摘要
微塑料是一种新型污染物,在海洋、土壤和大气环境中广泛存在,可通过物理、化学或生物作用影响污染物的迁移转化过程。矿业开采活动导致锑矿区周边水土环境的污染程度逐年升高,然而,目前针对矿区环境中微塑料对锑迁移转化影响的研究却鲜有报道。
目的
了解微塑料的种类、粒径以及浓度对微生物介导辉锑矿释放的影响。
方法
以具有高浓度锑耐性且能够促进辉锑矿释放的假单胞菌(Pseudomonas sp.) J-1,以及使用较广泛的聚丙烯、聚氯乙烯、聚苯乙烯3种微塑料为研究对象,通过对菌种生长过程中pH、氧化还原电位和菌落生物量变化进行分析,并定期监测锑释放量,结合不同pH下微塑料对锑的吸附实验以及激光共聚焦显微镜(confocal laser scanning microscopy, CLSM)和扫描电子显微镜-能量色散X射线光谱仪(scanning electron microscope-energy dispersive X-ray spectroscopy, SEM-EDS)等表征手段,进一步揭示微塑料对锑的生物地球化学循环的影响机理。
结果
粒径为13 μm、高浓度的聚丙烯对Pseudomonas sp. J-1参与下辉锑矿释放的抑制作用最强。微塑料通过抑制菌群生长从而导致对辉锑矿释放的促进效果减弱,高浓度的微塑料甚至可使Pseudomonas sp. J-1的生长被完全抑制。微塑料能够吸附锑,但其吸附能力与溶液pH无关。
结论
微塑料的种类、粒径与浓度是影响Pseudomonas sp. J-1介导辉锑矿释放的关键因素,主要是通过影响微生物生长从而间接影响辉锑矿的释放。
由于大量矿山开采活动的不断开展,土壤、沉积物和水生环境中的锑污染情况愈加严重,对生态系统造成巨大危
微塑料作为一种新型污染物,广泛存在于多种生态系统中,其对人类健康和生态的影响一直受到研究人员的关
研究表明,矿区土壤中的微塑料形态主要有纤维状、碎片状、颗粒状、薄膜状和泡沫状,而微塑料的分布丰度具有较大差
研究表明,微生物与微塑料之间存在相互作用,微生物、微塑料与含锑矿物之间的作用机制较为复杂,相关研究的开展对锑污染治理和微塑料环境风险评估具有重要意义。微塑料的存在会加快土壤中微生物群落的演替速
为探究微塑料对细菌介导的辉锑矿释放过程的影响,本研究选取假单胞菌(Pseudomonas sp.) J-1为研究对象。Pseudomonas sp. J-1分离自湖南省冷水江锡矿山,其能够耐受高达200 µmol/L的三价锑并促进辉锑矿的释放与氧
1 材料与方法
1.1 材料
实验所用的辉锑矿样品采集自湖南省锡矿山矿区,矿石经人工敲打成小块后使用玛瑙研钵进行研磨,过筛筛选出粒径小于400目的矿物颗粒作为实验用矿物。本研究中使用的不同粒径的PP、PS和PVC颗粒均购自广州市中新塑料有限公司。
1.2 微生物的培养与富集
本研究所使用的假单胞菌(Pseudomonas sp.)J-1分离纯化自湖南省冷水江锡矿山。Pseudomonas sp. J-1培养所需培养基为chemically defined media (CDM)培养基(g/L):硫酸镁20.0,氯化铵10.0,硫酸钠9.9,磷酸氢二钾0.1,二水氯化钙0.7,乳酸钠50.0,七水硫酸亚铁1.3,碳酸氢钠79.8。将纯培养后的Pseudomonas sp. J-1接种到100 mL CDM培养基中,加入1.0 g研磨后的辉锑矿,在摇床中以30 ℃、150 r/min的条件培养。Pseudomonas sp. J-1稳定传代3次后,以10 000 r/min离心5 min后使用CDM培养基重悬、保存在4 ℃冰箱中,以备后续实验使用。
1.3 微塑料的种类、粒径以及浓度对辉锑矿释放的影响
取0.2 g、粒径均为13 µm的PP、PVC和PS 3种微塑料,分别加入装有100 mL CDM培养基的250 mL锥形瓶中,再向各瓶中加入0.1 g的辉锑矿和2 mL的Pseudomonas sp. J-1,以研究不同微塑料种类对Pseudomonas sp. J-1介导的辉锑矿释放的影响。取0.2 g、粒径分别为13、150、600 µm的PP,分别加入装有100 mL CDM培养基的250 mL锥形瓶中,再向各瓶中加入0.1 g的辉锑矿和2 mL的Pseudomonas sp. J-1,以研究不同微塑料粒径对Pseudomonas sp. J-1介导的辉锑矿释放的影响。取0.2 g和5.0 g、粒径均为13 µm的PP分别加入装有100 mL CDM培养基的250 mL锥形瓶中,再向各瓶中加入0.1 g的辉锑矿和2 mL的Pseudomonas sp. J-1,以研究不同微塑料浓度对Pseudomonas sp. J-1介导的辉锑矿释放的影响。
将上述锥形瓶置于30 ℃、150 r/min的恒温摇床中避光反应,每2-3 d取样1次。监测上述溶液样品的pH、氧化还原电位(oxidation reduction potential, ORP)、细胞数以及总锑浓度变化。另外设置一组不加任何微塑料的空白对照组,上述实验均设置3个平行。
1.4 不同pH对微塑料吸附锑的影响
使用酒石酸锑钾试剂配制Sb(III)浓度为10 mg/L的溶液,将上述溶液均分为3份,然后使用浓度为1 mol/L的NaOH溶液将其pH分别调节为7.2、8.6和9.4。取不同pH梯度的溶液100 mL分别加入250 mL锥形瓶中,并加入0.2 g、粒径为13 µm的PP,另设一组不加微塑料的空白对照组,每组各设3个平行。将各锥形瓶置于30 ℃、150 r/min的恒温摇床中避光反应。
1.5 假单胞菌属基因组中与微塑料耐受有关的基因分析
查阅相关文献后发现,alk基因和细胞色素P450酶编码基因与细菌对微塑料的耐受和降解高度相
1.6 溶液参数的测定
使用哈希水质分析仪(Loveland公司)测试溶液的pH,使用便携式ORP计(贝尔分析仪器有限公司)测试溶液的氧化还原电位。通过光学显微镜(MOTIC公司),使用血细胞计数法监测样品中的微生物数量。将样品稀释100倍后,使用硫脲和抗坏血酸将样品中的Sb(V)还原为Sb(III),随后利用原子荧光光谱法(atomic fluorescence spectrometry, AFS) (北京海光仪器有限公司)测定样品中的总锑浓
1.7 激光共聚焦显微镜制样
实验结束后,将处于混合状态的样品以10 000 r/min离心5 min,收集体系中的固体样品。分别使用50 mg/L的小麦胚芽凝集素(wheat germ agglutinin, WGA)溶液和4′,6-二脒基-2-苯基吲哚(4′,6-diamidino-2-phenylindole, DAPI)溶液标记胞外多糖和DNA。使用激光共聚焦显微镜(confocal laser scanning microscope, CLSM) (尼康精机有限公司)在405 nm激发光下观察DAPI染色结果,在633 nm激发光下观察WGA染色结果。
1.8 扫描电子显微镜制样
将实验结束后的样品使用聚-l-赖氨酸和固定液(由1.5%多聚甲醛和2.5%戊二醛混合配制)固定于载物片上,自然风干后依次浸泡于浓度分别为25%、50%、75%、95%、100%的乙醇中脱水。使用临界点干燥仪(Quorum公司)对完成脱水处理的样品进行干燥。随后,利用场发射扫描电子显微镜(scanning electron microscope-energy dispersive X-ray spectroscopy, SEM-EDS) (TESCAN公司),在加速电压为15 kV的条件下对微生物的形貌特征进行观察和分析。
2 结果与讨论
2.1 不同种类的微塑料对Pseudomonassp. J-1介导的辉锑矿释放的影响
结果表明,3种微塑料的加入对辉锑矿释放的影响各不相同。其中,PP的加入明显降低了溶液中总锑含量,而PVC组和PS的加入对辉锑矿溶解的影响不大(

图1 不同种类微塑料加入后,反应体系中的各指标参数变化情况。A:总锑浓度;B:pH;C:ORP;D:微生物量。
Figure 1 The changes in various indicator parameters in the reaction system after the addition of different types of microplastics. A: Total antimony concentration; B: pH; C: ORP; D: Microbial biomass.
PP表面具有较高的疏水性,这一特征能够抑制细菌在其表面的附着与生物膜的形
2.2 不同粒径的微塑料对Pseudomonassp. J-1介导的辉锑矿释放的影响
由2.1节结果可知,微塑料PP对Pseudomonas sp. J-1介导的辉锑矿释放的影响最为明显,因此选择粒径分别为13、150、600 µm的PP进一步研究微塑料的粒径对辉锑矿释放的影响。
结果表明,在Pseudomonas sp. J-1的参与下,不同粒径的微塑料对辉锑矿的释放有不同程度的影响(

图2 不同粒径的微塑料加入后,反应体系中的各指标参数变化情况。A:总锑浓度;B:pH;C:ORP;D:微生物量。
Figure 2 The changes in various indicator parameters in the reaction system after the addition of different sizes of microplastics. A: Total antimony concentration; B: pH; C: ORP; D: Microbial biomass.
2.3 不同浓度的微塑料对Pseudomonassp. J-1介导的辉锑矿释放的影响
加入0.2 g和5.0 g微塑料均能显著抑制辉锑矿的释放,且不同浓度微塑料组的总锑浓度差异不大,分别为9.9-10.0 mg/L,而空白对照组为13.0 mg/L (

图3 不同浓度的微塑料加入后反应体系中的各指标参数变化情况。A:总锑浓度;B:pH;C:ORP;D:微生物量。
Figure 3 The changes in various indicator parameters in the reaction system after the addition of different concentrations of microplastics. A: Total antimony concentration; B: pH; C: ORP; D: Microbial biomass.
2.4 不同pH条件下,微塑料对锑的吸附效果
上述实验结束后,体系的pH分别稳定于7.2、8.6和9.4左右。为了探究不同pH条件对微塑料吸附Sb能力的影响,设计了对应pH条件下的微塑料Sb吸附实验。实验结果显示,微塑料在实验体系中对锑有一定的吸附作用,但总体效果较弱,且不同pH组之间的吸附能力无明显差别(

图4 不同pH值条件下微塑料对锑的吸附情况
Figure 4 The adsorption of Sb by microplastics under different pH conditions.
2.5 Pseudomonassp. J-1的激光共聚焦观察

图5 Pseudomonas sp. J-1培养72 h后的激光共聚焦图像。A:胞外多糖荧光图像;B:DNA荧光图像;C:光学图像;D:胞外多糖和DNA荧光叠加图像。
Figure 5 CLSM images of the resuspended 72 h incubated Pseudomonas sp. J-1. A: Extracellular polysaccharide; B: DNA; C: Optical image; D: Extracellular polysaccharide and DNA overlay images.
2.6 微塑料、Pseudomonassp. J-1和辉锑矿共存系统的SEM-EDS表征
通过扫描电子显微镜图像(图

图6 实验结束后的样品SEM观察。A、C:SEM观察下的微塑料与Pseudomonas sp. J-1形态;B、D相应位点的EDS结果。
Figure 6 SEM observation of the sample after the experiment. A, C: Morphology of microplastics and Pseudomonas sp. J-1 observed under SEM; B, D: EDS results of corresponding sites.
将小粒径的杆状微塑料进一步放大观察发现,微塑料表面附着了大量形状不规则的EPS。相较于其他部分,微塑料表面的C元素含量降低,O和S元素占比升高,还发现了3.63%的Sb元素,从表征层面说明了微塑料对锑元素的吸附作用(图
结合实验与表征结果可发现,由于微塑料表面较粗糙以及较高的表面黏性,导致微生物更倾向于附着于微塑料表面,从而减少微生物与矿物的接触机
2.7 Pseudomonas基因组中与微塑料耐受相关的基因分析
烷烃羟化酶AlkB家族是β-氧化途径中参与微生物降解最重要的酶。已有多个研究表明,alkB基因及其产物可以通过末端或亚末端氧化途径降解烃类低聚物,从而提高微生物对微塑料的耐受
在假单胞菌属5株代表性菌株的基因组中均发现了与微塑料耐受与降解相关的alkB基因和编码细胞色素P450酶的基因,但数量与大小略有差异。alkB相关基因的长度较短,大多处于1 133-1 154 bp之间,而细胞色素P450酶转录基因的长度较长,处于1 256-1 334 bp之间(

图7 假单胞菌属基因组中与微塑料降解有关基因的分布情况
Figure 7 Distribution of genes related to microplastic degradation in the genome of Pseudomonas genus.
3 结论
微塑料对假单胞菌(Pseudomonas sp.) J-1参与下辉锑矿释放存在抑制作用,且相较于聚苯乙烯(PS)和聚氯乙烯(PVC),聚丙烯(PP)对辉锑矿溶解的抑制效果最强。低浓度微塑料前期会抑制菌群生长,随着微塑料浓度的提高,微塑料甚至使Pseudomonas sp. J-1的生长被完全抑制。聚丙烯在粒径为13 μm时对Pseudomonas sp. J-1介导的辉锑矿溶解的抑制影响最明显。微塑料能够吸附锑,但其吸附能力与溶液pH无关。本研究揭示了矿区微塑料通过抑制微生物活性间接调控锑释放的过程,明确了微塑料种类、粒径和浓度对锑元素释放及迁移的影响,为评估矿区复合污染生态风险及治理锑-微塑料协同污染提供了理论依据。
作者贡献声明
仇静旋:数据分析、图表绘制、文章撰写;曾为一:实验设计、数据收集、数据分析;王兴杰:项目管理、审阅与修改、获取基金;陈礼然:执行调研、提供资源、审阅与修改;马丽媛:提出概念、数据分析与监管、审阅与修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
HE MC, WANG NN, LONG XJ, ZHANG CJ, MA CL, ZHONG QY, WANG AH, WANG Y, PERVAIZ A, SHAN J. Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. [百度学术]
LI JX, WANG Q, OREMLAND RS, KULP TR, RENSING C, WANG GJ. Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 2016, 82(18): 5482-5495. [百度学术]
KAUFMANN AB, LAZAROV M, HORN I, ŠTEVKO M, ÐORĐEVIĆ T, KIEFER S, WEYER S, MAJZLAN J. Weathering-induced Sb isotope fractionation during leaching of stibnite and formation of secondary Sb minerals[J]. Chemical Geology, 2024, 662: 122253. [百度学术]
FILELLA M, BELZILE N, CHEN YW. Antimony in the environment: a review focused on natural waters I. occurrence[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176. [百度学术]
HE MC, WANG XQ, WU FC, FU ZY. Antimony pollution in China[J]. Science of The Total Environment, 2012, 421: 41-50. [百度学术]
ABIN CA, HOLLIBAUGH JT. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism[J]. Environmental Science & Technology, 2014, 48(1): 681-688. [百度学术]
HU XY, HE MC, LI SS, GUO XJ. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China[J]. Journal of Geochemical Exploration, 2017, 176: 76-84. [百度学术]
LI YH, LIU ZH, LI QH, LIU FP, LIU ZY. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts[J]. Hydrometallurgy, 2016, 166: 41-47. [百度学术]
PAUL D, KAZY SK, DAS BANERJEE T, GUPTA AK, PAL T, SAR P. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater[J]. Bioresource Technology, 2015, 188: 14-23. [百度学术]
GUO HQ, YANG K, CUI L. Microbial degradation of environmental microplastics[J]. Progress in Chemistry, 2025, 37(1): 112-123. [百度学术]
PENG GY, XU P, ZHU BS, BAI MY, LI DJ. Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234: 448-456. [百度学术]
THOMPSON RC, OLSEN Y, MITCHELL RP, DAVIS A, ROWLAND SJ, JOHN AWG, McGONIGLE D, RUSSELL AE. Lost at sea: where is all the plastic[J]. Science, 2004, 304(5672): 838. [百度学术]
DRIS R, IMHOF H, SANCHEZ W, GASPERI J, GALGANI F, TASSIN B, LAFORSCH C. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles[J]. Environmental Chemistry, 2015, 12(5): 539. [百度学术]
HORTON AA, WALTON A, SPURGEON DJ, LAHIVE E, SVENDSEN C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of The Total Environment, 2017, 586: 127-141. [百度学术]
DRIS R, GASPERI J, SAAD M, MIRANDE C, TASSIN B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. [百度学术]
BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. Science of The Total Environment, 2018, 612: 422-435. [百度学术]
PANNO SV, KELLY WR, SCOTT J, ZHENG W, McNEISH RE, HOLM N, HOELLEIN TJ, BARANSKI EL. Microplastic contamination in karst groundwater systems[J]. Ground Water, 2019, 57(2): 189-196. [百度学术]
BARNES DKA, GALGANI F, THOMPSON RC, BARLAZ M. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 1985-1998. [百度学术]
KÖGEL-KNABNER I, AMELUNG W. Dynamics, chemistry, and preservation of organic matter in soils[M]//Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 157-215. [百度学术]
CHAE Y, AN YJ. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review[J]. Environmental Pollution, 2018, 240: 387-395. [百度学术]
LAW KL, THOMPSON RC. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145. [百度学术]
骆永明, 周倩, 章海波, 潘响亮, 涂晨, 李连祯, 杨杰. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021-1030. [百度学术]
LUO YM, ZHOU Q, ZHANG HB, PAN XL, TU C, LI LZ, YANG J. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030 (in Chinese). [百度学术]
张金棚. 采煤沉陷区土壤中微塑料与重金属污染状况及吸附行为研究[D]. 淮南: 安徽理工大学, 2020. [百度学术]
ZHANG JP. Study on the pollution status and adsorption behavior of microplastics and heavy metals in the soil of coal mining subsidence area[D]. Huainan: Anhui University of Science & Technology, 2020 (in Chinese). [百度学术]
HU J, ZHANG LQ, ZHANG WY, MUHAMMAD I, YIN CY, ZHU YX, LI C, ZHENG LG. Significant influence of land use types and anthropogenic activities on the distribution of microplastics in soil: a case from a typical mining-agricultural city[J]. Journal of Hazardous Materials, 2024, 477: 135253. [百度学术]
WANG J, HUANG MK, WANG Q, SUN YZ, ZHAO YR, HUANG Y. LDPE microplastics significantly alter the temporal turnover of soil microbial communities[J]. Science of The Total Environment, 2020, 726: 138682. [百度学术]
SEELEY ME, SONG B, PASSIE R, HALE RC. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11: 2372. [百度学术]
刘洁, 李娟娟, 马香, 迟雪, 唐燕琼, 刘柱, 李宏. 微塑料对中国土壤微生物群落结构影响的综合分析[J/OL]. 江苏农业科学, 2025: 1-7. (2025-03-19). https://kns.cnki.net/KCMS/detail/detail.aspx filename=JSNY20250318001&dbname=CJFD&dbcode=CJFQ(in Chinese). [百度学术]
OREN A, GARRITY GM. Valid publication of the names of forty-two Phyla of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(10). DOI: 10.1099/ijsem.0.005056. [百度学术]
SJOLLEMA SB, REDONDO-HASSELERHARM P, LESLIE HA, KRAAK MHS, VETHAAK AD. Do plastic particles affect microalgal photosynthesis and growth[J]. Aquatic Toxicology, 2016, 170: 259-261. [百度学术]
ZHANG C, CHEN XH, WANG JT, TAN LJ. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220: 1282-1288. [百度学术]
郭瑞阳, 薄录吉, 李冰, 金维政, 李彦, 柴超, 王艳芹. 农田土壤微塑料与镉污染、迁移特征及生态效应的研究进展[J]. 江西农业学报, 2025, 37(3): 63-71. [百度学术]
GUO RY, BO LJ, LI B, JIN WZ, LI Y, CHAI C, WANG YQ. Advance on combined pollution, migration characteristics and ecological effects of microplastics and cadmium in farmland soils[J]. Acta Agriculturae Jiangxi, 2025, 37(3): 63-71 (in Chinese). [百度学术]
CHEN CC, ZHU XS, XU H, CHEN FY, MA J, PAN K. Copper adsorption to microplastics and natural particles in seawater: a comparison of kinetics, isotherms, and bioavailability[J]. Environmental Science & Technology, 2021, 55(20): 13923-13931. [百度学术]
SUN Y, WANG XJ, XIA SQ, ZHAO JF. Cu(II) adsorption on poly(lactic acid) microplastics: significance of microbial colonization and degradation[J]. Chemical Engineering Journal, 2022, 429: 132306. [百度学术]
HE JS, CHEN JP. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools[J]. Bioresource Technology, 2014, 160: 67-78. [百度学术]
JIA XC, KAUFMANN A, LAZAROV M, WEN B, WEYER S, ZHOU JW, MA LY, MAJZLAN J. Antimony isotope fractionation during kinetic Sb(III) oxidation by antimony-oxidizing bacteria Pseudomonas sp. J1[J]. Environmental Science & Technology, 2024, 58(26): 11411-11420. [百度学术]
GYUNG YOON M, JEONG JEON H, NAM KIM M. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell[J]. Journal of Bioremediation & Biodegradation, 2012, 3(4): 145. DOI: 10.4172/2155-6199.1000145. [百度学术]
ZAMPOLLI J, ORRO A, MANCONI A, AMI D, NATALELLO A, di GENNARO P. Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq[J]. Scientific Reports, 2021, 11: 21311. [百度学术]
EVANGELOU VP, ZHANG YL. A review: pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Science and Technology, 1995, 25(2): 141-199. [百度学术]
LONI PC, WU M, WANG WQ, WANG HM, MA LY, LIU CY, SONG YY, H TUOVINEN O. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions[J]. Journal of Hazardous Materials, 2020, 385: 121561. [百度学术]
严馨, 赵建. 医用口罩原材料聚丙烯的生物降解研究进展[J]. 微生物前沿, 2021(2): 91-97. [百度学术]
YAN X, ZHAO J. Research progress on the biodegradation of polypropylene, the material for medical masks[J]. Advances in Microbiology, 2021(2): 91-97 (in Chinese). [百度学术]
蔡寅诺, 刘丽, 陈国炜, 钟疏影. 氯对细菌与管材间交互作用及附着行为的影响[J]. 中国环境科学, 2023, 43(10): 5188-5195. [百度学术]
CAI YN, LIU L, CHEN GW, ZHONG SY. Effect of chlorine on cell-surface interaction and bacterial adhesion behavior[J]. China Environmental Science, 2023, 43(10): 5188-5195 (in Chinese). [百度学术]
陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展[J]. 环境化学, 2021, 40(8): 2271-2287. [百度学术]
CHEN YL, SUN K, GAO B. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: a review[J]. Environmental Chemistry, 2021, 40(8): 2271-2287 (in Chinese). [百度学术]
ALIMI OS, FARNER BUDARZ J, HERNANDEZ LM, TUFENKJI N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. [百度学术]
ZHOU YF, YANG YY, LIU GH, HE G, LIU WZ. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: the roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184: 116209. [百度学术]
MORE TT, YADAV JSS, YAN S, TYAGI RD, SURAMPALLI RY. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144: 1-25. [百度学术]
MANN S. Molecular recognition in biomineralization[J]. Nature, 1988, 332(6160): 119-124. [百度学术]
JIA XC, MA LY, LIU J, LIU P, YU L, ZHOU JW, LI WY, ZHOU WQ, DONG ZC. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385. [百度学术]
CHUBARENKO I, BAGAEV A, ZOBKOV M, ESIUKOVA E. On some physical and dynamical properties of microplastic particles in marine environment[J]. Marine Pollution Bulletin, 2016, 108(1/2): 105-112. [百度学术]
SHEN MC, YE SJ, ZENG GM, ZHANG YX, XING L, TANG WW, WEN XF, LIU SH. Can microplastics pose a threat to ocean carbon sequestration[J]. Marine Pollution Bulletin, 2020, 150: 110712. [百度学术]