网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

不同生境下黄河三角洲湿地土壤菌群结构与功能特征  PDF

  • 于泽琪 1,2
  • 张乃鹏 3
  • 孙超 3
  • 李莉莉 2
1. 山东中医药大学 海洋中药研究院,山东 济南; 2. 中国科学院烟台海岸带研究所,山东 烟台; 3. 东营市水文中心,东营市黄河三角洲水文生态重点实验室,山东 东营

最近更新:2025-04-30

DOI: 10.13343/j.cnki.wsxb.20240743

CSTR: 32112.14.j.AMS.20240743

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

目的

探究黄河三角洲湿地生态系统中3种不同生境的微生物群落组成、功能特征及垂直分布特点,为湿地生态的靶向修复和可持续管理提供理论支持与潜在微生物资源。

方法

采用16S rRNA基因扩增子测序和代谢组学分析研究植被覆盖区、裸地和生物栖息区3种生境土壤细菌群落的组成和结构差异,分析不同土壤深度细菌群落特征,以及生境特异性细菌-代谢物间潜在的互作关系。

结果

3种生境中共有优势菌门为变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)。浅层土壤特有优势菌门为出芽单胞菌门(Gemmatimonadota),深层土壤特有优势菌门为厚壁菌门(Firmicutes)。在不同土壤深度上,植被覆盖区的unidentified MBNT15、裸地的盐单胞菌属(Halomonas),以及生物栖息区中未鉴定红细菌科(unidentified Rhodobacteraceae)和伍斯氏菌属(Woeseia)存在显著差异,且芽孢杆菌属(Bacillus)在各生境深层土壤中普遍富集。代谢物分析显示,植被覆盖区中鞘氨醇、3-吲哚丙烯酸、2,4-二羟基苯甲酸和全氟辛酸含量较高;裸地中脱氧胆酸含量最高,生物栖息区中磺胺甲噁唑含量最高,且l-色氨酸含量较低。相关性分析表明,植被覆盖区中,藤黄微球菌(Micrococcus luteus)和膝形假单胞菌(Pseudomonas geniculata)与鞘氨醇和全氟辛酸呈显著正相关;卤水糖小螺菌(Saccharospirillum salsuginis)与3-吲哚丙烯酸和2,4-二羟基苯甲酸呈显著正相关。裸地中掘越氏芽孢杆菌(Bacillus horikoshii)与脱氧胆酸呈显著正相关。生物栖息区中樊氏盐单胞菌(Halomonas ventosae)与l-色氨酸呈显著正相关;库尔勒盐单胞菌(Halomonas korlensis)与磺胺甲噁唑呈显著正相关。

结论

不同土壤深度对微生物群落结构有显著影响,且土壤菌群结构与功能特征具有生境特异性。植被覆盖区中富集的M. luteus等菌可能通过调节代谢物促进植物生长和增强抗逆性;裸地中富集的Bacillus具有分解鸟类粪便的功能;生物栖息区中显著差异菌种H. ventosae等具有通过调节代谢物维持螃蟹栖息生态健康的潜力。这些发现为湿地生态系统的微生物调控和管理提供了新的视角。

黄河三角洲湿地是我国暖温带最完整的河口湿地,也是最典型、最年轻的湿地生态系统。由于黄河历史上的多次改道,三角洲地带略有起伏。该地区的海拔高度在1‒2 m之间,拥有丘陵、坡地、洼地和河岸高地等多样的微地貌景[

1]。黄河三角洲国家级自然保护区(37°35′-38°12′N,118°33′-119°20′E)地处渤海之滨,位于山东省东营市垦利区黄河入海口境内,是黄河注入渤海的门户。该保护区以常年积水湿地为主,湿地面积约占总面积的63%。这里不仅湿地资源丰富,而且动植物及微生物种类繁多。因其地处河海过渡地带,拥有独特的生态环境和水文条[2-3]。然而,土壤盐碱化是制约滨海湿地生物多样性维持和生态系统功能发挥的最严重的环境问题之[4]。因此,黄河三角洲湿地成为了研究微生物群落结构及其对生态因素扰动响应的天然理想体系。

微生物是湿地生态系统的重要组成部分,为湿地生态提供稳定高效的生态服务。它们在介导物质循环、能量流动、污染防治、土壤修复、湿地稳态维持及监测等方面均发挥着不可替代的作[

5-6]。微生物与动植物的生命活动密不可分,植物分泌物不仅能够为土壤微生物提供必需的营养物质,还能调节微生物群落结[7-8]。反过来,土壤微生物通过产生各种次级代谢物,以多种有益机制“反哺”植物,促进植物健康生长并增强其对生物和非生物胁迫的抵抗[9-10]。在动物方面,微生物能够为宿主提供营养,促进其生长发育,并保护宿主免受病原体和环境因素的侵[11]。例如,螃蟹体内的微生物群能够增加其环境适应能力,并参与生态循环过[12]

黄河三角洲湿地拥有丰富的生物资源,涵盖了多种典型的植被地貌和庞大的动物群体。然而,目前针对该湿地不同生境(如植物区和动物区等)中微生物群落结构的特异性以及它们与代谢物功能之间关联性的研究仍显匮乏。基于此,本研究选择以不同深度和不同生物覆盖区域为切入点,采集了黄河三角洲湿地中具有显著特征的区域,包括猪毛菜(Salsola)覆盖区域、裸地以及典型生物栖息区——蟹滩等不同深度的土壤样品,通过16S rRNA基因扩增子测序和代谢组学分析,探讨湿地土壤中微生物群落在横向(不同生境)与垂直(不同深度)水平上的组成和结构差异,旨在揭示微生物群落结构、功能及不同生境之间的潜在关联性,进一步明确“生物扰动-微生物群落多样性-功能性”之间的关系。

1 材料与方法

1.1 材料

1.1.1 样品来源及采集

本研究区域位于黄河三角洲自然保护区大汶流管理站(37°44′59″N,119°11′4″E)。黄河三角洲属温带半湿润大陆性季风气候,土壤类型以隐域性潮土和盐土为主,年平均气温11.7-12.6 ℃,年平均降水量551.6 mm,年平均蒸发量1 928.2 mm[

3]

通过野外调查,选取3种具有典型特征的采样点,分别命名为植被覆盖区(猪毛菜覆盖区域)、裸地以及生物栖息区(蟹滩),作为研究对象进行取样。取样时,除去土壤表面植被和1 cm左右深表土,采用五点法用土壤取样器采集土[

13],在50 cm×50 cm的采样区域内,从四角和中心位置自上而下采集5 cm和30 cm (剖面采样点的上下误差不超过1 cm) 2个深度的土壤剖面样品,置于塑料布上。将相同深度的土样混匀,作为1个生物学重复,每样点设3个重复。所有样品分为2部分,分别装入无菌采样袋中,低温保存并运回实验室,储存于-80 ℃冰箱中,用于后续的16S rRNA基因扩增子测序和代谢组学分析。样品分组:植被覆盖区5 cm土壤16S rRNA基因测序(Aaq),植被覆盖区30 cm土壤16S rRNA基因测序(Aas);裸地5 cm土壤16S rRNA基因测序(Adq),裸地30 cm土壤16S rRNA基因测序(Ads);生物栖息区5 cm土壤16S rRNA基因测序(Axq),生物栖息区30 cm土壤16S rRNA基因测序(Axs);植被覆盖区5 cm土壤代谢物检测(Baq),植被覆盖区30 cm土壤代谢物检测(Bas);裸地5 cm土壤代谢物检测(Bdq),裸地30 cm土壤代谢物检测(Bds);生物栖息区5 cm土壤代谢物检测(Bxq),生物栖息区30 cm土壤代谢物检测(Bxs)。

1.1.2 主要试剂和仪器

磁珠法土壤和粪便基因组DNA提取试剂盒、通用型DNA纯化回收试剂盒,天根生化科技(北京)有限公司;Phusion® High-Fidelity PCR Master Mix with GC Buffer PCR试剂盒,New England Biolabs公司;胶回收试剂盒,Qiagen公司;TruSeq® DNA PCR-Free Sample Preparation Kit,Illumina公司;甲醇、甲酸、醋酸铵,ThermoFisher Scientific公司。

BioTek XPS酶标仪,安捷伦科技有限公司;T100梯度PCR仪,Bio-Rad公司;电泳仪,北京市六一仪器厂;NovaSeq 6000高通量测序仪,Illumina公司;Scan Speed 40真空旋转浓缩仪,LaboGene公司;低温离心机,Scilogex公司;Hypersil GOLD色谱柱(100 mm×2.1 mm,1.9 μm)、Vanquish UHPLC色谱仪、Q Exactive™ HF-X质谱仪,ThermoFisher Scientific公司。

1.2 16S rRNA基因扩增子测序和代谢组学分析

1.2.1 土壤总DNA提取、PCR扩增及测序

使用磁珠法土壤和粪便基因组DNA提取试剂盒从土壤样品中提取DNA,通过琼脂糖凝胶电泳和酶标仪检测DNA的纯度和浓度。以细菌16S rRNA基因V4-V5区域引物515F (5′-GTGC CAGCMGCCGCGGTAA-3′)和907R (5′-CCGTC AATTCCTTTGAGTTT-3′)进行16S rRNA基因片段PCR扩增。PCR反应体系(30 μL):2×Phusion Master Mix 15 µL,上、下游引物(1 µmol/L)各0.2 µL,DNA模板(1 ng/µL) 10 µL,ddH2O 4.6 µL。PCR反应条件:98 ℃预变性1 min;98 ℃变性10 s,50 ℃退火30 s,72 ℃延伸30 s,30个循环;72 ℃终延伸5 min。PCR产物使用2%琼脂糖凝胶进行电泳检测,对目的条带使用胶回收试剂盒回收。使用TruSeq® DNA PCR-Free Sample Preparation Kit建库试剂盒进行文库构建,构建好的文库经过Qubit和Q-PCR定量后,使用NovaSeq 6000进行测[

14]。该测序由北京诺禾致源科技股份有限公司完成。相关原始数据已上传至NCBI数据库,登录号为PRJNA1186406。物种相对丰度柱形图分析和属水平物种进化树分析进行操作分类单元(operational taxonomic units, OTU)聚类和物种注释;无度量多维标定法(non-metric multi-dimensional scaling, NMDS)和线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)进行多样本比较分析;相似性分析(analysis of similarities, ANOSIM)进行组间群落结构差异显著性检验;宏基因组统计分析(metagenomic statistical analysis, MetaStat)复杂热图分析组间差异显著物种,斯皮尔曼秩相关系数(Spearman’s rank correlation coefficient, Spearman)分析显示各组微生物群落与代谢物间的相关性。

1.2.2 土壤代谢物提取及HPLC-MS/MS分析

土壤样本加入80%甲醇水溶液进行提取,4 ℃、15 000×g离心15 min,取上清液后再次离心20 min,收集上清液并冻干。冻干后的样品使用甲醇水溶液复溶后进行LC-MS分析。该分析使用Vanquish UHPLC色谱仪和Q Exactive™ HF-X质谱仪。样品采用Hypersil GOLD色谱柱进行梯度洗脱,柱温为40 ℃,流速为0.2 mL/min。Q Exactive™ HF-X质谱仪采用正负离子扫描模式,扫描范围为100-1 500 m/z[

14-15]。代谢组学分析由北京诺禾致源科技股份有限公司完成。使用R软件(v3.4.3)、Python编程语言(v3.5.0)以及CentOS操作系统(v6.6)对代谢物数据进行统计分析。

1.3 数据处理与分析

使用SPSS Statistics 21.0单因素方差分析(analysis of variance, ANOVA),分析不同组间的差异。数据结果以mean±SEM表示,P<0.05为差异具有统计学意义(*:P<0.05,**:P<0.01)。

2 结果与分析

测序数据经过拼接、质控和嵌合体过滤后,共获得1 176 685条有效序列,有效序列的平均长度集中在373-374 nt之间。18个土样中的微生物归属于108门233纲470目625科1 021属432种。各组间的NMDS分析(图1A)显示土壤微生物群落结构存在显著差异,Stress值为0.160,ANOSIM分析(图1B)表明组间差异大于组内差异(R=0.483,P=0.001)。

fig

图1  组间差异分析。A:土壤微生物群NMDS分析;B:ANOSIM分析。

Figure 1  Inter-group differentiation analysis. A: NMDS analysis of soil microbial communities; B: ANOSIM analysis.

2.1 深度对土壤微生物组的影响

将6组中门水平相对丰度排名前10的细菌绘制柱形图(图2A),细菌群落主要由变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、unidentified bacteria、厚壁菌门(Firmicutes)、出芽单胞菌门(Gemmatimonadota)、放线菌门(Actinomycetota)、蓝细菌门(Cyanobacteria)、盐杆菌门(Halobacterota)、酸杆菌门(Acidobacteriota)和绿屈挠菌门(Chloroflexota)组成。各组中共同的优势菌门为ProteobacteriaBacteroidota。此外,Gemmatimonadota在各浅层土壤组中相对丰度较高,而Firmicutes在各深层土壤组中占优势。与Aaq组相比,Aas组中Proteobacteria (19.91%,34.05%)和Firmicutes (1.72%,8.30%)的相对丰度增加,Bacteroidota (21.43%,7.63%)相对丰度降低;与Adq组相比,Ads组中Firmicutes (2.97%,13.52%)相对丰度极显著增加(P<0.01),Acidobacteriota (3.03%,5.67%)和Chloroflexota (3.32%,5.38%)丰度显著增加(P<0.05);与Axq组相比,Axs组中unidentified bacteria (16.97%,12.45%)和Gemmatimonadota (4.48%,2.90%)相对丰度显著降低(P<0.05)。

fig

图2  土壤微生物组成与结构分析。A:不同组间相对丰度前10的门水平柱形图及组间显著差异;B:不同组间相对丰度前10的科水平柱形图及组间显著差异;C:属水平物种系统发育树。

Figure 2  Analysis of soil microbial composition and structure. A: Bar chart of the top 10 phyla by relative abundance among different groups and significant differences between groups; B: Bar chart of the top 10 families by relative abundance among different groups and significant differences between groups; C: Phylogenetic tree at the genus level. *: P<0.05; **: P<0.01.

科水平相对丰度柱形图(图2B)显示,Aaq组的优势菌科为黄杆菌科(Flavobacteriaceae,17.89%);Aas组的优势菌科为拜叶林克氏菌科(Beijerinckiaceae,8.42%);Adq组的优势菌科为Flavobacteriaceae (14.71%)和Beijerinckiaceae (12.68%);Ads组的优势菌科以Flavobacteriaceae (14.2%)和芽孢杆菌科(Bacillaceae,10.31%)为主;Axq组和Axs组的优势菌科均为Flavobacteriaceae (28.27%,22.84%)和Bacillaceae (2.66%,6.94%)。各深层土壤中Bacillaceae相对丰度均高于对应的浅层土壤,其中Ads组显著增加(P<0.01)。属水平物种系统发育树(图2C)显示,不同深度比较组主要分布在Proteobacteria,其次是FirmicutesBacteroidota

丰度排名前35的属水平微生物群落结构的MetaStat分析(图3A)显示,与Aaq组相比,Aas组中芽孢杆菌属(Bacillus) (P<0.01) (0.77%,1.51%)和unidentified MBNT15 (P<0.05) (0.33%,0.38%)相对丰度显著增加;与Adq组相比,Ads组中盐单胞菌属(Halomonas) (0.59%,0.31%)相对丰度显著降低(P<0.01),Bacillus (1.56%,8.69%)的相对丰度显著增加(P<0.01);与Axq组相比,Axs组中未鉴定红细菌科(unidentified Rhodobacteraceae) (P<0.05) (0.88%,0.35%)和伍斯氏菌属(Woeseia) (P<0.05) (1.66%,0.73%)相对丰度显著降低,Bacillus (2.02%,4.91%)相对丰度显著增加(P<0.05)。丰度排名前35的种水平微生物群落结构的MetaStat分析(图3B)显示,相较于各浅层土壤,各深层土壤的硒砷属间芽孢杆菌(Mesobacillus selenatarsenatis)的相对丰度均显著增加。

fig

图3  不同组间土壤微生物群落MetaStat复杂热图。A:属水平;B:种水平。

Figure 3  MetaStat complex heatmap of soil microbial community among different groups. A: Genus level; B: Species level.

2.2 不同生物覆盖对微生物组的影响

门水平相对丰度柱形图(图2A)显示,与Aaq组相比,Axq组中Firmicutes (1.72%,3.83%)相对丰度显著增加(P<0.05)。科水平相对丰度柱形图(图2B)显示,与Aaq组相比,Axq组中Bacillaceae (1.09%,2.67%)相对丰度显著增加(P<0.01)。与Aas组相比,Ads组中Bacillaceae (2.0%,10.3%)相对丰度显著增加(P<0.01)。属水平物种系统发育树(图2C)显示,Aaq组、Adq组和Axq组土壤中排名前100的菌属主要分布在Proteobacteria,其次是BacteroidotaHalobacterota;Aas组、Ads组和Axs组土壤中排名前100的菌属主要分布在Proteobacteria,其次是FirmicutesBacteroidota

丰度排名前35属水平微生物群落结构的MetaStat分析(图3A)显示,与Aaq组土壤相比,Axq组土壤中寡养单胞菌属(Stenotrophomonas) (0.04%,0.01%)相对丰度显著降低(P<0.05),而Bacillus (P<0.01) (0.77%,2.02%)和unidentified MBNT15 (P<0.01) (0.33%,0.55%)相对丰度显著增加。与Adq组土壤相比,Axq组处土壤中盐坑微菌属(Salinimicrobium) (P<0.01) (1.22%,10.87%)和Halomonas (P<0.05) (0.59%,1.75%)相对丰度显著增加。与Aas组土壤相比,Ads组处土壤中Bacillus (P<0.01) (1.51%,8.69%)相对丰度显著增加;Axs组土壤中Bacillus (P<0.05) (1.51%,4.91%)和Halomonas (P<0.05) (0.47%,1.29%)相对丰度显著增加。与Ads组土壤相比,Axs组土壤中Bacillus (8.69%,4.91%)相对丰度显著降低(P<0.05),Halomonas (0.31%,1.29%)相对丰度显著增加(P<0.01)。

为进一步分析不同分组土壤微生物的差异,利用LEfSe分析(图4A)筛选组间差异显著物种,并输出LDA值分布柱状图(LDA score>3.5)。LEfSe分析显示,29个细菌进化支和42个分类群在6组检测样本中存在显著差异。Aaq组中富集红细菌科(Rhodobacteraceae)和班犹尔斯菌科(Balneolaceae)等显著差异物种;Aas组中富集Stenotrophomonas等显著差异物种;Adq组中富集γ变形菌纲(Gammaproteobacteria)和纤维弧菌目(Cellvibrionales)等显著差异物种;Ads组中富集Bacillus以及M. selenatarsenatis等显著差异物种;Axq组中富集Halomonas和樊氏盐单胞菌(Halomonas ventosae)等显著差异物种;Axs组中富集Salinimicrobium。结果表明,不同深度和不同生境下富集的细菌差异较大,这些细菌可能是各组土壤的潜在生物标志物。此外,对6组样本进行t检验(置信区间为95%),如图4B-4F所示,Aas组中的疮疱表皮杆状菌(Cutibacterium acnes)、Adq组中的栖泥硫柄杆菌(Sulfuricaulis limicola)、Ads组中的M. selenatarsenatis、Axq组中的H. ventosae和库尔勒盐单胞菌(Halomonas korlensis) 在各自组中更为富集,且与其他组相比存在显著差异。

fig

图4  不同分组间土壤微生物差异分析。A:进化分支图和LDA值分布柱状图分析结果,LDA score设置为3.5;B:Cutibacterium acnes t检验;C:Sulfuricaulis limicola t检验;D:Mesobacillus selenatarsenatis t检验;E:Halomonas ventosae t检验;F:Halomonas korlensis t检验。

Figure 4  Analysis of soil microbial differences among different groups. A: Evolutionary branch diagram and LDA value distribution histogram analysis results, with LDA score set to 3.5; B: Cutibacterium acnes t-test; C: Sulfuricaulis limicola t-test; D: Mesobacillus selenatarsenatis t-test; E: Halomonas ventosae t-test; F: Halomonas korlensis t-test. *: P<0.05; **: P<0.01.

2.3 不同深度对微生物代谢组的影响

差异代谢物火山图(图5A-5C)直观地展示了不同深度组间土壤代谢物的差异表达情况,偏最小二乘法判别分析(partial least squares discrimination analysis, PLS-DA) (图5D-5F)清楚地显示了不同深度组间土壤代谢物的组成差异。图5G显示了差异代谢物总数排名前20的KEGG通路。如图5H所示,与Baq组相比,Bas组中的药物代谢-细胞色素P450 (drug metabolism- cytochrome P450)通路存在显著差异;与Bdq组相比,Bds组中的嘧啶代谢(pyrimidine metabolism)通路存在显著差异。

fig

图5  不同深度土壤代谢物组成和代谢途径的变化。A:Bas组和Baq组间差异代谢物火山图;B:Bds组和Bdq组间差异代谢物火山图;C:Bxs组和Bxq组间差异代谢物火山图;D:Bas组和Baq组间PLS-DA分析;E:Bds组和Bdq组间PLS-DA分析;F:Bxs组和Bxq组间PLS-DA分析;G:KEGG富集气泡图和KEGG富集通路。

Figure 5  Changes in metabolite composition and metabolic pathways in soil at different depths. A: Volcano plot of differential metabolites between Bas and Baq groups; B: Volcano plot of differential metabolites between Bds and Bdq groups; C: Volcano plot of differential metabolites between Bxs and Bxq groups; D: PLS-DA analysis between Bas and Baq groups; E: PLS-DA analysis between Bds and Bdq groups; F: PLS-DA analysis between Bxs and Bxq groups; G: KEGG enrichment bubble plot and KEGG enrichment pathways.

2.4 不同生物覆盖对微生物代谢组的影响

差异代谢物火山图(图6A-6F)直观地展示了不同生物覆盖组间土壤代谢物的差异表达情况,PLS-DA分析(图6G-6L)清楚地显示了不同生物覆盖组间土壤代谢物的组成差异。

fig

图6  不同生物覆盖下土壤代谢物表达与组成的变化。A:Baq组和Bdq组差异代谢物火山图;B:Baq组和Bxq组;C:Bdq组和Bxq组;D:Bas组和Bds组;E:Bas组和Bxs组;F:Bds组和Bxs组;G:Baq组和Bdq组间PLS-DA分析;H:Baq组和Bxq组;I:Bdq组和Bxq组;J:Bas组和Bds组;K:Bas组和Bxs组;L:Bds组和Bxs组。

Figure 6  Changes of soil metabolite expression and composition under different biological covers. A: Volcano plot of differential metabolites between Baq and Bdq groups; B: Baq group and Bxq group; C: Bdq group and Bxq group; D: Bas group and Bds group; E: Bas group and Bxs group; F: Bds group and Bxs group; G: PLS-DA analysis between Baq and Bdq groups; H: Baq group and Bxq group; I: Bdq group and Bxq group; J: Bas group and Bds group; K: Bas group and Bxs group; L: Bds group and Bxs group.

图7A显示了差异代谢物总数排名前20的KEGG通路。如图7B所示,与Bdq组相比,Baq组中莽草酸途径衍生生物碱的生物合成(biosynthesis of alkaloids derived from shikimate pathway)和植物次生代谢物的生物合成(biosynthesis of plant secondary metabolites)等代谢通路存在显著差异;与Bxq组相比,Bdq组中嘧啶代谢通路存在显著差异;与Bds组相比,Bas组中组氨酸代谢(histidine metabolism)通路存在显著差异;与Bxs组相比,Bas组中血管平滑肌收缩、脂肪细胞中的脂解调节以及托烷、哌啶和吡啶生物碱生物合成(tropane, piperidine and pyridine alkaloid biosynthesis)代谢通路存在显著差异;与Bxs组相比,Bds组的黄酮和黄酮醇生物合成(flavone and flavonol biosynthesis)和AMP依赖的蛋白激酶(adenosine 5′-monophosphate-activated protein kinase, AMPK)信号通路存在显著差异。

fig

  

fig

  

图7  不同生物覆盖下代谢途径的变化。A:KEGG富集气泡图;B:KEGG富集通路。

Figure 7  Changes in metabolic pathways under different biological covers. A: KEGG enrichment bubble plot; B: KEGG enrichment pathways.

差异代谢物聚类热图(图8)显示,植被覆盖区中鞘氨醇(sphinganine)、3-吲哚丙烯酸(3-indoleacrylic acid)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid)和l-色氨酸(l-tryptophan)的含量明显高于裸地和生物栖息区。全氟辛酸(perfluorooctanoic acid)的含量在三地中由高到低依次为生物栖息区、植被覆盖区和裸地。脱氧胆酸(deoxycholic acid)和d-苯基乳酸(d-3-phenyllactic acid)在裸地中的含量最高。鸟苷(guanosine)、磺胺甲噁唑(sulfamethoxazole)和十五烷酸(pentadecanoic acid)等在生物栖息区中的含量最高。

fig

图8  差异代谢物聚类热图。热图颜色越红,表示差异代谢物含量越高;颜色越蓝,表示差异代谢物含量越低。

Figure 8  Cluster heatmap of differential metabolites. The redder the color of the heatmap, the higher the levels of differential metabolites; conversely, the bluer the color, the lower the levels of these metabolites.

2.5 微生物与代谢产物的相关性分析

差异代谢物被分类为核苷、核苷酸及其类似物、有机杂环化合物、苯类化合物、有机酸及其衍生物、含氧有机化合物、有机氮化合物、有机卤素化合物、生物碱及其衍生物类代谢物、苯丙素类化合物、聚酮类化合物、脂质和类脂

质分子类代谢物和其他差异代谢物。相关性分析(图9)显示,藤黄微球菌(Micrococcus luteus)和膝形假单胞菌(Pseudomonas geniculata)均与鞘氨醇和全氟辛酸呈显著正相关。卤水糖小螺菌(Saccharospirillum salsuginis)与3-吲哚丙烯酸和2,4-二羟基苯甲酸呈显著正相关;与脱氧腺苷(deoxyadenosine)和2′-脱氧胞苷(2′-deoxycytidine)呈显著负相关。掘越氏芽孢杆菌(Bacillus

fig

  

fig

  

图9  差异代谢物与显著性差异物种关联分析。颜色越红表示正相关性越强,颜色越蓝表示负相关性越强。椭圆越扁平,P值越小;*:P<0.05。

Figure 9  Correlation analysis between differential metabolites and significantly different species. Redder colours indicate stronger positive correlations and bluer colours indicate stronger negative correlations. The flatter the ellipse, the smaller the P-value; *: P<0.05.

horikoshii)与脱氧胆酸和d-苯基乳酸呈显著正相关。H. ventosael-色氨酸和鸟苷呈显著正相关。H. korlensis与磺胺甲噁唑和十五烷酸呈显著正相关;与羟基戊二酸(hydroxyglutaric acid)呈显著负相关。

3 讨论

不同深度土壤中的菌群分布呈现出共性及独特规律。在共性方面,我们发现在植被覆盖区(猪毛菜覆盖区域)、裸地和生物栖息区(蟹滩) 3种不同生境中Bacillus表现出普遍的深层富集特征。Bacillus是一类好氧或兼性厌氧的革兰氏阳性菌,具有独特的孢子形态,因此对高温、高热、紫外光、电磁辐射和某些化学药品均具有很强的抗逆性,表现出极高的环境适应能力,并广泛存在于土壤、水、空气以及动物肠道等环境[

16-17]。黄河三角洲湿地土壤的盐分、氧气含量和营养物质梯度随着土壤深度的增加而降[18]Bacillus的深层富集现象充分反映了其普适性和竞争力。在独特规律方面,本研究发现植被覆盖区中unidentified MBNT15同样在30 cm深土壤中富集。候选菌门MBNT15是一类专性厌氧[19]。Wen[20]研究表明MBNT15在土壤养分循环和提高作物产量方面发挥潜在促进作用,枯草芽孢杆菌(Bacillus subtilis)-哈茨木霉(Trichoderma harzianum)混合微生物制剂能增加MBNT15的富集程度。因此我们认为unidentified MBNT15对猪毛菜具有潜在的促进作用,并且与同样富集的Bacillus之间存在正向联系。

在无生物扰动的裸地区域中,Halomonas的分布特征与其对高盐环境的适应性密切相关。研究表明,Halomonas在黄河三角洲滨海盐碱化湿地中广泛分[

21],与本研究发现一致。本研究发现,Halomonas显著富集在裸地5 cm深土壤中,这类革兰氏阴性需氧菌偏好高盐环境,并对盐碱环境具有强适应能[22]。其适应机制主要包括胞内累积相容性溶质(如谷氨酸、甘氨酸甜菜碱、四氢嘧啶和脯氨酸等)、K+摄取、Na+外排以及调节能量代谢和细胞运动性相关基因的表[23-24]。本次采样时间处于黄河三角洲旱季,裸地表面水分更容易蒸发,表层土壤更容易积累盐分,Halomonas在表层土壤的聚集现象进一步验证了其对高盐环境的生态偏好。在这种环境下,Halomonas可能通过调节其代谢途径和离子转运系统来适应高盐胁迫,这对它们在盐碱土壤中的生态位和生物地球化学循环具有重要意[25]

此外,生物栖息区不同深度土壤中Woeseia和unidentified Rhodobacteraceae的分布特征与其自身特性及生物活动密切相关。在生物栖息区30 cm深土壤中,Woeseia和unidentified Rhodobacteraceae的相对丰度显著降低。Woeseia是一类兼性厌氧的化学异养菌,具有降解碳氢化合物和反硝化能[

26-27]。螃蟹作为滨海湿地常见的底栖动物,通过摄食和分解动植物残体增加有机物积累,富集具有反硝化能力的菌群,显著影响氮循环,在生态调节中发挥重要作[28-29],可能为Woeseia生长提供所需微环境。Gao[30]研究指出,unidentified Rhodobacteraceae为兼性厌氧菌,具有碳氢化合物生物降解能力,且氧气含量是影响土壤中石油烃代谢途径的关键因素之一。Cuellar-Gempeler[31]研究发现,螃蟹甲壳及肠道菌群中相对富集Rhodobacteraceae。此外,Rhodobacteraceae在降解邻苯二甲酸二丁酯(dibutyl phthalate, DBP)、乳酸生成及氨基酸生物合成等方面具有显著代谢潜力,有助于螃蟹抵抗DBP胁[32]。黄河三角洲湿地富含石油资源,存在石油污染风险。表层土壤氧气含量相对深层土壤更为充足,同时螃蟹排泄物和蜕壳活动为unidentified Rhodobacteraceae的直接输入提供可能,结合其对石油烃降解等功能优势,进一步解释了unidentified Rhodobacteraceae在表层土壤中的相对富集现象。这些研究表明,在不同生境下,5 cm和30 cm深土壤中存在显著差异的微生物群落结构,微生物群落也受到生境因素的显著影响。

在不同生境下,特有微生物群落展现出独特的微生态功能潜力。在猪毛菜覆盖土壤中,M. luteusP. geniculataS. salsuginis与多种代谢物的相关性揭示了植物-微生物互作关系。Mukhtar[

33]研究表明在猪毛菜覆盖土壤中检测到丰富的微球菌属(Micrococcus)和假单胞菌属(Pseudomonas),与本研究结果一致。M. luteus是一种革兰氏阳性细菌,具有固氮、植物促生、生物防治及抗生物和非生物胁迫的能[34-35]P. geniculata能够促进植株生长、根系发育,提高抗氧化酶活性,缓解植物盐胁[36-37]。鞘氨醇是植物程序性细胞死亡信号通路中的关键因子之一,能够发挥防御病原体作[38]。作为鞘脂生物合成途径中的关键中间产物,鞘氨醇在植物根系发育过程以及响应生物和非生物胁迫时也发挥着关键作[39-40]。全氟辛酸属于全氟化合物的一种,具有持久的污染能力,能够在植物体内生物累积并表现出植物毒[41]。本研究结果显示,M. luteusP. geniculata均与鞘氨醇呈现显著正相关,一方面,意味着M. luteusP. geniculata能够影响鞘脂代谢通路,并与鞘氨醇发挥协同作用,促进植物生长发育和生物防治,帮助植株抵抗盐碱胁迫,维持植物体健康;另一方面,验证了鞘氨醇与植物之间存在紧密联系。此外,M. luteus Rpf因子能增加土壤细菌可培养物种的多样[42],有利于分离出参与鞘脂代谢协同作用的微生物群。此外,M. luteusP. geniculata与全氟辛酸也呈现显著正相关。Tang[43]研究证明,多种假单胞菌属能够降解全氟化合物。在植被覆盖区中,M. luteusP. geniculata具备环境污染物生物降解的潜在功能。S. salsuginis也是在猪毛菜覆盖土壤中发现的显著富集菌种,是一种需氧、嗜盐碱的革兰氏阴性[44-45],3-吲哚丙烯酸被证明是一种植物促生长化合[46],而2,4-二羟基苯甲酸能够参与植物的免疫调节作[47]。Kino[48]研究表明,部分土壤微生物通过脱羧酶产生2,4-二羟基苯甲酸。本研究结果表明,S. salsuginis与这2种代谢物均呈显著正相关。我们认为S. salsuginis能够通过这2种代谢物发挥促生和免疫调节作用,是一种潜在的植物有益菌。

相较于植被覆盖区,裸地生境中B. horikoshii与脱氧胆酸的显著关联揭示了该特殊生境下微生物的适应性代谢特征。在裸地环境中,缺乏动植物残体等固定碳源为土壤微生物提供能量。然而,黄河三角洲保护区内鸟类资源丰富,动物排泄物中含有胆汁酸等可以促进细菌生长的优质碳源和能量[

49]B. horikoshii属于一类嗜碱性芽孢杆[50],其耐高盐、形成内生孢子以及耐受恶劣环境的能力使其更能适应盐碱环[51]。Starliper[50]研究表明,B. horikoshii甚至能在pH 12.0的条件下存活72 h。此外,已有研究显示多种芽孢杆菌属具有胆盐水解酶活性,能够降解胆汁[52-53]。本研究发现B. horikoshii与脱氧胆酸呈显著正相关,推测B. horikoshii可能通过潜在的胆盐水解酶基因参与次级胆汁酸生物合成通路,从而降解胆汁酸并产生脱氧胆酸。同时,脱氧胆酸可能影响B. horikoshii的生长与生态适应性。这一发现不仅为理解盐碱环境中微生物群落与代谢物之间的互作关系提供了新视角,还暗示了其在生态循环中的潜在应用价值。

在生物栖息区中,H. ventosaeH. korlensis与代谢物之间的相关性展示了微生物在维持螃蟹健康和生存中的重要作用。这2种细菌均为中度嗜盐反硝化细菌,能够适应盐碱环境并参与氮循[

54-55]。孙苏燕[56]研究发现,H. ventosae是健康螃蟹养殖区域的优势细菌。l-色氨酸是动物无法自身合成的必需氨基酸之[57],对螃蟹的抗氧化、抗菌以及免疫功能等发挥积极作[58]。本研究发现,H. ventosael-色氨酸之间存在显著正相关,表明H. ventosae可能通过色氨酸代谢通路为螃蟹提供生理支持,从而增强其健康状态和环境适应能力。水产养殖业造成的抗生素污染是黄河三角洲湿地存在的普遍问题之[59],抗生素磺胺甲噁唑能够降低螃蟹与天然免疫相关基因的表达水平和抗氧化能力,进而降低其存活[60]。本研究发现,H. korlensis与磺胺甲噁唑呈显著正相关,这提示H. korlensis可能具有降解或耐受磺胺甲噁唑的能力,帮助螃蟹抵御抗生素污染,增强其生存能力。综上所述,H. ventosaeH. korlensis通过其在调节氨基酸代谢和抵抗抗生素污染中的潜在功能,展现了在维持螃蟹健康和适应环境变化中的重要作用,这为未来湿地生态保护和水产养殖污染治理提供了有价值的微生物学视角。

4 结论

本研究发现不同土壤深度对微生物群落结构具有显著影响,并深入探讨了黄河三角洲湿地不同生境中微生物群落的组成特征及其与代谢物的相互关系。在植被覆盖区,M. luteusP. geniculata与鞘氨醇和全氟辛酸等代谢物呈现显著正相关,意味着这些微生物可能通过代谢物调节来促进植物生长、抗逆以及维持植物健康生态;S. salsuginis能通过3-吲哚丙烯酸和2,4-二羟基苯甲酸发挥促生和免疫调节作用。在缺少动植物残体参与分解的裸地中,Bacillus可作为鸟类粪便的分解代谢的优势功能菌。相比之下,H. ventosaeH. korlensis可能通过调节色氨酸代谢和抵抗抗生素污染来维持螃蟹的栖息生态健康。这些发现深化了我们对黄河三角洲湿地生态系统的理解,阐明了深度对微生物群落的影响,又从微生物-代谢物角度揭示了微生物在生态运行中的潜在途径,为湿地生态靶向修复和可持续管理提供了潜在微生物资源。

作者贡献声明

于泽琪:数据处理分析、论文撰写和修改;张乃鹏:样本收集、参与论文讨论、提供技术支持;孙超:协助实验操作;李莉莉:论文构思、框架设计和论文修改。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

ZHANG XJ, WANG GQ, XUE BL, ZHANG MX, TAN ZX. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades[J]. Science of the Total Environment, 2021, 787: 147644. [百度学术] 

2

李德峰, 高坚, 张冬. 黄河三角洲湿地恢复措施及效果分析[J]. 科技创新导报, 2018, 15(14): 135-136. [百度学术] 

LI DF, GAO J, ZHANG D. Analysis of restoration measures and effects in the Yellow River Delta wetlands[J]. Science and Technology Innovation Herald, 2018, 15(14): 135-136 (in Chinese). [百度学术] 

3

倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 78-90. [百度学术] 

NI YM, CHEN L, DONG ZY, SUN DB, LI BQ, WANG XM, CHEN LL. Community structure of macrobenthos and ecological health evaluation in the restoration area of the Yellow River Delta wetland[J]. Biodiversity Science, 2024, 32(3): 78-90 (in Chinese). [百度学术] 

4

LIU LL, WU YM, YIN MQ, MA XY, YU XN, GUO X, DU N, ELLER F, GUO WH. Soil salinity, not plant genotype or geographical distance, shapes soil microbial community of a reed wetland at a fine scale in the Yellow River Delta[J]. Science of the Total Environment, 2023, 856: 159136. [百度学术] 

5

SIMS A, ZHANG YY, GAJARAJ S, BROWN PB, HU ZQ. Toward the development of microbial indicators for wetland assessment[J]. Water Research, 2013, 47(5): 1711-1725. [百度学术] 

6

COBAN O, DE DEYN GB, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): abe0725. [百度学术] 

7

白雪飞, 李倩, 丁丽丽, 张岱, 赵益, 杨志辉, 朱杰华. 贝莱斯芽孢杆菌HN-Q-8对马铃薯根际土壤微生物群落结构及理化性质的影响[J]. 微生物学通报, 2024, 51(8): 2844-2856. [百度学术] 

BAI XF, LI Q, DING LL, ZHANG D, ZHAO Y, YANG ZH, ZHU JH. Effects of Bacillus velezensis HN-Q-8 on the microbial community structure and physicochemical properties of potato rhizosphere soil[J]. Microbiology China, 2024, 51(8): 2844-2856 (in Chinese). [百度学术] 

8

KOPRIVOVA A, KOPRIVA S. Plant secondary metabolites altering root microbiome composition and function[J]. Current Opinion in Plant Biology, 2022, 67: 102227. [百度学术] 

9

LUGTENBERG B, KAMILOVA F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63: 541-556. [百度学术] 

10

ANSARI M, DEVI BM, SARKAR A, CHATTOPADHYAY A, SATNAMI L, BALU P, CHOUDHARY M, SHAHID MA, JAILANI AAK. Microbial exudates as biostimulants: role in plant growth promotion and stress mitigation[J]. Journal of Xenobiotics, 2023, 13(4): 572-603. [百度学术] 

11

PEIXOTO RS, HARKINS DM, NELSON KE. Advances in microbiome research for animal health[J]. Annual Review of Animal Biosciences, 2021, 9: 289-311. [百度学术] 

12

FUSI M, NGUGI DK, MARASCO R, BOOTH JM, CARDINALE M, SACCHI L, CLEMENTI E, YANG XY, GARUGLIERI E, FODELIANAKIS S, MICHOUD G, DAFFONCHIO D. Gill-associated bacteria are homogeneously selected in amphibious mangrove crabs to sustain host intertidal adaptation[J]. Microbiome, 2023, 11(1): 189. [百度学术] 

13

王雪莹, 包新光, 张峰, 谭兵兵, 王钰煐, 种培芳. 荒漠植物红砂根际土壤细菌群落特征及土壤酶活性研究[J]. 草地学报, 2024, 32(12): 3764-3773. [百度学术] 

WANG XY, BAO XG, ZHANG F, TAN BB, WANG YY, CHONG PF. Characteristics of bacterial community and soil enzyme activity in rhizosphere soil of desert plant Reaumuria soongorica[J]. Acta Agrestia Sinica, 2024, 32(12): 3764-3773 (in Chinese). [百度学术] 

14

YAN SL, ZHU YH, LI LL, QIN S, YUAN JY, CHANG XL, HU SL. Alginate oligosaccharide ameliorates azithromycin-induced gut microbiota disorder via Bacteroides acidifaciens-FAHFAs and Bacteroides-TCA cycle axes[J]. Food & Function, 2023, 14(1): 427-444. [百度学术] 

15

TAO Y, ZHANG QZ, LONG SP, LI XF, CHEN J, LI X. Shifts of lipid metabolites help decode immobilization of soil cadmium under reductive soil disinfestation[J]. Science of the Total Environment, 2022, 829: 154592. [百度学术] 

16

徐靖, 牛邦彦, 张亚南, 魏海雷, 张晓霞, 高淼. 芽孢杆菌属Bacillus分类学研究进展[J]. 中国土壤与肥料, 2022(12): 225-237. [百度学术] 

XU J, NIU BY, ZHANG YN, WEI HL, ZHANG XX, GAO M. Advances in taxonomy of genus Bacillus[J]. Soil and Fertilizer Sciences in China, 2022(12): 225-237 (in Chinese). [百度学术] 

17

BRESSUIRE-ISOARD C, BROUSSOLLE V, CARLIN F. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms[J]. FEMS Microbiology Reviews, 2018, 42(5): 614-626. [百度学术] 

18

ZHANG K, XIA JB, SU L, GAO FL, CUI Q, XING XS, DONG MM, LI CR. Effects of microtopographic patterns on plant growth and soil improvement in coastal wetlands of the Yellow River Delta[J]. Frontiers in Plant Science, 2023, 14: 1162013. [百度学术] 

19

CHEN YJ, LEUNG PM, WOOD JL, BAY SK, HUGENHOLTZ P, KESSLER AJ, SHELLEY G, WAITE DW, FRANKS AE, COOK PLM, GREENING C. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem[J]. ISME Journal, 2021, 15(10): 2986-3004. [百度学术] 

20

WEN YF, MA YM, WU ZN, YANG YG, YUAN XJ, CHEN KR, LUO YH, HE ZT, HUANG XH, DENG PX, LI CM, YANG ZY, CHEN ZK, MA J, SUN YJ. Enhancing rice ecological production: synergistic effects of wheat-straw decomposition and microbial agents on soil health and yield[J]. Frontiers in Plant Science, 2024, 15: 1368184. [百度学术] 

21

CHI ZF, WANG WJ, LI H, WU HT, YAN BX. Soil organic matter and salinity as critical factors affecting the bacterial community and function of Phragmites australis dominated riparian and coastal wetlands[J]. Science of the Total Environment, 2021, 762: 143156. [百度学术] 

22

WANG ZH, LIU K. Effect of intertidal vegetation (Suaeda salsa) restoration on microbial diversity in the offshore areas of the Yellow River Delta[J]. Plants, 2024, 13(2): 213. [百度学术] 

23

GUNDE-CIMERMAN N, PLEMENITAŠ A, OREN A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations[J]. FEMS Microbiology Reviews, 2018, 42(3): 353-375. [百度学术] 

24

CHEN YH, LU CW, SHYU YT, LIN SS. Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches[J]. Scientific Reports, 2017, 7(1): 13037. [百度学术] 

25

DONG LX, GE ZW, QU W, FAN YP, DAI QP, WANG JX. Characteristics and mechanism of heterotrophic nitrification/aerobic denitrification in a novel Halomonas piezotolerans strain[J]. Journal of Basic Microbiology, 2022, 62(2): 124-134. [百度学术] 

26

BACOSA HP, ERDNER DL, ROSENHEIM BE, SHETTY P, SEITZ KW, BAKER BJ, LIU ZF. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil[J]. ISME Journal, 2018, 12(10): 2532-2543. [百度学术] 

27

MUßMANN M, PJEVAC P, KRÜGER K, DYKSMA S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments[J]. ISME Journal, 2017, 11(5): 1276-1281. [百度学术] 

28

AN ZR, GAO DZ, CHEN FY, WU L, ZHOU J, ZHANG ZX, DONG HP, YIN GY, HAN P, LIANG X, LIU M, HOU LJ, ZHENG YL. Crab bioturbation alters nitrogen cycling and promotes nitrous oxide emission in intertidal wetlands: influence and microbial mechanism[J]. Science of the Total Environment, 2021, 797: 149176. [百度学术] 

29

LIU C, XIA JB, CUI Q, ZHANG DJ, LIU M, HOU LJ, GAO DZ. Crab bioturbation affects competition between microbial nitrogen removal and retention in estuarine and coastal wetlands[J]. Environmental Research, 2022, 215: 114280. [百度学术] 

30

GAO YC, YUAN LY, DU JH, WANG H, YANG XD, DUAN LC, ZHENG LW, BAHAR MM, ZHAO QQ, ZHANG W, LIU YJ, FU ZY, WANG W, NAIDU R. Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta Natural Reserve, China[J]. Chemosphere, 2022, 289: 133207. [百度学术] 

31

CUELLAR-GEMPELER C, LEIBOLD MA. Multiple colonist pools shape fiddler crab-associated bacterial communities[J]. ISME Journal, 2018, 12(3): 825-837. [百度学术] 

32

LIN WC, HE YM, LI RH, MU CK, WANG CL, SHI C, YE YF. Adaptive changes of swimming crab (Portunus trituberculatus) associated bacteria helping host against dibutyl phthalate toxification[J]. Environmental Pollution, 2023, 324: 121328. [百度学术] 

33

MUKHTAR S, MIRZA BS, MEHNAZ S, MIRZA MS, MCLEAN J, MALIK KA. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome[J]. World Journal of Microbiology & Biotechnology, 2018, 34(9): 136. [百度学术] 

34

SORKHOH NA, ALI N, AL-AWADHI H, DASHTI N, AL-MAILEM DM, ELIYAS M, RADWAN SS. Phytoremediation of mercury in pristine and crude oil contaminated soils: contributions of rhizobacteria and their host plants to mercury removal[J]. Ecotoxicology and Environmental Safety, 2010, 73(8): 1998-2003. [百度学术] 

35

DAS AJ, SARANGI AN, RAVINATH R, TALAMBEDU U, KRISHNAREDDY PM, NIJALINGAPPA R, MIDDHA SK. Improved species level bacterial characterization from rhizosphere soil of wilt infected Punica granatum[J]. Scientific Reports, 2023, 13(1): 8653. [百度学术] 

36

OMER AM, OSMAN MS, BADAWY AA. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions[J]. Botanical Studies, 2022, 63(1): 15. [百度学术] 

37

LAU ET, TANI A, KHEW CY, CHUA YQ, HWANG SS. Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation[J]. Microbiological Research, 2020, 240: 126549. [百度学术] 

38

SAUCEDO-GARCIA M, GUEVARA-GARCIA A, GONZALEZ-SOLIS A, CRUZ-GARCIA F, VAZQUEZ-SANTANA S, MARKHAM JE, LOZANO-ROSAS MG, DIETRICH CR, RAMOS-VEGA M, CAHOON EB, GAVILANES-RUIZ M. MPK6 sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis[J]. New Phytologist, 2011, 191(4): 943-957. [百度学术] 

39

ZHAO YX, LIU ZJ, WANG L, LIU H. Fumonisin B1 as a tool to explore sphingolipid roles in arabidopsis primary root development[J]. International Journal of Molecular Sciences, 2022, 23(21): 12925. [百度学术] 

40

戴光义, 王铃艳, 黄骊群, 郑萍, 姚楠. 植物鞘脂结构、代谢和功能的研究进展[J]. 植物生理学报, 2018, 54(12): 1748-1762. [百度学术] 

DAI GY, WANG LY, HUANG LQ, ZHENG P, YAO N. Research advances in plant sphingolipid structures, metabolisms and functions[J]. Plant Physiology Journal, 2018, 54(12): 1748-1762 (in Chinese). [百度学术] 

41

GHISI R, VAMERALI T, MANZETTI S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review[J]. Environmental Research, 2019, 169: 326-341. [百度学术] 

42

李云琪, 王宇辉, 李小锦, 孙健鹏, 景凤霞, 张秀敏. 藤黄微球菌Rpf因子对土壤细菌可培养物种分离效果的影响[J]. 河北大学学报(自然科学版), 2019, 39(1): 63-68. [百度学术] 

LI YQ, WANG YH, LI XJ, SUN JP, JING FX, ZHANG XM. Effects of Rpf factor of Micrococcus luteus on the isolation of soil culturable species[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(1): 63-68 (in Chinese). [百度学术] 

43

TANG KHD, KRISTANTI RA. Bioremediation of perfluorochemicals: current state and the way forward[J]. Bioprocess and Biosystems Engineering, 2022, 45(7): 1093-1109. [百度学术] 

44

CHEN YG, CUI XL, LI QY, WANG YX, TANG SK, LIU ZX, WEN ML, PENG Q, XU LH. Saccharospirillum salsuginis sp. nov., a gammaproteobacterium from a subterranean brine[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 6): 1382-1386. [百度学术] 

45

FIDALGO C, ROCHA J, PROENCA DN, MORAIS PV, ALVES A, HENRIQUES I. Saccharospirillum correiae sp. nov., an endophytic bacterium isolated from the halophyte Halimione portulacoides[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(6): 2026-2030. [百度学术] 

46

HAO K, ULLAH H, QIN XH, LI HN, LI F, GUO P. Effectiveness of Bacillus pumilus PDSLzg-1, an innovative hydrocarbon-degrading bacterium conferring antifungal and plant growth-promoting function[J]. 3 Biotech, 2019, 9(8): 305. [百度学术] 

47

LU MQ, ZHAO YF, FENG YY, TANG XY, ZHAO W, YU KK, PAN YT, WANG Q, CUI JL, ZHANG MT, JIN JY, WANG JM, ZHAO MY, SCHWAB W, SONG CK. 2,4-dihydroxybenzoic acid, a novel SA derivative, controls plant immunity via UGT95B17-mediated glucosylation: a case study in Camellia Sinensis[J]. Advanced Science, 2024, 11(7): e2307051. [百度学术] 

48

KINO K, HIROKAWA Y, GAWASAWA R, MURASE R, TSUCHIHASHI R, HARA R. Screening, gene cloning, and characterization of orsellinic acid decarboxylase from Arthrobacter sp. K8 for regio-selective carboxylation of resorcinol derivatives[J]. Journal of Biotechnology, 2020, 323: 128-135. [百度学术] 

49

FELLER FM, HOLERT J, YÜCEL O, PHILIPP B. Degradation of bile acids by soil and water bacteria[J]. Microorganisms, 2021, 9(8): 1759. [百度学术] 

50

STARLIPER CE, WATTEN BJ, IWANOWICZ DD, GREEN PA, BASSETT NL, ADAMS CR. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers[J]. Journal of Advanced Research, 2015, 6(3): 501-509. [百度学术] 

51

SHARMA A, SINGH P, KUMAR S, KASHYAP PL, SRIVASTAVA AK, CHAKDAR H, SINGH RN, KAUSHIK R, SAXENA AK, SHARMA AK. Deciphering diversity of salt-tolerant Bacilli from saline soils of Eastern Indo-gangetic Plains of India[J]. Geomicrobiology Journal, 2015, 32(2): 170-180. [百度学术] 

52

HE QX, LI JY, MA YK, CHEN Q, CHEN G. Probiotic potential and cholesterol-lowering capabilities of bacterial strains isolated from Pericarpium Citri Reticulatae ‘Chachiensis’[J]. Microorganisms, 2021, 9(6): 1224. [百度学术] 

53

ZHAO ZT, LI WR, TRAN TT, LOO SCJ. Bacillus subtilis SOM8 isolated from sesame oil meal for potential probiotic application in inhibiting human enteropathogens[J]. BMC Microbiology, 2024, 24(1): 104. [百度学术] 

54

WANG L, CUI YW, JIAN L, YAO JL. Spontaneous granulation of moderately halophilic sludge inoculated with saltern sediments from single granule into multi-granule aggregation[J]. Environmental Research, 2023, 216: 114813. [百度学术] 

55

LI HB, ZHANG LP, CHEN SF. Halomonas korlensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(11): 2582-2588. [百度学术] 

56

孙苏燕, 张德民, 钱丽君, 潘志崇, 陈文桂. 三疣梭子蟹养殖塘表层底泥异养细菌群落比较研究[J]. 水产学报, 2010, 34(5): 820-828. [百度学术] 

SUN SY, ZHANG DM, QIAN LJ, PAN ZC, CHEN WG. Comparative investigation of the heterotrophic bacterial community in the surface sediment of Portunus trituberculatus rearing pond[J]. Journal of Fisheries of China, 2010, 34(5): 820-828 (in Chinese). [百度学术] 

57

MCCANN JR, RAWLS JF. Essential amino acid metabolites as chemical mediators of host-microbe interaction in the gut[J]. Annual Review of Microbiology, 2023, 77: 479-497. [百度学术] 

58

ZHANG C, ZHANG Q, SONG XZ, PANG YY, SONG YM, CHENG YX, YANG XZ. Dietary L-tryptophan modulates the hematological immune and antibacterial ability of the Chinese Mitten Crab, Eriocheir sinensis, under cheliped autotomy stress[J]. Frontiers in Immunology, 2018, 9: 2744. [百度学术] 

59

HU T, ZHANG JC, XU XY, WANG XL, YANG CZ, SONG C, WANG SG, ZHAO S. Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta[J]. Chemosphere, 2023, 323: 138211. [百度学术] 

60

WANG Q, ZHOU XJ, JIN QR, ZHU F. Effects of the aquatic pollutant sulfamethoxazole on the innate immunity and antioxidant capacity of the mud crab Scylla paramamosain[J]. Chemosphere, 2024, 349: 140775. [百度学术]