z, HUANG W. Combined effects of zero valent iron and magnetite on semi-dry anaerobic digestion of swine manure[J]. Bioresource Technology, 2022, 346: 126438. [百度学术]
ZHAO ZS, LI Y, YU QL, ZHANG YB. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2018, 250: 79-85. [百度学术]
朱剑锋, 王艳琼, 王红武. 铁氧化物促进微生物直接种间电子传递的机理及其研究现状[J]. 环境化学, 2022, 41(6): 1856-1868. [百度学术]
ZHU JF, WANG YQ, WANG HW. A review on enhancement of direct interspecies electron transfer induced by iron oxides and its mechanism[J]. Environmental Chemistry, 2022, 41(6): 1856-1868 (in Chinese). [百度学术]
WANG P, YU M, LIN PR, ZHENG Y, REN LH. Effects of biochar supported nano zero-valent iron with different carbon/iron ratios on two-phase anaerobic digestion of food waste[J]. Bioresource Technology, 2023, 382: 129158. [百度学术]
王欣姿, 王攀, 杨鑫玉, 李英男, 任连海. 生物炭负载纳米零价铁对厨余垃圾厌氧发酵性能的影响[J]. 环境工程, 2023, 41(8): 154-161. [百度学术]
WANG XZ, WANG P, YANG XY, LI YN, REN LH. Effect of biochar-nZVI on performance of food waste anaerobic digestion[J]. Environmental Engineering, 2023, 41(8): 154-161 (in Chinese). [百度学术]
LIM EY, LEE JTE, ZHANG L, TIAN HL, ONG KC, TIO ZK, ZHANG JX, TONG YW. Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar[J]. Science of the Total Environment, 2022, 817: 152968. [百度学术]
LI PF, WANG Q, HE XM, YU R, HE C, SHEN DK, JIAO YZ. Investigation on the effect of different additives on anaerobic co-digestion of corn straw and sewage sludge: comparison of biochar, Fe3O4, and magnetic biochar[J]. Bioresource Technology, 2022, 345: 126532. [百度学术]
ZHANG H, KHALID H, LI W, HE Y, LIU G, CHEN C. Employing response surface methodology (RSM) to improve methane production from cotton stalk[J]. Environmental Science and Pollution Research International, 2018, 25(8): 7618-7624. [百度学术]
DENG YF, QIU L, SHAO YQ, YAO YQ. Process modeling and optimization of anaerobic co-digestion of peanut hulls and swine manure using response surface methodology[J]. Energy & Fuels, 2019, 33(11): 11021-11033. [百度学术]
刘荣厚. 秸秆预处理及添加剂对玉米秸秆与鸡粪混合厌氧发酵产沼气特性的影响[D]. 上海: 上海交通大学博士学位论文, 2020. [百度学术]
LIU RH. Effects of straw pretreatment and additives on biogas production by mixed anaerobic fermentation of corn straw and chicken manure[D]. Shanghai: Doctoral Dissertation of Shanghai Jiao Tong University, 2020 (in Chinese). [百度学术]
李屹, 姚百伦, 孟艳, 韩睿. HCl预处理对蔬菜秸秆厌氧消化性能的影响[J]. 中国蔬菜, 2023(6): 53-59. [百度学术]
LI Y, YAO BL, MENG Y, HAN R. Effect of HCl pretreatment on anaerobic digestion of vegetable straws[J]. China Vegetables, 2023(6): 53-59 (in Chinese). [百度学术]
丁岩, 王娟, 张迪. 气相色谱法测定发酵乳中的7种短链脂肪酸[J]. 食品与发酵工业, 2019, 45(2): 202-206. [百度学术]
DING Y, WANG J, ZHANG D. Determination of 7 short-chain fatty acids in fermented milk by gas chromatography[J]. Food and Fermentation Industries, 2019, 45(2): 202-206 (in Chinese). [百度学术]
LUO LW, KARIMIRAD R, WONG JWC. Enhanced anaerobic co-digestion of food waste and sewage sludge by co-application of biochar and nano-Fe3O4[J]. Journal of Environmental Management, 2024, 370: 122859. [百度学术]
DI L, WANG F, LI SY, WANG H, ZHANG DL, YI WM, SHEN XL. Influence of nano-Fe3O4 biochar on the methanation pathway during anaerobic digestion of chicken manure[J]. Bioresource Technology, 2023, 377: 128979. [百度学术]
HE Y, WANG SL, SHEN CH, WANG Z, LIU YY, MENG XY, LI XY, ZHAO XL, CHEN JM, XU JL, YU JD, CAI YF, YING HJ. Biochar accelerates methane production efficiency from Baijiu wastewater: some viewpoints considering direct interspecies electron transfer[J]. Chemical Engineering Journal, 2024, 497: 154527. [百度学术]
王旭辉, 徐鑫, 山其米克, 王卉, 叶凯, 李冠, 邓宇. 玉米秸秆厌氧消化预处理方法及工艺优化[J]. 农业工程学报, 2018, 34(23): 246-253. [百度学术]
WANG XH, XU X, SHAN QMK, WANG H, YE K, LI G, DENG Y. Optimization of pretreatment process for corn straw anaerobic digest[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 246-253 (in Chinese). [百度学术]
柳丽, 李洁, 白羿雄, 杜中平, 李屹, 陈来生, 韩睿. KOH和NH3·H2O联合固态预处理对青稞秸秆厌氧发酵特性的影响[J]. 环境科学研究, 2022, 35(8): 1966-1973. [百度学术]
LIU L, LI J, BAI YX, DU ZP, LI Y, CHEN LS, HAN R. Effect of combined solid-state pretreatment with KOH and NH3·H2O on the anaerobic fermentation characteristics of hulless barley straw[J]. Environmental Science Research, 2022, 35(8): 1966-1973 (in Chinese). [百度学术]
石思慧, 郭荣欣, 张良, 左晓宇, 李秀金, 袁海荣. 添加铁氧化物和活性炭对玉米秸秆两相厌氧消化性能和微生物学特性影响研究[J]. 北京化工大学学报(自然科学版), 2020, 47(5): 89-96. [百度学术]
SHI SH, GUO RX, ZHANG L, ZUO XY, LI XJ, YUAN HR. Effects of adding iron oxide and activated carbon on the two-phase anaerobic digestibility and microbiological characteristics of corn stover[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2020, 47(5): 89-96 (in Chinese). [百度学术]
WANG QH, KUNINOBU M, OGAWA HI, KATO Y. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass and Bioenergy, 1999, 16(6): 407-416. [百度学术]
WANG SJ, HOU XC, SU HJ. Exploration of the relationship between biogas production and microbial community under high salinity conditions[J]. Scientific Reports, 2017, 7(1): 1149. [百度学术]
HOANG AT, GOLDFARB JL, FOLEY AM, LICHTFOUSE E, KUMAR M, XIAO LL, AHMED SF, SAID Z, LUQUE R, BUI VG, NGUYEN XP. Production of biochar from crop residues and its application for anaerobic digestion[J]. Bioresource Technology, 2022, 363: 127970. [百度学术]
WANG YY, ZHANG YL, WANG JB, MENG L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass and Bioenergy, 2009, 33(5): 848-853. [百度学术]
MA JY, YAO ZL, ZHAO LX. Comprehensive study of the combined effects of biochar and iron-based conductive materials on alleviating long chain fatty acids inhibition in anaerobic digestion[J]. Environmental Research, 2023, 239: 117446. [百度学术]
SINGH RP. Glycan utilisation system in Bacteroides and bifidobacteria and their roles in gut stability and health[J]. Applied Microbiology and Biotechnology, 2019, 103(18): 7287-7315. [百度学术]
LAPÉBIE P, LOMBARD V, DRULA E, TERRAPON N, HENRISSAT B. Bacteroidetes use thousands of enzyme combinations to break down glycans[J]. Nature Communications, 2019, 10(1): 2043. [百度学术]
WAN JJ, ZHANG LJ, JIA BY, YANG B, LUO ZL, YANG JK, BOGUTA P, SU XT. Effects of enzymes on organic matter conversion in anaerobic fermentation of sludge to produce volatile fatty acids[J]. Bioresource Technology, 2022, 366: 128227. [百度学术]
HU YS, HAO XD, WANG JM, CAO YL. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment[J]. Waste Management, 2016, 49: 55-63. [百度学术]
YU JF, LIU J, SENTHIL KUMAR P, WEI YW, ZHOU M, VO DV N, XIAO LL. Promotion of methane production by magnetite via increasing acetogenesis revealed by metagenome-assembled genomes[J]. Bioresource Technology, 2022, 345: 126521. [百度学术]
LIANG JS, ZHENG WG, ZHANG HB, ZHANG PY, CAI YJ, WANG QY, ZHOU ZY, DING YR. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw[J]. Environmental Pollution, 2021, 269: 116130. [百度学术]
YANG S, CHEN ZQ, WEN QX. Impacts of biochar on anaerobic digestion of swine manure: methanogenesis and antibiotic resistance genes dissemination[J]. Bioresource Technology, 2021, 324: 124679. [百度学术]
MORITA M, MALVANKAR NS, FRANKS AE, SUMMERS ZM, GILOTEAUX L, ROTARU AE, ROTARU C, LOVLEY DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. mBio, 2011, 2(4): e00159-11. [百度学术]
KAUR M, SAHOO PC, KUMAR M, SACHDEVA S, PURI SK. Effect of metal nanoparticles on microbial community shift and syntrophic metabolism during anaerobic digestion of Azolla microphylla[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105841. [百度学术]
LI Q, XU MJ, WANG GJ, CHEN R, QIAO W, WANG XC. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresource Technology, 2018, 249: 1009-1016. [百度学术]
WANG GJ, LI Q, GAO X, WANG XC. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812-820. [百度学术]