摘要
离子型稀土矿是国际上备受关注的战略资源,对我国多个产业的发展至关重要。然而,大规模的开采活动引发了土壤退化、营养流失和重金属污染等问题。
目的
分析离子型稀土矿山垂直剖面上微生物的群落结构特征及其对环境因子的响应,了解微生物群落沿垂直剖面的深度分异规律及其与环境因子的关系,为污染矿区土壤的生态修复提供参考。
方法
以离子型稀土矿山1‒15 m深的土壤样品为研究对象,分析土壤的理化性质;采用高通量测序技术探究矿山垂直剖面上土壤微生物的分布规律并构建环境因子与微生物群落演替的关系。
结果
伴随矿山深度的增加,土壤pH值和总碳(total carbon, TC)逐渐降低;氨氮(ammonia nitrogen, NH3-N)是矿山土壤的主要氮素存在形态,在中深层土壤中可达13.0 mg/kg;铁(iron, Fe)、镁(magnesium, Mg)和总稀土元素(total rare earth elements, TREEs)含量颇丰,且在深层土壤中聚集程度较高。微生物群落在矿山垂直剖面上呈现出明显的演替规律;其中,α多样性指数Chao1 (丰富性指数)和Shannon (多样性指数)等提示土壤微生物群落多样性随深度增加而降低,而β多样性指数如主成分分析(principal component analysis, PCA)和主坐标轴分析(principal co-ordinates analysis, PCoA)表明各层级间聚类差异显著。相关性分析结果显示,环境因子可调控微生物群落结构分异,土壤各剖面层级间存在不同的土壤养分循环特征。绿屈挠菌门(Chloroflexota)、假单胞菌门(Pseudomonadota)、放线菌门(Actinomycetota)和酸杆菌门(Acidobacteriota)是矿区土壤的优势细菌门类,在生物地球化学循环过程中可能发挥着重要作用。矿山土壤微生物存在层级演替规律:浅层土壤的优势菌群为绿屈挠菌门、酸杆菌门和放线菌门;中间层绿屈挠菌门的相对丰度下降,假单胞菌门逐渐占据优势地位,其相对丰度达60%;在深层极度厌氧环境中,假单胞菌门通过代谢适应性在寡营养条件下演替为优势菌群(相对丰度达70%)。上述微生物在土壤碳氮循环过程中发挥了重要作用。在碳循环方面,浅层土壤微生物以卡尔文循环主导固碳过程;中间层呈现出微氧-厌氧过渡带环境,促进微生物以糖酵解途径和三羧酸循环为主代谢途径以满足生长需求;深层土壤的厌氧环境促使微生物以发酵为主代谢方式。在氮循环方面,浅层土壤微生物以异化硝酸盐还原成铵(dissimilatory nitrate reduction to ammonium, DNRA)为主代谢方式,中间过渡层微生物在反硝化过程中占据重要地位,而深层厌氧环境的微生物以DNRA过程为主和反硝化作用为辅的双重代谢体系维持生长,其氮转化强度远高于浅层土壤。
结论
离子型稀土矿山垂直剖面的微生物群落呈现明显的分异规律且与多个环境因子密切相关,提示其在矿区土壤物质循环中的潜在作用,可为未来调控稀土矿区污染修复提供科学依据。
稀土(rare earth, RE)是指元素周期表第三副族中原子序数51‒71的镧系元素(lanthanides)及钪(scandium, Sc)、钇(yttrium, Y)共17种元素的总称。根据稀土元素(RE elements, REEs)的电子层结构和物理化学性质的差异,可将其分为轻稀土和重稀土。轻稀土包括镧(lanthanum, La)、铈(cerium, Ce)、镨(praseodymium, Pr)、钕(neodymium, Nd)、钐(samarium, Sm)、钷(promethium, Pm)和铕(europium, Eu),重稀土包括钆(gadolinium, Gd)、铽(terbium, Tb)、镝(dysprosium, Dy)、钬(holmium, Ho)、铒(erbium, Er)、铥(thulium, Tm)、镱(ytterbium, Yb)、镥(lutetium, Lu)、钪和
微生物在矿物溶解、稀土吸附和土壤养分循环等方面的作用已得到广泛报道。多种微生物如酸硫杆状菌(Acidithiobacillus)和嘉利翁氏菌(Gallionella)可通过分泌有机酸或驱动铁/硫氧化溶解稀土矿物,进而影响其环境行
围绕稀土矿山垂直剖面微生物的分布规律及其功能特征,以福建省长汀县某离子吸附型稀土矿山为采样点,采集矿山1‒15 m垂直剖面的土壤样品。研究内容包括:(1) 分析土壤理化性质并通过高通量测序技术研究垂直剖面上微生物的群落分异规律;(2) 运用冗余度分析(redundancy analysis, RDA)和皮尔逊(Pearson)分析微生物群落与理化性质的关系,明确引起微生物群落变化的主要环境因素;(3) 通过DiTing分析明确垂直剖面上微生物群落的分布特征,了解稀土元素、环境因子对微生物群落的驱动效应。研究结果可深化对微生物响应极端环境的认识,有助于评估开采活动对土壤养分循环的长期影响并为矿山污染的生物修复与资源可持续开发提供理论依据。
1 材料与方法
1.1 采样区域
本研究所用土壤采自福建省长汀县某离子吸附型稀土矿山。该区域主要以矿物晶粒粗大的黑云母花岗岩长期风化而发育成的红壤为主。由于地形破碎,研究区域风化壳厚度普遍达20 m,风化壳中富含多种可吸附稀土元素的黏土矿物(如高岭石和埃洛石),为离子吸附型稀土矿的形成提供了良好的地质条
1.2 样品采集
使用犀牛牌钻孔机(Rhino公司)采集矿山垂直剖面的土壤样本,钻孔深度达地下15 m,样本采集点间隔为1 m,每个采样点均设置3个平行样本单元,共获取45份土壤样本。由于开采活动的影响(如表层植被清除、钻孔),矿山浅层(1–3 m)土壤受环境扰动较大,而深层(>10 m)因长期的封闭性地质环境形成稳定状态,稀土元素会在垂直方向发生迁移并呈现出一定的分异规律。本研究将垂直剖面划分为浅层(D1–D3,1–3 m)、中层(D4–D9,4–9 m)和深层(D10–D15,10–15 m)以揭示不同深度微生物群落的分异规律。
样本经分类标记后迅速转至–80 ℃冰箱中保存,备用。部分土壤样品经去除石块和动植物残体后自然风干,用玛瑙研钵将土壤研磨成粉末并过筛(0.074 mm筛网),以供后续理化性质测定;另一部分样品用于DNA提取,以便开展土壤微生物的群落结构分析。
1.3 土壤理化性质的表征
本研究主要关注土壤pH、总碳(total carbon, TC)、氮(nitrogen, N)、磷(phosphorus, P)、铁(iron, Fe)、镁(magnesium, Mg)和稀土等各项理化指标。(1) 土壤pH值:采用电位法测定土壤pH
1.4 微生物群落分析
1.4.1 微生物的高通量测序
将存于–80 ℃冰箱中的土壤取出,使用E.Z.N.A. Soil DNA Kit (Omega Bio-Tek公司)提取土壤样本的总DNA,其浓度和质量由NanoDrop 2000 (ThermoFisher Scientific公司)测定。采用引物338F (5′-ACTCCTACGGGAGGC AGCAG-3′)和806R (5′-GGACTACHVGGGTW TCTAAT-3′)对微生物16S rRNA基因片段的V3-V4区进行PCR扩增。PCR反应由北京奥维森基因科技有限公司完成。通过Agencourt AMPure XP试剂盒(Beckman Coulter公司)对PCR产物进行纯化,并采用Caliper LabChip GX Touch HT (PerkinElmer公司)测定PCR产物的浓度和质量。经纯化的PCR产物通过Illumina MiSeq PE300平台(Illumina公司)进行16S rRNA基因的扩增子测序(北京奥维森基因科技有限公司)。原始数据提交至NCBI的Sequence Read Archive数据库(https://www.ncbi.nlm.nih.gov/sra)保存,登录号为PRJNA1253389。根据barcode序列将原始数据拆分为不同样本后,利用Pear (v0.9.6)软件对这些样本数据进行过滤与拼接处
1.4.2 微生物的功能预测
利用PICRUSt2将OTU代表序列与数据库比对分析,预测基因的功能并构建KEGG Orthology (KO)编号及其对应丰度的数据集。按最低样本丰度原则对KO丰度矩阵进行归一化处理,并通过最相似序列分类指数(nearest sequenced taxon index, NSTI)对预测结果进行可靠性验证(NSTI低于阈值2.0的序列将被剔除
1.5 微生物群落与环境因子的相关分析
RDA可用于可视化各环境变量对微生物群落的贡献差异。分析前,将不同深度的物种丰度和环境因子数据整合后导入OmicStudio平台(https://www.omicstudio.cn/tool),根据降趋对应分析的第一轴梯度长度(lengths of gradient for the first axis of detrended correspondence analysis, DCA1),采用RDA绘图工具(DCA1<3.0)生成冗余分析图。为避免多重共线性问题,在纳入RDA前对所有环境因子进行方差膨胀因子(variance inflation factor, VIF)检验。设定VIF阈值为10,即剔除VIF>10的因子,以确保各因子间的独立性。随后,对环境因子进行单环境因子差异显著性分析(envfit检验),筛选出潜在的关键环境因子。对通过envfit检验的环境因子进一步进行蒙特卡洛置换检验(Monte Carlo permutation test),以验证其在RDA模型中的显著性(显著性水平设置为P<0.05)。根据f值、残差自由度(df)和惯量(inertia),可评估环境因子是否显著并推测模型对多数微生物群落变异的解释率。同时,将分组的不同深度物种丰度矩阵数据(门和属水平)导入Origin绘图软件(v2022),通过皮尔逊相关分析确定各类微生物与环境因子的相关性,绘制微生物-环境因子相关性热图。
1.6 统计学分析
实验数据取3个平行处理的均值(mean),同时计算平行样的标准偏差(standard deviation, SD)。采用Excel软件(v2022)计算数据均值和标准偏差,运用SPSS (v27.0)软件的ANOVA分析方法,结合LSD事后(post hoc)多重比较法,对理化因子实验数据进行组间显著性差异分析。
2 结果与讨论
2.1 矿山剖面土壤的理化性质
不同深度矿山土壤的理化性质如

图1 不同深度矿山土壤的代表性理化性质。D1‒D15表示间隔1 m深度采集的土壤样品的名称。
Figure 1 Representative physicochemical properties of soils from mines at different depths. Different lowercase letters indicate significant differences between samples collected from different depths (P<0.05). D1‒D15 represent the names of soil samples collected at 1 m depth intervals.
养分是调控土壤微生物群落结构和丰度变化的核心环境因
铁作为地壳中丰度最高的过渡金属元素,在土壤中主要以氧化态(如针铁矿和赤铁矿)和还原态(如磁铁矿和黄铁矿)的形式存在,其含量变化可引起矿相转
2.2 矿山微生物群落多样性的垂直分布特征
2.2.1 α多样性
α多样性是指群落内的物种多样性,主要用于反映物种丰富度和均匀

图2 不同深度矿山土壤的微生物群落的α多样性
Figure 2 Alpha diversity of microbial communities in mine soils at different depths. Different lowercase letters indicate significant differences between samples collected from different depths (P<0.05).
2.2.2 β多样性
β多样性表示微生物群落内的种群组成变化,可用于识别群落之间的分化程

图3 不同深度矿山土壤的微生物群落的β多样性。A:PCA得分图;B:PCoA得分图。
Figure 3 Beta diversity of microbial communities in mine soils at different depths. A: PCA score plot; B: PCoA score plot.
2.2.3 矿山土壤中微生物的物种组成分析
除微生物多样性外,本研究还系统分析了稀土矿山土壤微生物群落的组成特征,重点阐述基于门水平(

图4 不同深度稀土矿山土壤的微生物群落组成。A:门水平;B:属水平。仅展示在至少1个样本中相对丰度≥1.5%的微生物群落。
Figure 4 Microbial composition in mine soils at different depths. A: Phylum level; B: Genus level. Only the microbial taxa with ≥1.5% relative abundance in at least one sample are shown here.
基于属水平的微生物物种组成分析表明,稀土矿山土壤的优势微生物包括戴氏菌属(Dyella,相对丰度为25%)、AD3 (相对丰度为15%)及未可培养微生物(uncultured,相对丰度为10%) (
2.3 环境因子与微生物群落的相关性分析
2.3.1 基于门水平、属水平的微生物群落丰度与多元环境因子的冗余分析
研究表明,环境梯度变化(如温度、地球化学参数及地下深度样带等)会显著影响微生物群落的结构组成与分布格

图5 环境因子与土壤微生物群落的冗余度分析得分图。A:门水平;B:属水平。
Figure 5 Redundancy analysis-based score plots that depict the relationships between environmental factors and soil microbial communities. A: Phylum level; B: Genus level.
2.3.2 环境因子与微生物群落(门水平、属水平)的相关性分析
在明确影响稀土矿山剖面微生物群落分异的关键环境因素后(

图6 环境因子与土壤微生物相对丰度的相关性热图。A:门水平;B:属水平。
Figure 6 Correlation heatmaps depicting the relationships between environmental factors and the relative abundance of soil microorganisms. A: Phylum level; B: Genus level. * and ** mean statistically significant differences at P≤0.05 and P≤0.01, respectively.
土壤pH值是指示微生物群落结构变化的重要指
除与前述的环境因子相关性较强外,绿屈挠菌门和假单胞菌门也与铁呈现显著的相关性(r=0.65,P<0.01;r=–0.57,P<0.01,
上述结果表明,稀土矿山土壤中存在多个特征菌群,这些微生物一方面受环境因子的显著影响,同时也可能参与了土壤养分循环和重金属吸附或活化的调
2.4 矿山土壤中微生物群落主导的营养循环流动分析
众所周知,微生物种群的功能与土壤养分的变化密切相关。在土壤介质中,营养物质的缺乏会显著抑制多数微生物的生长代

图7 碳(A)和氮(B)循环相关通路的相对丰度饼图。相对丰度通过将单个样品中通路的相对丰度与该通路在所有样品中的相对丰度之和的比例计算而得。图中粉色圆圈刻度表示过程的相对丰度,较大的尺寸表示相应通路的总相对丰度较高。CBB:卡尔文循环;rTCA:还原性柠檬酸循环;WL:Wood-Ljungdahl途径;3HB:3-羟基丙酸;TCA:三羧酸循环;DNRA:异化硝酸盐还原成铵。
Figure 7 Pie charts represent the relative abundance of C (A) and N (B) cycling-related pathways in the soils collected from different sampling depths of the rare earth mine. Normalized relative abundance was calculated by dividing the relative abundance of a pathway in an individual sample by the sum of this pathway’s relative abundance in all samples. The pie chart area reflects the relative abundance of the process according to the scale shown in pink, with a larger size representing a higher total relative abundance of the corresponding pathway. CBB: Calvin-Benson-Bassham cycle; rTCA: Reductive citric acid cycle; WL: Wood-Ljungdahl pathway; 3HB: 3-hydroxy propionate; TCA: Tricarboxylic acid; DNRA: Dissimilatory NO3-N reduction to NH
不同于表层土壤,中层土壤微生物群落的组成主要受氧含量变化的影响,其代谢功能表现出向低氧环境适应的转变趋势。例如,微生物糖酵解与TCA循环是中层土壤的主要代谢通路,与此对应的相对丰度达126 495,与深层完全厌氧环境(通路相对丰度为132 675)差异不明显,但比浅层环境(通路相对丰度为96 981)提高了30.4%,呈现“承上启下”的过渡特征(
伴随矿山土壤剖面深度的增加,有机质输入锐减,土壤微生物群落主要以假单胞菌门和酸杆菌门为主(
上述结果表明,稀土矿区土壤微生物群落在垂直分布上呈现显著的演替规律,各类微生物通过动态调节碳氮代谢过程参与土壤养分循环,从而形成多层级的地下物质循环网络。
3 结论
通过分析稀土矿山土壤垂直剖面的微生物群落,揭示了稀土矿区微生物对环境因子的响应策略。土壤TC、pH、Fe、NO3-N和TREEs是驱动微生物群落垂直演替的关键环境因子。环境因子的耦合作用促使不同微生物在不同深度土壤中形成独特的优势菌群结构,并展现出差异化的碳氮代谢特征。稀土矿区土壤表层微生物群落以绿屈挠菌门、酸杆菌门和放线菌门为主,中间层微生物由绿屈挠菌门逐渐演替为假单胞菌门,该菌在深层厌氧环境中稳定存在并参与了养分循环调控。碳、氮代谢通路预测显示,CBB循环是浅层土壤碳循环的主要通路,而中层和深层土壤分别以糖酵解和TCA循环及发酵代谢为主;在氮循环方面,浅层土壤微生物主要驱动DNRA过程,中层土壤微生物以反硝化菌为主,而深层土壤微生物表现出驱动DNRA与反硝化并存的潜力,其氮转化活性是浅层土壤微生物的3.46倍。结果阐明了微生物在不同环境中的选择性代谢策略,为矿山土壤养分循环的有效调控、生态修复的科学实施及预测土壤碳氮动态变化提供了理论依据,对推动稀土矿区生态功能的恢复具有重要的指导意义。
作者贡献声明
陈娴:样本采集,实验操作,数据采集、分析及论文初稿撰写;崔熙雯:协助数据采集、分析及绘图;韩海斌:协助数据采集、分析;陈涵冰:协助数据采集、分析;江仰龙:协助样本采集;王小闽:协助数据采集、分析;陈志彪:项目资源协调与工作支持;张勇:协助指导实验开展,参与论文讨论;张虹:协助指导实验开展,参与论文讨论;韩永和:研究方案构思与设计,实验指导,论文审阅及全面修订。
致谢
感谢福建师范大学环境与资源学院、碳中和现代产业学院陈建妃副教授在NSTI分析中提供的指导与帮助。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
LI YHM, ZHAO WW, ZHOU MF. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148: 65-95. [百度学术]
DUSHYANTHA N, BATAPOLA N, ILANKOON IMSK, ROHITHA S, PREMASIRI R, ABEYSINGHE B, RATNAYAKE N, DISSANAYAKE K. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production[J]. Ore Geology Reviews, 2020, 122: 103521. [百度学术]
SHUAI J, PENG XJ, ZHAO YJ, WANG YL, XU W, CHENG JH, LU Y, WANG JJ. A dynamic evaluation on the international competitiveness of China’s rare earth products: an industrial chain and tech-innovation perspective[J]. Resources Policy, 2022, 75: 102444. [百度学术]
PENG XX, WANG MX, ZHANG JL. Emerging frontiers in rare-earth element chemical biology[J]. Coordination Chemistry Reviews, 2024, 519: 216096. [百度学术]
DUTTA T, KIM KH, UCHIMIYA M, KWON EE, JEON BH, DEEP A, YUN ST. Global demand for rare earth resources and strategies for green mining[J]. Environmental Research, 2016, 150: 182-190. [百度学术]
LI LY, WANG HT, HU JG, FANG Y, ZHOU F, YU JX, CHI R, XIAO CQ. Comparison of microbial communities in unleached and leached ionic rare earth mines[J]. Environmental Science and Pollution Research, 2024, 31(11): 17511-17523. [百度学术]
师慧, 张力夫, 闫奥, 龚梦梦, 武波亨, 吕泽华, 张瑞. 双壳层包覆稀土离子掺杂CsPbCl3纳米晶的多色荧光防伪[J]. 福建师范大学学报(自然科学版), 2025, 41(2): 96-103. [百度学术]
SHI H, ZHANG LF, YAN A, GONG MM, WU BH, LÜ ZH, ZHANG R. Multicolor fluorescent anti-counterfeiting of rare earth ion-doped CsPbCl3 nanocrystals with double-shell layers[J]. Journal of Fujian Normal University (Natural Science Edition), 2025, 41(2): 96-103 (in Chinese). [百度学术]
ZHANG QY, REN FT, LI FD, CHEN GL, YANG G, WANG JQ, DU K, LIU SB, LI Z. Ammonia nitrogen sources and pollution along soil profiles in an in situ leaching rare earth ore[J]. Environmental Pollution, 2020, 267: 115449. [百度学术]
ZHOU LB, WANG XJ, HUANG CG, WANG H, YE HC, HU KJ, ZHONG W. Development of pore structure characteristics of a weathered crust elution-deposited rare earth ore during leaching with different valence cations[J]. Hydrometallurgy, 2021, 201: 105579. [百度学术]
OU XL, CHEN ZB, CHEN XL, LI XF, WANG J, REN TJ, CHEN HB, FENG LJ, WANG YK, CHEN ZQ, LIANG MX, GAO PC. Redistribution and chemical speciation of rare earth elements in an ion-adsorption rare earth tailing, southern China[J]. Science of The Total Environment, 2022, 821: 153369. [百度学术]
JUNG H, SU ZH, INABA Y, WEST AC, BANTA S. Genetic modification of Acidithiobacillus ferrooxidans for rare-earth element recovery under acidic conditions[J]. Environmental Science & Technology, 2023, 57(48): 19902-19911. [百度学术]
YANG WY, WU KJ, CHEN H, HUANG J, YU Z. Emerging role of rare earth elements in biomolecular functions[J]. The ISME Journal, 2025, 19(1): wrae241. [百度学术]
MATTOCKS JA, JUNG JJ, LIN CY, DONG ZY, YENNAWAR NH, FEATHERSTON ER, KANG-YUN CS, HAMILTON TA, PARK DM, BOAL AK, COTRUVO JA. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer[J]. Nature, 2023, 618(7963): 87-93. [百度学术]
PHILIPPOT L, RAAIJMAKERS JM, LEMANCEAU P, van der PUTTEN WH. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799. [百度学术]
CUI XW, XU ZN, CHEN X, CHEN ZB, LI JB, XIE RR, ZHANG H, ZHANG Y, HAN YH. Dicranopteris pedata improves soil quality by enhancing nutrient deposition, decreasing metal concentration, and boosting microbial diversity on abandoned rare earth elements mining sites[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113842. [百度学术]
LIU JJ, LI C, MA WD, WU ZX, LIU W, WU WX. Exploitation alters microbial community and its co-occurrence patterns in ionic rare earth mining sites[J]. Science of The Total Environment, 2023, 898: 165532. [百度学术]
ZHANG B, WU JL, HUANG MY, ZHANG Y, ZHAO J, HE CT, YANG ZY. Changes of nutrients and microbial communities in recovery process of abandoned rare earth tailings[J]. Pedosphere, 2024, 34(4): 826-836. [百度学术]
ZHANG B, WU JL, MOU GP, XIAO MR, CHU SS, YANG ZY. Evaluation on rare earth elements and microbial communities in abandoned rare earth tailings[J]. Journal of Geochemical Exploration, 2025, 272: 107715. [百度学术]
GUO MN, ZHONG X, LIU WS, WANG GB, CHAO YQ, HUOT H, QIU RL, MOREL JL, WATTEAU F, SÉRÉ G, TANG YT. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China[J]. Science of The Total Environment, 2022, 828: 154361. [百度学术]
BREWER TE, ARONSON EL, AROGYASWAMY K, BILLINGS SA, BOTTHOFF JK, CAMPBELL AN, DOVE NC, FAIRBANKS D, GALLERY RE, HART SC, KAYE J, KING G, LOGAN G, LOHSE KA, MALTZ MR, MAYORGA E, O’NEILL C, OWENS SM, PACKMAN A, PETT-RIDGE J, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons[J]. mBio, 2019, 10(5): e01318-19. [百度学术]
YANG MJ, LIANG XL, MA LY, HUANG J, HE HP, ZHU JX. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525: 210-217. [百度学术]
张元莎. 钼酸铵分光光度法测定水质总磷的方法研究[J]. 绿色科技, 2024, 26(16): 164-169. [百度学术]
ZHANG YS. Study on spectrophotometric determination of total phosphorus in water quality with ammonium molybdate[J]. Journal of Green Science and Technology, 2024, 26(16): 164-169 (in Chinese). [百度学术]
温启浩, 钱藏藏, 杨柳荫, 黎小明, 谢树敏. ICP-OES法测定铁铬液流电解液中17种杂质元素[J]. 福建分析测试, 2024, 33(5): 33-39, 43. [百度学术]
WEN QH, QIAN CC, YANG LY, LI XM, XIE SM. Determination of 17 impurities in the iron-chromium redox flow electrolyte by ICP-OES method[J]. Fujian Analysis & Testing, 2024, 33(5): 33-39, 43 (in Chinese). [百度学术]
LI WX, HE EK, van GESTEL CAM, PEIJNENBURG WJGM, CHEN GQ, LIU XR, ZHU D, QIU H. Pioneer plants enhance soil multifunctionality by reshaping underground multitrophic community during natural succession of an abandoned rare earth mine tailing[J]. Journal of Hazardous Materials, 2024, 472: 134450. [百度学术]
ZHANG JJ, KOBERT K, FLOURI T, STAMATAKIS A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR[J]. Bioinformatics, 2014, 30(5): 614-620. [百度学术]
EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. [百度学术]
顾亚宁, 吴琳芳, 林德宝, 邹秉章, 王思荣, 周鲁宏, 贺纪正. 福建省典型亚热带森林土壤细菌群落结构特征[J]. 福建师范大学学报(自然科学版), 2024, 40(1): 52-59. [百度学术]
GU YN, WU LF, LIN DB, ZOU BZ, WANG SR, ZHOU LH, HE JZ. Soil bacterial community composition of typical subtropical forests in Fujian Province[J]. Journal of Fujian Normal University (Natural Science Edition), 2024, 40(1): 52-59 (in Chinese). [百度学术]
DOUGLAS GM, MAFFEI VJ, ZANEVELD JR, YURGEL SN, BROWN JR, TAYLOR CM, HUTTENHOWER C, LANGILLE MGI. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688. [百度学术]
XUE CX, LIN HY, ZHU XY, LIU JW, ZHANG YH, ROWLEY G, TODD JD, LI M, ZHANG XH. DiTing: a pipeline to infer and compare biogeochemical pathways from metagenomic and metatranscriptomic data[J]. Frontiers in Microbiology, 2021, 12: 698286. [百度学术]
LAUBER CL, HAMADY M, KNIGHT R, FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. [百度学术]
HUANG WG, KUZYAKOV Y, NIU SL, LUO Y, SUN B, ZHANG JB, LIANG YT. Drivers of microbially and plant-derived carbon in topsoil and subsoil[J]. Global Change Biology, 2023, 29(22): 6188-6200. [百度学术]
ALMARAZ M, WANG C, WONG MY. Deep soil contributions to global nitrogen budgets[J]. Nature Communications, 2025, 16: 966. [百度学术]
HARMAND JM, ÁVILA H, OLIVER R, SAINT-ANDRÉ L, DAMBRINE E. The impact of kaolinite and oxi-hydroxides on nitrate adsorption in deep layers of a Costarican Acrisol under coffee cultivation[J]. Geoderma, 2010, 158(3/4): 216-224. [百度学术]
卢培利, 杨涵, 丁阿强, 李朝洋, 全林. 碳源与氮源限制下细菌代谢调节研究进展[J]. 微生物学报, 2023, 63(3): 946-962. [百度学术]
LU PL, YANG H, DING AQ, LI CY, QUAN L. Metabolic regulation of bacteria with limited carbon and nitrogen sources[J]. Acta Microbiologica Sinica, 2023, 63(3): 946-962 (in Chinese). [百度学术]
WANG MY, LI JN, LIU HC, HUANG SY, LIU XY, LIU Y, AWAIS M, WANG J. Rare earth element extraction from ionic rare earth ores by two typical acidogenic microorganisms, Aspergillus niger and Acidithiobacillus ferrooxidans[J]. International Journal of Molecular Sciences, 2025, 26(5): 1986. [百度学术]
ZHAO NL, DING H, ZHOU XJ, GUILLEMOT T, ZHANG ZT, ZHOU N, WANG H. Dissimilatory iron-reducing microorganisms: the phylogeny, physiology, applications and outlook[J]. Critical Reviews in Environmental Science and Technology, 2025, 55(2): 73-98. [百度学术]
FARHAT N, ELKHOUNI A, ZORRIG W, SMAOUI A, ABDELLY C, RABHI M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning[J]. Acta Physiologiae Plantarum, 2016, 38(6): 145. [百度学术]
MÖLLER K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. a review[J]. Agronomy for Sustainable Development, 2015, 35(3): 1021-1041. [百度学术]
LAND M, ÖHLANDER B, INGRI J, THUNBERG J. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction[J]. Chemical Geology, 1999, 160(1/2): 121-138. [百度学术]
黄志强, 邱景璇, 李杰, 许东坡, 刘箐. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 2021, 61(5): 1044-1063. [百度学术]
HUANG ZQ, QIU JX, LI J, XU DP, LIU Q. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 2021, 61(5): 1044-1063 (in Chinese). [百度学术]
STONE BWG, DIJKSTRA P, FINLEY BK, FITZPATRICK R, FOLEY MM, HAYER M, HOFMOCKEL KS, KOCH BJ, LI J, LIU XJA, MARTINEZ A, MAU RL, MARKS J, MONSAINT-QUEENEY V, MORRISSEY EM, PROPSTER J, PETT-RIDGE J, PURCELL AM, SCHWARTZ E, HUNGATE BA. Life history strategies among soil bacteria-dichotomy for few, continuum for many[J]. The ISME Journal, 2023, 17(4): 611-619. [百度学术]
HAN YH, CUI XW, WANG HY, LAI XB, ZHU Y, LI JB, XIE RR, ZHANG Y, ZHANG H, CHEN ZB. Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites[J]. Journal of Hazardous Materials, 2025, 488: 137351. [百度学术]
HAN JR, LI S, LI WJ, DONG L. Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data[J]. Advanced Biotechnology, 2024, 2(3): 26. [百度学术]
SHU WS, HUANG LN. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2021, 20(4): 219-235. [百度学术]
DELGADO-BAQUERIZO M, OLIVERIO AM, BREWER TE, BENAVENT-GONZÁLEZ A, ELDRIDGE DJ, BARDGETT RD, MAESTRE FT, SINGH BK, FIERER N. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373): 320-325. [百度学术]
汤明芳, 盛光遥, 李长鑫, 丁静. 基于细胞色素c的胞外电子传递过程[J]. 微生物学报, 2023, 63(2): 509-522. [百度学术]
TANG MF, SHENG GY, LI CX, DING J. The process of extracellular electron transfer based on cytochrome c[J]. Acta Microbiologica Sinica, 2023, 63(2): 509-522 (in Chinese). [百度学术]
ZHOU X, TAHVANAINEN T, MALARD L, CHEN L, PÉREZ-PÉREZ J, BERNINGER F. Global analysis of soil bacterial genera and diversity in response to pH[J]. Soil Biology and Biochemistry, 2024, 198: 109552. [百度学术]
TANG S, MA QX, MARSDEN KA, CHADWICK DR, LUO Y, KUZYAKOV Y, WU LH, JONES DL. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents[J]. Soil Biology and Biochemistry, 2023, 180: 109019. [百度学术]
RAO MPN, LUO ZH, DONG ZY, LI Q, LIU BB, GUO SX, NIE GX, LI WJ. Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles[J]. Environmental Research, 2022, 209: 112888. [百度学术]
BEHERA S, DAS S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: cellular mechanisms and genetic regulations[J]. Microbiological Research, 2023, 273: 127399. [百度学术]