摘要
竹黄是一种传统中药,来源于寄生在竹子上的竹黄属(Shiraia)真菌子实体。竹红菌甲素(hypocrellin A, HA)是竹黄中的活性苝醌成分,是一种具有抗肿瘤、抗菌作用的非卟啉类新型光敏剂。
目的
探讨竹黄菌子实体伴生真菌对宿主竹红菌甲素合成的影响,并构建伴生菌-竹黄菌共培养方法以生产竹红菌甲素。
方法
从竹黄菌子实体中分离得到伴生真菌,采用平板对峙法筛选能够影响竹黄菌竹红菌甲素合成的伴生菌株,比较活性菌株胞内及胞外成分对竹红菌甲素的诱导作用,并建立与优化伴生菌-竹黄菌共培养技术。
结果
从竹黄菌子实体中分离得到34株真菌,包括6株竹黄菌和28株伴生真菌。镰孢菌(Fusarium sp.) SF12及其胞外多糖具有促进竹红菌甲素合成的能力。镰孢菌SF12对竹黄菌(Shiraia sp.) S9的生长无显著影响,但可通过上调竹黄菌中竹红菌甲素合成的关键酶基因转录水平,促进竹红菌甲素的合成。在竹黄菌培养24 h后加入镰孢菌SF12孢子(100个/mL),竹红菌甲素的总产量在第8天达到209.46 mg/L,是对照组的1.93倍。
结论
竹黄菌子实体中存在丰富的伴生真菌,伴生镰孢菌SF12与宿主竹黄菌的共培养是一种提高竹红菌甲素生物技术生产的新型诱导技术。
竹黄属(Shiraia)真菌是侵染短穗竹属(Brachystachyum)植物的子囊菌,竹黄菌发育形成的粉红色、瘤状龟裂的子实体(

图1 生长在竹枝上的竹黄(A)及竹红菌甲素结构式(B)
Figure 1 The Shiraia stroma from the bamboo branches (A) and the chemical structure of hypocrellin A (B).
与植物内生菌的研究相比,目前关于子实体内微生物菌群的报道还较为少见。野生竹黄菌子实体中存在着丰富多样的非宿主微生物,Ma
1 材料与方法
1.1 材料
2016年6-7月,于浙江省杭州市临安区天目山短穗竹(B. densiflorum)林地(3个100

图2 竹黄菌子实体内伴生真菌及其与宿主真菌共培养图示。A:从子实体中分离得到竹黄菌(No. 9)和部分伴生真菌菌株(No. 8、10、17、27和34);B:宿主竹黄菌和伴生菌平板对峙法筛选图示。
Figure 2 The associated fungi isolated from Shiraia fruiting bodies and their co-cultures with host fungus. A: Shiraia strain (No. 9) and other samples of the associated fungi (No. 8, 10, 17, 27, and 34) isolated from the fruiting bodies; B: Scheme of the in vitro confrontation assay between Shiraia host and the associated fungus in the fruiting body.
1.2 菌株培养
1.2.1 固体培养
使用马铃薯-葡萄糖-琼脂(PDA)培养基进行平板培养,平板放置在黑暗条件下28 ℃培养6 d。
1.2.2 液体培养
使用装有50 mL液体发酵培养
1.3 菌株的形态观察和内转录间隔区(internal transcribed spacer, ITS)序列鉴定
菌株在PDA平板上28 ℃培养6-8 d后,拍照记录菌落形态。使用真菌特异性引物ITS-1 (5′-TCCGTAGGTGAACCTGCGG-3′)和ITS-4 (5′-TCCTCCGCTTATTGATATGC-3′)扩增ITS区,采用邻接法(neighbor-joining method)构建系统发育
1.4 竹黄菌和伴生真菌的共培养
1.4.1 平板共培养
参考Qian等的平板对峙
1.4.2 液体发酵共培养
在竹黄菌培养3 d时,将伴生真菌的孢子(60个/mL)加入,待竹黄菌培养8 d后,检测生物量及HA产量。以加入等体积无菌双蒸水作为对照组。
1.5 伴生真菌诱导成分提取
参考王剑文
1.6 竹黄菌与伴生真菌共培养条件优化
1.6.1 孢子浓度筛选
竹黄菌液体培养的第3天,将镰孢菌SF12孢子按浓度(6-140)×1
1.6.2 处理时间筛选
在竹黄菌液体培养过程中,分别在每天相同时间向竹黄菌单培养摇瓶中加入镰孢菌SF12孢子(100个/mL),竹黄菌培养8 d后,收获菌丝。对照组为未加入镰孢菌SF12孢子的竹黄菌培养组。
1.7 菌丝培养pH、残糖及竹红菌甲素含量测定
在竹黄菌菌丝液体培养过程中测定培养液的pH值,并根据硫酸-蒽酮
采用高效液相色谱系统(安捷伦科技有限公司),根据Sun
1.8 竹红菌甲素合成关键酶基因表达测定
将竹黄菌菌丝用液氮研磨成粉末,提取竹黄菌的总RNA。根据Lei
1.9 统计分析
实验对照组和处理组均为3次重复(每次重复至少3个平行组实验,n≥3)。实验数据以平均数±标准差表示,采用Student’s t-test检验分析实验结果,*表示P<0.05;**表示P<0.01。采用one-way ANOVA分析实验结果,小写字母表示不同处理组之间的差异显著性(P<0.05)。
2 结果与分析
2.1 竹黄菌及其伴生菌的分离
从竹黄菌新鲜子实体中共分离出34株真菌菌株。通过ITS序列鉴定和显微形态观察发现,这些真菌分属2门7纲9目9科和9属(
Strain No. | Fungal species and accession number of the nearest match | Identity (%) | Query coverage (%) | Co-culture with No. 9 |
---|---|---|---|---|
HA contents (mg/plate) | ||||
1 | Shiraia sp. Z3 (JN198483.1) | 99 | 97 | - |
3 | Shiraia sp. A8 (FJ560594.1) | 99 | 98 | - |
9 | Shiraia sp. S9 (MF062656.1) | 100 | 100 | 0.55±0.04 |
14 | Shiraia sp. isolate TY1-2 (MH059549.1) | 99 | 90 | - |
23 | Shiraia sp. ML-2004 (AY425966.2) | 99 | 99 | - |
25 | Shiraia sp. isolate L34 (MH237669.1) | 99 | 98 | - |
19 | Aspergillus niger isolate SOS2 (MK543209.1) | 98 | 100 | ND |
17 | Paecilomyces sp. strain BCC84310 (MF780707.1) | 99 | 100 | ND |
21 | Nigrospora chinensis strain LC2696 (KX985947.1) | 99 | 99 |
0.20±0.0 |
24 | Colletotrichum sp. JP163 (AB255291.1) | 98 | 96 |
0.21±0.0 |
7 | Pleosporales sp. zzz1429 (HQ696060.1) | 99 | 99 |
0.33±0.0 |
10 | Cladosporium sp. strain AX17 (MH884140.1) | 99 | 95 |
0.33±0.0 |
18 | Arthrinium arundinis isolate B106-17 (MN313263.1) | 98 | 98 |
0.38±0.0 |
20 | Arthrinium sp. strain CS06 (KX015984.1) | 99 | 97 |
0.38±0.0 |
31 | Colletotrichum strain MAFF 241876 (AB738858.1) | 98 | 95 |
0.43±0.0 |
27 | Talaromyces marneffei isolate M7L (MF687277.1) | 100 | 99 |
0.45±0.0 |
2 | Trametes versicolor isolate 5 (KC461299.1) | 95 | 99 |
0.63±0.0 |
6 | Arthrinium sp. LH52 (HQ832803.1) | 99 | 99 |
0.66±0.0 |
33 | Phanerochaete sordida isolate T8 (JN253600.1) | 99 | 100 |
0.71±0.0 |
28 | Pleosporales sp. DX-FOR1 (KC871044.1) | 99 | 99 |
0.72±0.0 |
26 | Xylariales sp. GT2 (KJ636464.1) | 99 | 98 |
0.76±0.0 |
22 | Panus lecomtei strain HHB-9614 (KP135329.1) | 100 | 99 |
0.93±0.0 |
34 | Arthrinium sp. strain 2-1 (KX378907.1) | 99 | 100 |
1.04±0.0 |
5 | Penicillium sp. BAB-5444 (KT355727.1) | 99 | 99 |
1.07±0.3 |
8 | Phanerochaete sordida strain A0595 (KF494816.1) | 99 | 98 |
1.13±0.3 |
4 | Talaromyces marneffei strain LCC17 (KF990134.1) | 99 | 99 |
1.17±0.1 |
13 | Lecanicillium psalliotae (KR866082.1) | 98 | 98 |
1.18±0.1 |
29 | Nigrospora sp. TPL17 (KJ863499.1) | 99 | 99 |
1.28±0.2 |
12 | Fusarium sp. strain AX16 (MH884139.1) | 98 | 97 |
1.39±0.3 |
32 | Coprinellus radians strain DUCC5167 (MH844772.1) | 99 | 99 |
1.96±0.2 |
15 | Trametes versicolor (GQ411515.1) | 99 | 98 |
1.99±0.1 |
30 | Phanerochaete sordida strain ASD (KP986963.1) | 99 | 96 |
2.12±0.8 |
16 | Bjerkandera sp. PTY1 (KF208520.1) | 99 | 99 |
2.52±0.1 |
11 | Polyporus arcularius strain OC31 (KR183787.1) | 99 | 98 |
2.69±0.2 |
Values are mean±SD from three independent experiments. *: P<0.05; **: P<0.01; ND: No detected; -: No production of HA.
2.2 诱导宿主竹红菌甲素合成的伴生菌筛选
将28株伴生真菌分别与竹黄菌S9进行平板对峙筛选(

图3 伴生真菌对竹黄菌生长及HA合成的影响。A:生物量;B:菌丝HA浓度;C:外泌HA浓度;D:HA总产量。
Figure 3 Effect of the associated fungi on fungal growth and HA production of Shiraia sp. S9. A: Effect on dry biomass; B: Effect on HA content in mycelium; C: Effect on the released HA in cultural broth; D: Effect on total HA production in mycelium culture. Different letters above the bars mean significant differences (P<0.05).
2.3 伴生菌诱导成分及调控作用
为了进一步探讨镰孢菌(Fusarium sp.) SF12对宿主竹黄菌竹红菌甲素合成的诱导成分及机制,提取了镰孢菌SF12的菌丝多糖以及小极性溶液(乙酸乙酯、石油醚提取物及氯仿)提取物,比较这些提取物成分和活菌共培养(SP)对竹黄菌HA产量的影响。结果显示,各处理对竹黄菌的生物量无显著影响(

图4 镰孢菌SF12不同成分对竹黄菌生长及HA合成的影响。A:竹黄菌生物量;B:菌丝HA合成浓度;C:HA外泌浓度;D:HA总产量。
Figure 4 Effects of different fractions from Fusarium sp. SF12 on growth and HA biosynthesis of Shiraia sp. S9. A: Effect on fungal biomass; B: Effect on mycelial HA contents; C: Effect on the released HA in cultural broth; D: Effect on total HA production in mycelium culture. Values are mean±SD from three independent experiments. Different letters above the bars mean significant differences (P<0.05).
在培养过程中,培养液pH值维持在6.0-8.0,竹黄菌菌丝培养液的pH值未有显著变化(

图5 镰孢菌SF12共培养对竹黄菌S9培养基pH值(A)和残糖浓度(B)的影响
Figure 5 Effect of the inoculation of Fusarium sp. SF12 on pH value (A) and residue glucose content (B) in the cultural medium of Shiraia sp. S9. Values are mean±SD from triple independent experiments.
为了探讨共培养促进HA合成的机制,选择了前期通过转录组分

图6 镰孢菌SF12共培养对竹黄菌S9竹红菌甲素合成的影响。A:竹红菌甲素合成路径示意图;B:HA合成酶基因表达。
Figure 6 Effect of the inoculation of Fusarium sp. SF12 on the biosynthesis of hypocrellin A of Shiraia sp. S9. A: Schematic representation of Shiraia hypocrellin A biosynthesis (PKS: Polyketide synthase; Omef: O-methyltransferase; FAD: FAD/FMN-dependent oxidoreductase; Mono: Monooxygenase; MCO: Multicopper oxidase); B: The expression levels of key genes for HA biosynthesis of Shiraia sp. S9 with co-culture of Fusarium sp. SF12. Values are mean±SD from triple experiments. *: P<0.05; **: P<0.01.
2.4 伴生菌液体共培养诱导的优化
为了优化镰孢菌SF12与竹黄菌S9共培养促进HA合成的条件,首先筛选了接入镰孢菌SF12的孢子数量。第3天加入镰孢菌SF12的孢子,对竹黄菌的生长无显著影响(

图7 镰孢菌SF12孢子浓度对竹黄菌生长及HA合成的影响。A:竹黄菌生物量;B:HA胞内合成浓度;C:胞外分泌HA浓度;D:HA总产量。
Figure 7 Effects of Fusarium sp. SF12 at different inoculation concentrations on growth and HA biosynthesis of Shiraia sp. S9. A: Effect on mycelium dry biomass; B: Effect on HA content in mycelium; C: Effect on released HA in culture broth; D: Effect on total HA production in mycelium culture. Different letters above the bars indicate significant differences (P<0.05).
当接入镰孢菌SF12孢子浓度为100个/mL时,探讨了不同接入时间点对竹黄菌S9合成HA的影响。在竹黄菌培养开始时加入镰孢菌SF12孢子(

图8 镰孢菌SF12接入时间对竹黄菌生长及HA合成的影响。A:竹黄菌生物量;B:HA胞内合成浓度;C:胞外分泌HA浓度;D:HA总产量。
Figure 8 Effects of the addition time of Fusarium sp. SF12 on growth and HA biosynthesis of Shiraia sp. S9. A: Effect on mycelium biomass; B: Effect on HA content in mycelium; C: Effect on released HA in culture broth; D: Effect on total HA production in mycelium culture. Different letters above the bars mean significant differences (P<0.05).

图9 镰孢菌SF12与竹黄菌S9共培养时竹黄菌生长及HA合成的变化。A:竹黄菌生物量;B:HA胞内合成浓度;C:胞外分泌HA浓度;D:HA总产量。
Figure 9 The changes of the growth and HA biosynthesis of Shiraia sp. S9 in the co-culture with Fusarium sp. SF12. A: The change of mycelium biomass; B: The change of HA content in mycelium; C: The change of released HA in culture broth; D: The change of total HA production (D). Values are mean±SD from triple experiments. *: P<0.05, **: P<0.01.
3 讨论与结论
内生真菌在植物寄主的生长发育过程中发挥着重要作用,能够促进植物生长、提高植物抗逆、抗病
本研究提取了活性镰孢菌SF12的胞内及胞外几种不同极性的提取物,发现对HA合成诱导效果显著的是镰孢菌SF12活菌共培养及其胞外多糖(
微生物共培养是一种将2种或多种微生物放在一起共同培养的方法。该方法试图模拟微生物在群落中共存的生态环境,通过微生物间的互作关系来刺激、促进或沉默生物合成基因的表达,从而提高活性次生代谢产物的产量或产生新的代谢物,属于通过改变微生物生长条件或培养基以实现单菌株多产物的策略之
作者贡献声明
郑丽屏:研究构思和设计、数据收集和处理、论文撰写和修改;季红瑶:实验操作、数据收集、处理和论文撰写;周建芹:论文讨论、技术支持、论文撰写和修改;王剑文:方案设计、项目指导。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
DIWU Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins[J]. Photochemistry and Photobiology, 1995, 61(6): 529-539. [百度学术]
贾小明, 徐晓红, 庄百川, 林海萍. 药用竹黄菌的生物学研究进展[J]. 微生物学通报, 2006, 33(3): 147-150. [百度学术]
JIA XM, XU XH, ZHUANG BC, LIN HP. The progress of biological research of medicinal fungus Shiraia bambusicola[J]. Microbiology China, 2006, 33(3): 147-150 (in Chinese). [百度学术]
王景祥, 张黎明, 朱丽青, 肖光. 竹黄化学成分的研究[J]. 中草药, 1990, 21(7): 4-5, 46. [百度学术]
WANG JX, ZHANG LM, ZHU LQ, XIAO G. Studies on the chemical constituents of Zhu Huang (Shiraria bambusicola)[J]. Chinese Traditional and Herbal Drugs, 1990, 21(7): 4-5, 46 (in Chinese). [百度学术]
靳爱华, 王丽菊. 竹红菌素软膏加光疗治疗外阴白色病变65例[J]. 陕西医学杂志, 2005, 34(6): 725-726. [百度学术]
JIN AH, WANG LJ. Treatment of 65 cases of vulvar white lesions with hypocrellin ointment and phototherapy[J]. Shaanxi Medical Journal, 2005, 34(6): 725-726 (in Chinese). [百度学术]
薛东运, 李华, 滕学洲. 竹红菌素加用黑光灯照射治疗增生性疤痕127例[J]. 皮肤病与性病, 2006, 28(2): 35-36. [百度学术]
XUE DY, LI H, TENG XZ. Treatment of 127 cases of hypertrophic scar with hypocrellin and black light irradiation[J]. Journal of Dermatology and Venereology, 2006, 28(2): 35-36 (in Chinese). [百度学术]
ZHANG X, WEI QL, TIAN LW, HUANG ZX, TANG YB, WEN YD, YU FQ, YAN XX, ZHAO YC, WU ZQ, TIAN XF. Advancements and future prospects in hypocrellins production and modification for photodynamic therapy[J]. Fermentation, 2024, 10(11): 559. [百度学术]
O’BRIEN EM, MORGAN BJ, MULROONEY CA, CARROLL PJ, KOZLOWSKI MC. Perylenequinone natural products: total synthesis of hypocrellin A[J]. The Journal of Organic Chemistry, 2010, 75(1): 57-68. [百度学术]
MA YJ, ZHENG LP, WANG JW. Bacteria associated with Shiraia fruiting bodies influence fungal production of hypocrellin A[J]. Frontiers in Microbiology, 2019, 10: 2023. [百度学术]
李强, 李树红, 李小林, 陈诚, 黄文丽, 熊川, 杨志荣, 郑林用. 野生翘鳞肉齿菌子实体内生菌多样性[J]. 应用与环境生物学报, 2015, 21(4): 629-634. [百度学术]
LI Q, LI SH, LI XL, CHEN C, HUANG WL, XIONG C, YANG ZR, ZHENG LY. Diversity of endophytic microorganisms in fresh fruiting bodies of Sarcodon imbricatus[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(4): 629-634 (in Chinese). [百度学术]
杨大智, 朱启顺, 杨正斌, 段焰青. 干巴菌子实体内伴生真菌的研究[J]. 中国食用菌, 1997, 16(2): 8-9. [百度学术]
YANG DZ, ZHU QS, YANG ZB, DUAN YQ. Study on the accompany fungi in Thelephora ganbajun’s fruit-body[J]. Edible Fungi of China, 1997, 16(2): 8-9 (in Chinese). [百度学术]
王冉, 于富强. 云南干巴菌子实体内可培养微生物[J]. 微生物学通报, 2018, 45(5): 1112-1119. [百度学术]
WANG R, YU FQ. Culturable microorganisms associated with basidiocarps of Thelephora ganbajun[J]. Microbiology China, 2018, 45(5): 1112-1119 (in Chinese). [百度学术]
YURKOV A, KRÜGER D, BEGEROW D, ARNOLD N, TARKKA MT. Basidiomycetous yeasts from boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus[J]. Microbial Ecology, 2012, 63(2): 295-303. [百度学术]
佟曦然, 郭豪杰, 罗丽, 张昭, 齐耀东, 张本刚. 柬埔寨民间习用灵芝与伴生真菌拮抗特性评价[J]. 中国现代中药, 2017, 19(9): 1221-1227. [百度学术]
TONG XR, GUO HJ, LUO L, ZHANG Z, QI YD, ZHANG BG. Evaluation of antagonistic effect between Ganoderma isolates and companion fungi from Cambodia[J]. Modern Chinese Medicine, 2017, 19(9): 1221-1227 (in Chinese). [百度学术]
邢晓科, 郭顺星. 猪苓、伴生菌及蜜环菌共培养的形态学研究[J]. 菌物系统, 2003, 22(4): 653-660. [百度学术]
XING XK, GUO SX. Morphological studies on dual and triple culture of Grifola umbellata, an unnamed companion fungus and Armillariella mellea[J]. Mycosystema, 2003, 22(4): 653-660 (in Chinese). [百度学术]
MA YJ, ZHENG LP, WANG JW. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1[J]. Microbial Cell Factories, 2019, 18(1): 121. [百度学术]
CHENG TF, JIA XM, MA XH, LIN HP, ZHAO YH. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses[J]. Journal of Basic Microbiology, 2004, 44(5): 339-350. [百度学术]
PEREZ VERA OA, YANEZ MORALES MJ, ALVARADO ROSALES D, CIBRIAN TOVAR D, GARCIA DIAZ SE. Fungi associated to Eucalyptus, Eucalyptus grandis hill: maid[J]. Agrociencia, 2005, 39(3): 311-318. [百度学术]
QIAN LB, CHEN BL. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium[J]. Journal of Environmental Sciences, 2012, 24(9): 1639-1646. [百度学术]
王剑文, 郑丽屏, 谭仁祥. 促进黄花蒿发根青蒿素合成的内生真菌诱导子的制备[J]. 生物工程学报, 2006, 22(5): 829-834. [百度学术]
WANG JW, ZHENG LP, TAN RX. The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L.[J]. Chinese Journal of Biotechnology, 2006, 22(5): 829-834 (in Chinese). [百度学术]
EBELL LF. Variation in total soluble sugars of conifer tissues with method of analysis[J]. Phytochemistry, 1969, 8(1): 227-233. [百度学术]
SUN CX, MA YJ, WANG JW. Enhanced production of hypocrellin A by ultrasound stimulation in submerged cultures of Shiraia bambusicola[J]. Ultrasonics Sonochemistry, 2017, 38: 214-224. [百度学术]
LEI XY, ZHANG MY, MA YJ, WANG JW. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(10): 1415-1429. [百度学术]
季红瑶. 蓝光和真菌诱导对竹红菌素生产的调节作用研究[D]. 苏州: 苏州大学硕士学位论文, 2020. [百度学术]
JI HY. The regulation of blue light and fruiting-body associated fungi on hypocerllin production of Shiraia bambusicola[D]. Suzhou: Master’s Thesis of Soochow University, 2020 (in Chinese). [百度学术]
YANG HL, WANG Y, ZHANG ZB, YAN RM, ZHU D. Whole-genome shotgun assembly and analysis of the genome of Shiraia sp. strain Slf14, a novel endophytic fungus producing huperzine A and hypocrellin A[J]. Genome Announcements, 2014, 2(1): e00011-14. [百度学术]
ZHAO N, LI D, GUO BJ, TAO X, LIN X, YAN SZ, CHEN SL. Genome sequencing and analysis of the hypocrellin-producing fungus Shiraia bambusicola S4201[J]. Frontiers in Microbiology, 2020, 11: 643. [百度学术]
SAIKKONEN K, WÄLI P, HELANDER M, FAETH SH. Evolution of endophyte-plant symbioses[J]. Trends in Plant Science, 2004, 9(6): 275-280. [百度学术]
赵凯, 平文祥, 周东坡. 内生真菌发酵生产紫杉醇的研究现状与展望[J]. 微生物学报, 2008, 48(3): 403-407. [百度学术]
ZHAO K, PING WX, ZHOU DP. Recent advance and prospect on taxol production by endophytic fungus fermentation-a review[J]. Acta Microbiologica Sinica, 2008, 48(3): 403-407 (in Chinese). [百度学术]
肖郑鹏, 朱亚婷, 张雨轩, 罗杰, 刘东波, 康信聪. 产石杉碱甲内生真菌的复壮及产量提高研究[J]. 微生物学报, 2023, 63(11): 4372-4382. [百度学术]
XIAO ZP, ZHU YT, ZHANG YX, LUO J, LIU DB, KANG XC. Rejuvenation and yield improvement of a huperzine A producing endophytic fungus[J]. Acta Microbiologica Sinica, 2023, 63(11): 4372-4382 (in Chinese). [百度学术]
巨凤, 罗凡, 冯丹, 郭大乐, 任波, 邓赟. 冬虫夏草内生菌Penicillium crustosum的化学成分研究[J]. 天然产物研究与开发, 2021, 33(7): 1147-1155. [百度学术]
JU F, LUO F, FENG D, GUO DL, REN B, DENG Y. Study on the chemical constituents of Penicillium crustosum, an endophytic fungus from Ophiocordyceps sinensis[J]. Natural Product Research and Development, 2021, 33(7): 1147-1155 (in Chinese). [百度学术]
SPLIVALLO R, DEVEAU A, VALDEZ N, KIRCHHOFF N, FREY-KLETT P, KARLOVSKY P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma[J]. Environmental Microbiology, 2015, 17(8): 2647-2660. [百度学术]
SHEN XY, CHENG YL, CAI CJ, FAN L, GAO J, HOU CL. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds[J]. PLoS One, 2014, 9(4): e95838. [百度学术]
ZHOU YK, SHEN XY, HOU CL. Diversity and antimicrobial activity of culturable fungi from fishscale bamboo (Phyllostachys heteroclada) in China[J]. World Journal of Microbiology & Biotechnology, 2017, 33(6): 104. [百度学术]
WANG JW, WU JY. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures[J]. Advances in Biochemical Engineering/Biotechnology, 2013, 134: 55-89. [百度学术]
DU W, LIANG JD, HAN YF, YU JP, LIANG ZQ. Nitric oxide mediates hypocrellin accumulation induced by fungal elicitor in submerged cultures of Shiraia bambusicola[J]. Biotechnology Letters, 2015, 37(1): 153-159. [百度学术]
DU W, SUN CL, WANG BG, WANG YM, DONG B, LIU JH, XIA JB, XIE WJ, WANG J, SUN JK, LIU XH, WANG HG. Response mechanism of hypocrellin colorants biosynthesis by Shiraia bambusicola to elicitor PB90[J]. AMB Express, 2019, 9(1): 146. [百度学术]
ZHOU LL, SHEN WH, MA YJ, LI XP, WU JY, WANG JW. Structure characterization of an exopolysaccharide from a Shiraia-associated bacterium and its strong eliciting activity on the fungal hypocrellin production[J]. International Journal of Biological Macromolecules, 2023, 226: 423-433. [百度学术]
LI XP, SHEN WH, ZHOU LL, HUANG QY, CONG RP, ZHENG LP, WANG JW. Lipopolysaccharides from a Shiraia fruiting body-associated bacterium elicit host fungal hypocrellin A biosynthesis through nitric oxide generation[J]. Carbohydrate Polymers, 2024, 324: 121498. [百度学术]
DENG HX, GAO RJ, CHEN JJ, LIAO XR, CAI YJ. An efficient polyethylene glycol-mediated transformation system of lentiviral vector in Shiraia bambusicola[J]. Process Biochemistry, 2016, 51(10): 1357-1362. [百度学术]
BODE HB, BETHE B, HÖFS R, ZEECK A. Big effects from small changes: possible ways to explore nature’s chemical diversity[J]. ChemBioChem, 2002, 3(7): 619-627. [百度学术]
RODRÍGUEZ RD, HEREDIA G, SILES JA, JURADO M, SAPARRAT MCN, GARCÍA-ROMERA I, SAMPEDRO I. Enhancing laccase production by white-rot fungus Funalia floccosa LPSC 232 in co-culture with Penicillium commune GHAIE86[J]. Folia Microbiologica, 2019, 64(1): 91-99. [百度学术]
HU HL, van den BRINK J, GRUBEN BS, WÖSTEN HAB, GU JD, de VRIES RP. Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi[J]. International Biodeterioration & Biodegradation, 2011, 65(1): 248-252. [百度学术]
YAN XX, WEN YD, HU MH, WU ZQ, TIAN XF. Promotion of the hypocrellin yield by a co-culture of Shiraia bambusicola (GDMCC 60438) with Arthrinium sp. AF-5 fungus[J]. Fermentation, 2021, 7(4): 316. [百度学术]
LI XP, SHEN WH, WANG JW, ZHENG LP. Production of fungal hypocrellin photosensitizers: exploiting bambusicolous fungi and elicitation strategies in mycelium cultures[J/OL]. Mycology, 2024. https://doi.org/10.1080/21501203.2024.2430726. [百度学术]