网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

基于文献计量学的菌丝球及其在环境领域的应用研究现状及发展趋势  PDF

  • 王博涵 1
  • 汪宇 1
  • 张斯 1
  • 迟超 2
  • 王深研 2
1. 河北建筑工程学院,河北省水质工程与水资源综合利用重点实验室,河北 张家口; 2. 黑龙江省农垦科学院,黑龙江 哈尔滨

最近更新:2025-02-14

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

菌丝球的发酵培养、形态分析、代谢产物纯化,以及在污水处理和能源回收等领域的应用研究获得了环境和生物领域学者的广泛关注。全面了解菌丝球相关研究的进展和未来的热点趋势。基于Web of Science数据库,筛选出近20年与菌丝球环境应用相关的1 337篇科技文献,采用可视化方法,进行了关键词聚类、关键词时间趋势分析和关键词国家、作者、发文机构共现分析。发现总发文量总体呈上升趋势,共涉及97个学科类别,跨多学科文章较多,也往往具有更高的引用价值,我国在此领域取得的成果显示出明显的优势,并与其他国家保持密切的合作。热门研究关键词一直保持稳定(growth, morphology, fermentation, removal, degradation, mycelial pellets, biological control, fungi, culture, optimization, biodegradation, biosorption),近年来热度上升和新兴关键词出现了明显的变化。菌丝球在水处理领域的应用研究越来越热,与此相关的关键词(waste water, performance)热度上升;与菌丝球作为生物质载体处理污水(biomass, bacteria)、菌丝球生物合成(biosynthesis)、菌丝球和藻类共生处理污水(Chlorella vulgaris, microalgae)等领域相关的新兴关键词陆续出现并保持热度,表明菌丝球在水处理领域的相关研究逐步划分出更系统的研究方向,成为菌丝球未来的研究热点和机遇。

随着世界各国对水环境质量要求的日益提升,特别是对水环境中高毒性、低浓度及难降解污染物的关注,各种新型水处理方法和材料不断涌现并被广泛应用。菌丝球是丝状真菌发酵的一种特殊形式,与传统水处理材料相比,菌丝球是环境友好型吸附剂和生物强化载体,具有吸附剂和载体常见的特性,包括大比表面积和适当的孔隙[

1-5]。菌丝球的大孔隙结构有利于内部传质和负载微生物的通过。菌丝表面分泌的胞外聚合物具有黏附力,使其作为吸附材料展现出更好的吸附效能;作为生物质载体可以增强与负载微生物的复合力,从而提高功能微生物的抗冲击负荷能力,改善水处理效能。此外,菌丝球可视为真菌基水处理材料,具有种类更多、功能更强大的酶系,降解污染物的能力更[6-7]。基于这些优势,菌丝球在处理高色度废水、含重金属废水以及生物强化处理难降解有机废水等方面,均表现出令人满意的效[8-11]。作为生物质载体,菌丝球能促进好氧污泥颗粒化,显著提高颗粒污泥系统的启动速[12]。在与藻类共同培养时,菌丝球能提升藻类产能过程的回收效率和经济[8]。因此,菌丝球在环境领域的研究引起了专家学者的广泛关注。

文献计量学是一种基于数字化的统计分析方法,它的优势在于可以将数字化信息通过可视化的方式呈现,更直观地展示特定研究领域的研究轨迹和热点、具有影响力的作者、研究机构的主要研究内容以及合作关[

13-14]。结合文献计量学软件和统计分析软件,可以分析预测该领域的发展趋势和未来可能的研究热[15-16]。本研究采用文献计量学方法,系统分析了近20年来在Web of Science核心数据库中发表的与菌丝球环境应用研究相关的科技文章,剖析了该领域的研究现状和热点,揭示了菌丝球环境相关研究的未来发展趋势,旨在了解该领域的研究前沿和应用前景,为未来研究提供具有前瞻性的见解。

1 研究方法

1.1 数据收集

本研究选用的数据来源于国际公认的代表科学研究水准的数据库(Web of Science)中的核心数据集。鉴于数据库的实时性,所有数据均在同一天(2024年6月7日)进行检索和下载。检索式为TS=(mycelial pellet) OR TS=(mycelium pellet) OR TS=(fungal pellet) OR TS=(fungi pellet),时间范围选取了2004年1月1日至2024年6月1日,检索到2 230篇文献。保留研究论文和综述论文,删除其他如新闻、会议摘要、书籍章节等通常无系统生成关键词的文献类型,得到1 337篇文献供后续分析。

1.2 数据处理

使用CiteSpace和VOSviewer两款工具对文献进行分析。同时,借助Excel和Pajek软件对原始关键词进行预处理。预处理包含以下关键步骤:(1) 设定最小阈值(≥8),筛选出频次高于此阈值的关键词作为预处理的主要对象;(2) 关键词标准化,避免大小写和连字符可能带来的匹配问题;(3) 识别和替换关键词中的同义词和变体词;(4) 校正国家和人名格式。在数据可视化分析方面,结合VOSviewer和Scimago Graphica两款软件的优势,并使用了Origin软件绘制统计图。

2 结果与讨论

2.1 发文量及趋势分析

为了掌握该领域研究热度的变化,推测未来发展趋势,对2004-2023年间发文量进行了分析。如图1所示,2004-2023年间菌丝球在环境领域的年发文量持续增长,拟合曲线R2大于0.9。2021年发文量达到峰值113篇,是2005年的2.2倍,年平均增长率为17%。20年来,发文量最初(2004-2008年)基本保持稳定,随后(2009-2018年)呈现波动增长,2019-2021年间发文量增长幅度较大,近年(2022-2023年)发文量有所回调,但仍保持在年均80篇以上的水平,表明学术界对于菌丝球在环境领域的研究关注持续不减。

fig

图1  菌丝球环境应用研究领域年发文量及趋势

Figure 1  The annual number of publications and trend in the field of environmental applications of mycelial pellets.

2.2 文献所属学科分析

文献所属学科统计结果显示,涉及菌丝球及其在环境领域应用的论文共跨越了97个学科类别,显示出该研究主题的广泛性和跨学科特性。发文量排名前15的学科如图2所示。其中,Biotechnology applied microbiology (生物技术应用微生物学)以500篇的发文量位居第一,占比高达30.4%,成为菌丝球研究的最热门学科。紧随其后的是Environmental sciences (环境科学),发文量176篇。Engineering chemical (化学工程)和Microbiology (微生物学)的发文量位居第三(152篇)和第四(148篇)。值得注意的是,发文量最大的4个学科中,与应用微生物学、生物技术和环境科学紧密相关的有3个,侧面反映了菌丝球研究的核心领域和热点方向。从学科分布来看,真菌的发酵形态、菌丝球的培养和代谢机制,以及其在环境净化中的应用和机制等研究内容占据了较大比重。这些研究不仅推动了菌丝球基础理论的发展,也为环境保护和可持续发展提供了新的思路和方法。

fig

图2  菌丝球环境应用研究领域前15学科发文量

Figure 2  The number of publications in the top 15 disciplines in the field of environmental applications of mycelial pellets.

2.3 文献来源期刊分析

学术期刊是展示研究领域学术信息和知识传播成果的重要载体,影响因子(impact factor, IF)是衡量期刊学术水平及发文质量的关键指标。如图3所示,在发文量排名前25的期刊中,载文量最多的是Bioresource Technology,发文量54篇,占总期刊发文量的4.1%,五年影响因子9.4,载文总被引次数为2 281。Bioresource Technology是环境科学与生态学领域top期刊,环境工程学科影响力排名前3%,致力于促进生物资源技术的基础和应用研究。在生物燃料、环境保护、应用微生物学与生物技术等方向有较高影响力,与菌丝球环境领域研究紧密相关。其次为Applied Microbiology and BiotechnologyBiochemical Engineering Journal,分别发文45篇(3.4%)和35篇(2.6%),五年影响因子分别为4.9和3.5。两期刊的专业性更强,在环境生物技术、生物能源、生物代谢和合成等与菌丝球相关研究领域的收稿更集中。Journal of Hazardous Materials (IF 12.2)是影响因子最高的期刊,发文量20篇,排名第8位,所载论文总被引595次,占总期刊引用次数的6.3%。Journal of Hazardous Materials是环境科学与生态学领域top期刊,环境工程学科影响力排名前1%,主要关注对公共健康和环境有危害的材料的研究进展。应用菌丝球实现环境污染物的吸附和降解是该期刊发文的主要研究内容,说明菌丝球在环境领域的应用研究具有引领和创新性。

fig

图3  菌丝球环境应用领域发文量前25的期刊

Figure 3  The top 25 journals with the highest number of publications in the field of environmental applications of mycelial pellets.

2.4 发文机构分析

在菌丝球及其环境应用研究领域,发文量大于17篇的国家之间的合作关系如图4A所示。中国以331篇的发文量位居第一,占总发文量的24.76%,且与其他国家之间的合作最为紧密,建立起了多边的研究合作关系。中国比排名第二的美国发文多170篇,表明我国主导着菌丝球及其环境领域应用的研究,这与我国环境保护政策有着密切联系,体现出我国全球环境治理引领者的重要地位。其他国家发文量均为 150篇以下,与中美两国差距较大。中美两国开展的研究合作最为广泛,但也有些国家(越南、古巴共和国、阿尔及利亚等)的研究仅限于国内,未与其他国家开展此领域的交流合作。

fig

图4  国家、作者及发文机构共现图。A:国家共现图;B:作者共现图;C:发文机构共现图。

Figure 4  Co-occurrence of countries, authors and institutions. A: Co-occurrence of countries; B: Co-occurrence of authors; C: Co-occurrence of institutions.

该领域发文量大于7篇的24位作者之间的共现关系如图4B所示。其中我国学者马放教授发文量17篇,位居第一,总被引次数为 554次,篇均被引32.58次。在环境生物技术的开发与应用、水处理新技术开发和水污染控制等领域,马放教授团队的研究成果国内外影响力很高,经济、社会和环境效益显著。马放教授在菌丝球及环境应用领域影响力最高的论文:A bio-functions integration microcosm: self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms[

17],2020年发表在Journal of Hazardous Materials期刊上,共计被引74次。该论文发布了关于菌丝球作为载体的创新性研究成果,深入解析了生物炭改性菌丝球在强化农药废水降解过程中的作用机制。引用次数最多的一篇文章是Fungal morphology and metabolite production in submerged mycelial processes[18] (作者Papagianni),被引1 089次,主要研究了影响真菌形态和代谢产物生成的因素,如主要底物的类型和浓度、pH值和温度,为菌丝球在环境领域的应用研究奠定了基础。

发文机构是科研成果的重要来源,代表了一定区域的科研水平和实力。根据论文第一单位,统计分析2004-2024年主要研究机构关于菌丝球及其环境应用研究的发文量,发文量大于9篇的25家研究机构见图4C。作为综合性学术机构,中国科学院在该领域发文量位居第一,还有部分知名高校也在菌丝球研究上发挥着重要作用,哈尔滨工业大学、浙江大学、江南大学等的发文量也位居前列。排名前6的机构中,有一半来自中国,表明在该研究领域中国机构具有较高的国际影响力。图4B、4C中不同机构、不同作者最早平均发文时间均为2009年,与图1所示的发文量自2009年开始显著增长的趋势一致,自此,菌丝球环境应用领域的研究开始逐步得到各国学者的关注。

3 菌丝球及其在环境领域的应用研究现状及发展趋势

结合文献计量学方法,加深对某一领域研究进展的了解,更全面准确地分析和综述该领域的发展趋势,是当前文献调研的有效手段。通过关键词聚类分析和文献调研研究了菌丝球在环境领域的应用现状和发展趋势。

3.1 形成菌丝球的真菌种类

菌丝球是真菌在氧和碳源等营养充足、淹没振荡培养条件下,菌丝生长缠绕形成的中空球体。根据图5关键词和已有文献报道,形成菌丝球的真菌主要包括以下种类:黑曲霉(Aspergillus niger)[

19]、白腐真菌(White-rot fungi)[20]、原毛平革菌(Phanerochaete chrysosporium)[20]、青霉(Penicillium chrysogenum)[21]、土曲霉(Aspergillus terreus)[22]、米曲霉(Aspergillus oryzae)[23]、米根霉(Rhizopus oryzae)[24]、酿酒酵母(Saccharomyces cerevisiae)、灵芝(Ganoderma-lucidum)、云芝(Trametes versicolor)。其中研究最多的真菌是霉菌,与关键词 “黑曲霉” 节点有联系的节点共计181个,总联系强度为620,研究内容与 “黑曲霉” 相关的论文共计135篇。黑曲霉发酵最早用于工业生产柠檬酸,青霉是青霉素的产生菌,米曲霉、米根霉主要来源于食品生产,验证了菌丝球的研究和应用起源于工业发酵生[25-26]。黑曲霉菌丝球也是最早用于污水治理研究的菌株,通过分析与 “黑曲霉” 关联性强的高频关键词,发现应用黑曲霉菌丝球开展的研究重点包括培养形态、培养条件优化(fermentation, pellet, growth, morphology, culture, optimization, batch),代谢和产物(enzyme production, acid, gene, expression),污水处理与污染物去除(degradation, removal, biosorption, wastewater, flocculation),及生物质载体的环境应用(biosynthesis, Chlorella vulgaris)。其次,白腐真菌也是研究热度较高的种类,这是依据功能命名的一类真[20,27]。分析与 “白腐真菌” 关联性强的高频关键词,发现应用白腐真菌菌丝球开展的研究与环境特别是污水治理过程密切相关,主要原因是白腐真菌能分泌多种胞外酶(laccase, enzyme, manganese peroxidase),在造纸、印染、难降解污染物废水的净化领域应用效果较好(polycyclic aromatic hydrocarbons, azo dyes, lignin),污染物的去除过程和机制(removal, biodegradation, decolorization, oxidation, transformation, detoxification)也受到关注。因此,菌丝球的应用研究起源于工业发酵和食品行业,主要关注菌丝球形态、培养条件、合成代谢[28]。随后,菌丝球在水处理领域的优势逐渐被发现,越来越多的学者在此领域开展研[8,29]

fig

图5  菌丝球环境应用领域关键词聚类(VOSviewer)

Figure 5  Keywords clustering in the field of environmental applications of mycelial pellets (VOSviewer).

3.2 菌丝球的培养和形态研究现状

培养条件优化是菌丝球的基础研究(optimization, pH, agitation, submerged culture, submerged fermentation, batch, solid-state)。剪切力、培养基成分、pH值、温度、接种孢子的浓度都是影响菌丝球结构和功能的环境因[

30-31]。适宜的培养基成分、pH值和温度是菌丝球能否形成的重要因素,不同真菌的最优条件各不相[32];接种孢子浓度主要影响菌丝球的尺[32];而剪切力的大小主要影响菌丝球的孔隙大小和结构完整[33-34]

菌丝球的形成机制和菌丝球形态结构分析也是基础研究的重要部分(aggregation, pellet formation, image analysis, morphology, fungal morphology, pellet morphology, mycelial morphology, rheology, filamentous microorganisms, filamentous fungal pellet)。菌丝球的形成过程始于孢子的聚集,疏水性是真菌孢子在培养液中聚集的重要原[

35-36]。聚集的孢子萌发生成菌丝,菌丝不断伸长,并在剪切力的作用下缠绕形成小颗粒,同时菌丝缠绕过程中不断卷扫和吸附分散在培养液中的真菌孢[37-38]。随着菌丝的生长,菌丝颗粒逐步长大,菌丝球中心受到氧传质的影响开始自溶形成空心。电子显微镜记录了菌丝球的形成过程和菌丝球的结[39-40]

针对菌丝球最初的研究目的是提高工业生产效率,因此关于真菌代谢产物的生物合成和纯化一直以来都是菌丝球应用研究的热点(biosynthesis, purification, enzyme, ethanol, cellulase, acid, lovastation, gene, protein, expression, oxidative stress)。真菌发酵常用来生产柠檬酸、青霉素、链霉素、各种胞外酶等生物产[

22,39,41-43]。分散菌丝体和菌丝球是丝状真菌发酵的2种主要形式,菌丝球以损失传质效率为代价,提高了产物和菌株的分离效率,成为生物产品发酵生产的主要选择形[44-45]。对菌丝球代谢产物生物合成的研究与对菌丝球的结构和传质的研究互相促进,提高营养和代谢产物在菌丝球内部的传质效率,是提升产品纯度的主要途[42,46]

利用菌丝球作为生物反应器,原位生物合成纳米材料是近几年新兴的研究方[

9]。与物理或化学合成过程相比,生物方法可以在温和的条件下进行,并赋予纳米材料更好的稳定性和生物相容[47-49]。菌丝球利用细胞壁上的氨基酸、蛋白质等基团,积累阳离子,使纳米材料在菌丝上不断生长,实现了微观材料的宏观合[50-52]。菌丝球生物合成纳米材料,不改变材料的环境功能,同时又解决了复合材料在应用中的回收问题。利用菌丝球作为生物反应器固定合成微观材料,在环境催化、污染物吸附等方面有很大的应用潜[53]

3.3 菌丝球水处理领域应用研究现状

菌丝球的孔隙结构和表面特性使其具有较大的比表面积和良好的吸附性能,可以作为水处理吸附剂,也可以作为生物质载体,负载功能微生物或环境功能材料,形成自固定菌丝球,防止功能菌剂和材料的流失,提高水质净化效率。依据关键词聚类,菌丝球应用于水处理的相关研究主要集中在以下几个方面。

作为吸附剂,菌丝球在处理染料等高色度废水、含重金属废水和难降解有机废水时表现出较高的效能(dye, azo dyes, heavy-metals, water, waste-water),成本低[

54]。菌丝球作为吸附剂的研究主要集中在污染物去除率(removal)、去除效果影响因素、吸附动力学和热力学(kinetics)、菌丝球重复使用情况以及吸附机制等方[21]。菌丝球吸附性能优异(adsorption, biosorption),吸附能力主要与菌丝细胞表面带电性和疏水性有[55]

形成菌丝球的真菌属于真核生物,相比于以细菌为主的活性污泥,真菌能产生种类更丰富、降解效果更好的胞外酶系,适用于环境浓度低的持久性有机污染物的降解和水环境修复(manganese peroxidase, laccase, degradation, biodegradation, bioremediation, toxicity)[

10,27,56-57]

在污水处理领域,采用菌丝球作为载体,生物强化具有吸附功能的纳米材料或具有特定降解功能的微生物成为近年来的研究热点(immobilization, mechanism)[

58-59]。菌丝表面产生的胞外聚合物使菌丝表面带正电,并表现出较强的疏水性,是菌丝球与负载材料或微生物紧密结合的主要原[60]。菌丝球生物强化技术能够实现纳米材料的重复利用,延长微生物在处理系统中的停留时间。不仅如此,菌丝球是大孔载体,负载纳米材料形成的复合吸附材料,拥有更复杂的、多尺度的孔隙结构,这种结构不仅利于传质,而且能够显著提高吸附目标污染物的效率。

自Wang[

61-63]开展真菌促进好氧污泥颗粒化的研究开始,各种生长形态的真菌,如厚垣孢子、菌丝体、菌丝碎片和菌丝球,均被作为促进剂,以加速颗粒污泥系统的启动并维持系统的稳定性。菌丝球作为载体促进颗粒污泥的形成从2020年开始成为研究热[64-66],并通过添加菌丝球在连续流系统中实现了好氧颗粒污泥的快速启[67]。菌丝球不仅为微生物和活性污泥絮体的聚集提供了初始核,还作为骨架支撑,为菌群提供了生长繁殖的空间及良好的传质条件。这使得颗粒污泥的无机成分含量更低,粒径更大,颗粒内部内源呼吸微生物占比更小,进而对环境的适应能力更强。此外,菌丝细胞分泌的胞外聚合物作为微生物的黏合剂和营养成分,使颗粒污泥结构更稳[68-69]。因此,接种菌丝球不仅能加速颗粒污泥系统的启动,还常被用于处理高盐、有毒废[64,70]

藻类是常见的水生生物,能够产生叶绿素,从而进行光合作用产生氧气,同时在水质净化和生物能源领域具有较大的应用潜力(microalgae, waste-water treatment)[

71-72]。然而,藻类回收的高昂费用限制了其工业化应[73-74]。菌丝球的疏水性和絮凝作用,使得产油微藻很容易吸附在菌丝上,形成菌藻共生颗粒。菌藻共生颗粒在净化水质和生产生物油脂的同时,有效提高了藻类的回收率,降低了生物能源的生产成本,实现了资源的重复利用(cultivation, flocculation, pelletization, biomass, performance, recovery)[75-76],加速了生物能源生产的工业化应用进[8]

3.4 菌丝球在环境领域应用研究的发展趋势

关键词的频次分析和时间趋势分析,有助于了解菌丝球相关研究的发展历程,推测该研究领域未来的发展趋势和可能的研究热[

77-78](式1-4)。

Fyears=year=ijfyearsyear=ijNyears×1 000, ijfyearsNyears×1 000, i=j (1)
F2014-2024=20142024fyears20142024Nyears×1 000 (2)
F2004-2013=20042013fyears20042013Nyears×1 000 (3)
TF=lg F2014-2024F2004-2013 (4)

式中,fyears是某关键词在某年样本文献中出现的频次,Nyears是某年样本文献的数量,Fyears是某关键词某段时间的标准化累计频次,即某段时间内每1 000篇论文中出现该关键词论文的平均数量,F2014-2024F2004-2013分别是2014-2024年间、2004-2013年间某关键词的标准化累计频次。

2004-2024年出现频次最高的40个关键词每年的标准化累计频次如图6所示,与菌丝球培养和形态研究相关的关键词总体频次较高,占据热图上部位置,这与关键词聚类分析结果一致,且研究热度相对稳定。将2004-2024年分为2个时间段,2004-2013年和2014-2024年(至2024年6月1日),分别计算出现频次最高的40个关键词的F2004-2013F2014-2024,绘制基于对数比例的时间趋势如图7所示。相对于过去10年(2004-2013年),最近10年(2014-2024年)出现频率更高的关键词呈上升趋势(更趋近红色;位于对角线的左上方)。趋势因子是最近10年(F2014-2024)与过去10年(F2004-2013)的标准化累积频率的对数比,用TF表示,用于量化关键词的趋势上升或下降的程度。

fig

图6  2004-2024年出现频次最高的40个关键词每年的标准化累计频次

Figure 6  The annual normalized cumulative frequency of the top 40 frequent keywords from 2004 to 2024.

fig

图7  2004-2014年出现频次最高的40个关键词基于TF的时间趋势分布

Figure 7  Distribution of temporal trend of the top 40 frequent keywords from 2004 to 2024 based on TF.

图7所示,出现频次最高的40个关键词中,有22个关键词出现在对角线以上(TF>0),18个关键词出现在对角线以下(TF<0),相对平均地分布在对角线两侧;几何平均频次大于50的关键词距离对角线较近(TF在0.40-0.15之间)。以上结果均表明,过去20年与菌丝球相关的研究主题相对稳定。40个关键词中,5个关键词研究热度上升(TF>0.4),7个关键词研究热度随着时间推移而衰减(TF<-0.4)。其中有2个关键词 “Chlorella vulgaris (普通小球藻)” 和 “microalgae (微藻)” 在2014年之前几乎未出现,但近几年出现频次较多(图6),他们对应的TF值趋近于1,代表着新兴的研究热点。清洁能源的生产、储存和规模化应用是当前环境领域的研究热点,利用藻类与真菌的共生关系提高水处理效率的同时生产生物柴油,菌丝球作为载体固定和回收微藻在污水处理和能源回收领域的研究未来可期。关键词 “waste water (废水)” 和 “performance (效能)” 出现频次逐年提升,TF分别为0.38和0.70,预示着菌丝球在水处理领域的应用研究越来越热。关键词 “biomass (生物质)” 和 “bacteria (细菌)” 与菌丝球固定工程菌相关,TF分别为0.37和0.79,说明菌丝球作为生物质载体用于水处理未来将得到更多关注。菌丝球生物强化有望推进好氧颗粒污泥处理市政污水的产业化进程,解决水处理领域这一难点问题。此外,环境新材料的开发和应用作为跨学科领域的热点一直受到学者的关注。关键词 “biosynthesis (生物合成)” (TF=0.37)近年出现频次提高,一方面真菌菌丝球丰富的酶系和较好的产物分离性能一直推动着菌丝球在生物合成领域的应用;另一方面,利用菌丝球原位生物合成纳米吸附材料和纳米催化材料,所需环境条件温和,合成材料便于回收,是新兴的研究方向。

总的来说,超过一半的趋势上升关键词与水处理过程和水处理材料有关。相反,图7对角线以下,大部分关键词与菌丝球的培养、形态和不同菌种的研究有关。说明20年来,研究热点已从菌丝球基础研究逐渐转变为菌丝球环境应用研究,这是多数研究领域共同经历的发展趋势,直观地展示出菌丝球相关研究的缩微发展历程,说明该研究领域发展迅速,成果转化即将成为下一阶段研究发展的重要内容。

4 总结与展望

菌丝球相关的论文数量近20年间呈快速增长趋势,国内外学者围绕菌丝球的形成条件和过程、形态结构、作为吸附剂或生物质载体在环境领域的应用等几个方面开展了大量的研究工作,我国在此领域的研究成果处于领先地位。

菌丝球相关研究起源于工业发酵行业,逐步发展到水处理和能源回收领域。研究热点也从菌丝球相关基础研究(形成机制、结构和传质特性、营养和代谢过程等),逐步发展到环境应用研究(水处理材料和水处理过程等)。菌丝球的应用研究,特别是菌丝球作为生物质载体在水质净化领域的研究起源于我国,也得到更多我国学者的关注。

在环境领域,菌丝球生物吸附去除水中色度和重金属是最早的研究方向。随后,菌丝球开始作为生物质载体,用于强化生物水处理过程、改善环境功能材料原位生物合成及应用的条件和性能、促进好氧颗粒污泥系统的快速启动和稳定运行、促进生物能源产生藻类的回收和再利用等方面。

菌丝球在环境领域的应用将继续作为研究热点,特别是实验室基础上的扩大规模应用研究,将为推进菌丝球环境领域工业化应用提供技术支撑。

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

作者贡献声明

王博涵:实施研究过程、设计论文框架、起草论文、修订论文;汪宇:调研文献、数据处理;张斯:设计研究方案、终审论文;迟超:修改、审阅论文;王深研:调研文献、修订论文。

利益冲突

公开声明

参考文献

1

BINUPRIYA AR, SATHISHKUMAR M, SWAMINATHAN K, KU CS, YUN SE. Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes[J]. Bioresource Technology, 2008, 99(5): 1080-1088. [百度学术] 

2

MATHUR A, DUBEY S, PRASAD R, SINGH RP. Mycelial and secretome proteomic dynamics of L. squarrosulus AF5 in azo dye degradation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109374. [百度学术] 

3

LU T, ZHANG QL, YAO SJ. Efficient decolorization of dye-containing wastewater using mycelial pellets formed of marine-derived Aspergillus niger[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 330-337. [百度学术] 

4

WANG MX, ZHANG QL, YAO SJ. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater[J]. Chemical Engineering Journal, 2015, 259: 837-844. [百度学术] 

5

ZHAO M, WANG W, YANG CP. Property of Curvularia lunata with mycelial pellet form and its use in dye decolorization[J]. Journal of Biotechnology, 2008, 136: S326. [百度学术] 

6

BALDRIAN P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme[J]. Applied Microbiology and Biotechnology, 2004, 63(5): 560-563. [百度学术] 

7

MURUGESAN K, YANG IH, KIM YM, JEON JR, CHANG YS. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds[J]. Applied Microbiology and Biotechnology, 2009, 82(2): 341-350. [百度学术] 

8

LI LX, LIANG TJ, ZHAO MJ, LV Y, SONG ZW, SHENG T, MA F. A review on mycelial pellets as biological carriers: wastewater treatment and recovery for resource and energy[J]. Bioresource Technology, 2022, 355: 127200. [百度学术] 

9

XU XG, YANG Y, JIN H, PANG B, YANG RR, YAN L, JIANG CM, SHAO DY, SHI JL. Fungal in situ assembly gives novel properties to CdSxSe1–x quantum dots for sensitive label-free detection of chloramphenicol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6806-6814. [百度学术] 

10

WANG L, YU TM, MA F, VITUS T, BAI SS, YANG JX. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: a review[J]. Water Environment Research, 2019, 91(2): 93-100. [百度学术] 

11

YU TM, WANG L, MA F, YANG JX, BAI SS, YOU JY. Trazine in water: a bio-functions integration system[J]. Science of The Total Environment, 2019, 689: 875-882. [百度学术] 

12

HAN XS, NIU XY, JIN Y, YU JG. Rapid cultivation of aerobic granular sludge for shale gas flowback water treatment by bioaugmentation with inoculation multifunctional fungal pellets[J]. Journal of Cleaner Production, 2024, 457: 142483. [百度学术] 

13

LIM WM, KUMAR S, DONTHU N. How to combine and clean bibliometric data and use bibliometric tools synergistically: guidelines using metaverse research[J]. Journal of Business Research, 2024, 182: 114760. [百度学术] 

14

van ECK NJ, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. [百度学术] 

15

ZHAO L, YANG JW, LIU T, CAO H, LIANG Y, WANG BS. Comparison of clinical research trends and hotspots in allergic rhinitis and asthma from 2013 to 2023 based on bibliometric analysis[J]. Heliyon, 2024, 10(12): e32829. [百度学术] 

16

王啸宇, 张亚辉, 张瑾, 陶勇, 梁宏仪. 基于文献计量学的新烟碱类农药毒性研究进展[J]. 环境科学研究, 2024, 37(9): 2042-2053. [百度学术] 

WANG XY, ZHANG YH, ZHANG J, TAO Y, LIANG HY. Progress in research on toxicity of neonicotinoid insecticides based on bibliometrics[J]. Research of Environmental Sciences, 2024, 37(9): 2042-2053 (in Chinese). [百度学术] 

17

YU TM, WANG L, MA F, WANG YJ, BAI SS. A bio-functions integration microcosm: self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms[J]. Journal of Hazardous Materials, 2020, 384: 121326. [百度学术] 

18

PAPAGIANNI M. Fungal morphology and metabolite production in submerged mycelial processes[J]. Biotechnology Advances, 2004, 22(3): 189-259. [百度学术] 

19

LI K, WEI Z, JIA JY, XU Q, LIU H, ZHONG C, HUANG H. Engineered living materials grown from programmable Aspergillus niger mycelial pellets[J]. Materials Today Bio, 2023, 19: 100545. [百度学术] 

20

FARKAS V, FELINGER A, HEGEDŰSOVA A, DÉKÁNY I, PERNYESZI T. Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 381-390. [百度学术] 

21

GOU M, QU YY, ZHOU JT, MA F, TAN L. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures[J]. Journal of Hazardous Materials, 2009, 170(1): 314-319. [百度学术] 

22

BIZUKOJC M, LEDAKOWICZ S. The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites[J]. World Journal of Microbiology & Biotechnology, 2010, 26(1): 41-54. [百度学术] 

23

KURAKAKE M, HIROTSU S, SHIBATA M, TAKENAKA Y, KAMIOKA T, SAKAMOTO T. Effects of nonionic surfactants on pellet formation and the production of β-fructofuranosidases from Aspergillus oryzae KB[J]. Food Chemistry, 2017, 224: 139-143. [百度学术] 

24

ZHANG K, YU C, YANG ST. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae[J]. Process Biochemistry, 2015, 50(2): 173-179. [百度学术] 

25

IKRAM-UL H, ALI S, QADEER MA, IQBAL J. Citric acid production by selected mutants of Aspergillus niger from cane molasses[J]. Bioresource Technology, 2004, 93(2): 125-130. [百度学术] 

26

LV J, ZHANG BB, LIU XD, ZHANG C, CHEN L, XU GR, CHEUNG PCK. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relationship between fermentation conditions and mycelial morphology[J]. Journal of Bioscience and Bioengineering, 2017, 124(4): 452-458. [百度学术] 

27

SARASWATHY A, HALLBERG R. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene[J]. Microbiological Research, 2005, 160(4): 375-383. [百度学术] 

28

PAPAGIANNI M, MATTEY M. Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology[J]. Microbial Cell Factories, 2006, 5(1): 3. [百度学术] 

29

NEGI BB, DAS C. Mycoremediation of wastewater, challenges, and current status: a review[J]. Bioresource Technology Reports, 2023, 22: 101409. [百度学术] 

30

KELLY S, GRIMM LH, HENGSTLER J, SCHULTHEIS E, KRULL R, HEMPEL DC. Agitation effects on submerged growth and product formation of Aspergillus niger[J]. Bioprocess and Biosystems Engineering, 2004, 26(5): 315-323. [百度学术] 

31

SUPRAMANI S, JAILANI N, RAMARAO K, ZAIN NAM, KLAUS A, AHMAD R, WAN-MOHTAR WAAQI. Pellet diameter and morphology of European Ganoderma pfeifferi in a repeated-batch fermentation for exopolysaccharide production[J]. Biocatalysis and Agricultural Biotechnology, 2019, 19: 101118. [百度学术] 

32

NAIR RB, LENNARTSSON PR, TAHERZADEH MJ. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia[J]. AMB Express, 2016, 6(1): 31. [百度学术] 

33

LIN PJ, SCHOLZ A, KRULL R. Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger[J]. Biochemical Engineering Journal, 2010, 49(2): 213-220. [百度学术] 

34

WALDHERR P, BLIATSIOU C, BÖHM L, KRAUME M. Fragmentation of Aspergillus niger pellets in stirred tank bioreactors due to hydrodynamic stress[J]. Chemical Engineering Research and Design, 2023, 195: 116-131. [百度学术] 

35

HUARTE-BONNET C, PAIXÃO FRS, PONCE JC, SANTANA M, PRIETO ED, PEDRINI N. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations[J]. Fungal Biology, 2018, 122(6): 457-464. [百度学术] 

36

ZHANG JG, ZHANG JN. The filamentous fungal pellet and forces driving its formation[J]. Critical Reviews in Biotechnology, 2016, 36(6): 1066-1077. [百度学术] 

37

KELLY S, GRIMM LH, JONAS R, HEMPEL DC, KRULL R. Investigations of the morphogenesis of filamentous microorganisms[J]. Engineering in Life Sciences, 2006, 6(5): 475-480. [百度学术] 

38

WUCHERPFENNIG T, KIEP KA, DRIOUCH H, WITTMANN C, KRULL R. Morphology and rheology in filamentous cultivations[J]. Advances in Applied Microbiology, 2010, 72: 89-136. [百度学术] 

39

RÜHL M, LANGE K, KÜES U. Laccase production and pellet morphology of Coprinopsis cinerea transformants in liquid shake flask cultures[J]. Applied Microbiology and Biotechnology, 2018, 102: 7849-7863. [百度学术] 

40

ZACCHETTI B, SMITS P, CLAESSEN D. Dynamics of pellet fragmentation and aggregation in liquid-grown cultures of Streptomyces lividans[J]. Frontiers in Microbiology, 2018, 9: 943. [百度学术] 

41

LÓPEZ JLC, PÉREZ JAS, SEVILLA JMF, PORCEL EMR, CHISTI Y. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus[J]. Journal of Biotechnology, 2005, 116(1): 61-77. [百度学术] 

42

NAIR RB, GMOSER R, LENNARTSSON PR, TAHERZADEH MJ. Does the second messenger cAMP have a more complex role in controlling filamentous fungal morphology and metabolite production?[J]. MicrobiologyOpen, 2018, 7(4): e00627. [百度学术] 

43

ZHANG C, WU DJ, YANG HQ, REN HX. Production of ethanol from Jerusalem artichoke by mycelial pellets[J]. Scientific Reports, 2019, 9: 18510. [百度学术] 

44

LIN LC, SUN ZY, LI JG, CHEN Y, LIU Q, SUN WL, TIAN CG. Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa[J]. Microbial Cell Factories, 2018, 17(1): 96. [百度学术] 

45

VEITER L, RAJAMANICKAM V, HERWIG C. The filamentous fungal pellet-relationship between morphology and productivity[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 2997-3006. [百度学术] 

46

MENG Q, CHUAI SC, CHEN L, WANG LL, CAI GL, MAO JS, GU ZH, SHI GY, DING ZY. Effect of surfactants on the production of polysaccharides from Schizophyllum commune through submerged fermentation[J]. International Journal of Biological Macromolecules, 2021, 192: 210-218. [百度学术] 

47

UDDANDARAO P, BALAKRISHNAN RM. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: a colorimetric probe in metal detection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 175: 200-207. [百度学术] 

48

VIJAYANANDAN AS, BALAKRISHNAN RM. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans[J]. Journal of Environmental Management, 2018, 218: 442-450. [百度学术] 

49

ZHOU J, YANG Y, ZHANG CY. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application[J]. Chemical Reviews, 2015, 115(21): 11669-11717. [百度学术] 

50

KADAM VV, ETTIYAPPAN JP, BALAKRISHNAN RM. Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles[J]. Materials Science and Engineering: B, 2019, 243: 214-221. [百度学术] 

51

XU XG, YANG Y, JIN H, PANG B, JIANG CM, SHAO DY, SHI JL. Filamentous fungal in situ biosynthesis of heterogeneous Au/Cd0.5Zn0.5S nano-photocatalyst: a macroscopic assembly strategy for preparing composite mycelial pellets with visible light degradation ability[J]. Journal of Hazardous Materials, 2021, 406: 124797. [百度学术] 

52

ZHU WK, CONG HP, GUAN QF, YAO WT, LIANG HW, WANG W, YU SH. Coupling microbial growth with nanoparticles: a universal strategy to produce functional fungal hyphae macrospheres[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12693-12701. [百度学术] 

53

DAI LL, XIE Y, ZHANG YK, WANG YB. Fe2P/N-doped biocarbon composite derived from mycelial pellet for bisphenol AF removal through peroxymonosulfate activation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109130. [百度学术] 

54

ZOU JJ, DAI CM, HU JJ, TONG WK, GAO MT, ZHANG YL, LEONG KH, FU RB, ZHOU L. A novel mycelial pellet applied to remove polycyclic aromatic hydrocarbons: high adsorption performance & its mechanisms[J]. Science of The Total Environment, 2024, 922: 171201. [百度学术] 

55

WU KL, PAN XM, ZHANG JQ, ZHANG XM, SALAH ZENE A, TIAN YQ. Biosorption of Congo red from aqueous solutions based on self-immobilized mycelial pellets: kinetics, isotherms, and thermodynamic studies[J]. ACS Omega, 2020, 5(38): 24601-24612. [百度学术] 

56

CAO YQ, WANG L, WANG YJ, WANG X, WEI JY, YU TM, MA F. Functional fungal pellets self-immobilized by mycelium fragments of Irpex lacteus WRF-IL for efficient degradation of sulfamethazine as the sole carbon source[J]. Bioresource Technology, 2023, 385: 129376. [百度学术] 

57

LIU YX, HU TT, ZHAO J, LV YK, REN RP. Simultaneous removal of carbon and nitrogen by mycelial pellets of a heterotrophic nitrifying fungus-Penicillium sp. L1[J]. Journal of Bioscience and Bioengineering, 2017, 123(2): 223-229. [百度学术] 

58

ZHANG QL, LU T, BAI DM, LIN DQ, YAO SJ. Self-immobilization of a magnetic biosorbent and magnetic induction heated dye adsorption processes[J]. Chemical Engineering Journal, 2016, 284: 972-978. [百度学术] 

59

BAI SS, WANG L, MA F, ZHU SS, XIAO T, YU TM, WANG YJ. Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution[J]. Chemosphere, 2020, 242: 125182. [百度学术] 

60

ZHANG S, WANG Y, WANG BH, WANG SY. A review on superiority of mycelial pellets as bio-carriers: structure, surface properties, and bioavailability[J]. Journal of Water Process Engineering, 2024, 58: 104745. [百度学术] 

61

WANG HL, YU GL, LIU GS, PAN F. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment[J]. Biochemical Engineering Journal, 2006, 28(1): 99-103. [百度学术] 

62

WANG HL, LI L, LI P, LI H, LIU GS, YAO JM. The acceleration of sludge granulation using the chlamydospores of Phanerochaete sp. HSD[J]. Journal of Hazardous Materials, 2011, 192(3): 963-969. [百度学术] 

63

WANG HL, LI P, JIN QL, QIN G. Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 2687-2697. [百度学术] 

64

CHEN YY, GE JY, WANG SJ, SU HJ. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment[J]. Science of The Total Environment, 2020, 739: 140128. [百度学术] 

65

GENG MY, YOU SJ, GUO HJ, MA F, XIAO X, ZHANG JN. Impact of fungal pellets dosage on long-term stability of aerobic granular sludge[J]. Bioresource Technology, 2021, 332: 125106. [百度学术] 

66

HAN XS, TANG R, LIU CS, YUE JX, JIN Y, YU JG. Rapid, stable, and highly-efficient development of salt-tolerant aerobic granular sludge by inoculating magnetite-assisted mycelial pellets[J]. Chemosphere, 2023, 339: 139645. [百度学术] 

67

XIAO X, GUO HJ, MA F, ZHANG JN, MA XP, YOU SJ. New insights into mycelial pellets for aerobic sludge granulation in membrane bioreactor: bio-functional interactions among metazoans, microbial communities and protein expression[J]. Water Research, 2023, 228: 119361. [百度学术] 

68

CUI PQ, WANG SJ, SU HJ. Enhanced biohydrogen production of anaerobic fermentation by the Fe3O4 modified mycelial pellets-based anaerobic granular sludge[J]. Bioresource Technology, 2022, 366: 128144. [百度学术] 

69

GENG MY, MA F, GUO HJ, SU DL. Enhanced aerobic sludge granulation in a sequencing batch reactor (SBR) by applying mycelial pellets[J]. Journal of Cleaner Production, 2020, 274: 123037. [百度学术] 

70

CHEN YY, HU TH, XIONG W, FAN AL, WANG SJ, SU HJ. Enhancing robustness of activated sludge with Aspergillus tubingensis as a protective backbone structure under high-salinity stress[J]. Journal of Environmental Management, 2021, 297: 113302. [百度学术] 

71

GAO ZX, JIANG CJ, LYU RT, YANG ZG, ZHANG T. Optimization of the preparation of fungal-algal pellets for use in the remediation of arsenic-contaminated water[J]. Environmental Science and Pollution Research, 2020, 27: 36789-36798. [百度学术] 

72

WANG JJ, TIAN QH, ZENG WM, QIU GZ, SHEN L. Insights about fungus-microalgae symbiotic system in microalgae harvesting and wastewater treatment: a review[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113408. [百度学术] 

73

LENG LJ, LI WT, CHEN J, LENG SQ, CHEN JF, WEI L, PENG HY, LI J, ZHOU WG, HUANG HJ. Co-culture of fungi-microalgae consortium for wastewater treatment: a review[J]. Bioresource Technology, 2021, 330: 125008. [百度学术] 

74

SINGH G, PATIDAR SK. Microalgae harvesting techniques: a review[J]. Journal of Environmental Management, 2018, 217: 499-508. [百度学术] 

75

HADIYANTO H, ISAROYATI L, CHRISTWARDANA M, SUHERMAN S, SUSILANINGSIH D. Respond surface optimization of bioflocculation of Chlorella vulgaris using filamentous fungus Aspergillus niger pellets to improve harvesting efficiency[J]. Bioresource Technology Reports, 2023, 21: 101378. [百度学术] 

76

LI LX, LIU WM, LIANG TJ, MA F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process[J]. Bioresource Technology, 2020, 315: 123854. [百度学术] 

77

ZHU JJ, DRESSEL W, PACION K, REN ZJ. ES&T in the 21st century: a data-driven analysis of research topics, interconnections, and trends in the past 20 years[J]. Environmental Science & Technology, 2021, 55(6): 3453-3464. [百度学术] 

78

谢晓栋, 胡建林, 张远航. 基于文献计量学的我国臭氧污染研究热点与趋势分析[J]. 中国环境科学, 2024. DOI:10.19674/j.cnki.issn1000-6923.20240605.001. [百度学术] 

XIE XD, HU JL, ZHANG YH. Research topic and trend analysis of ozone pollution in China based on bibliometric review[J]. China Environmental Science, 2024. DOI: 10.19674/j.cnki.issn1000-6923.20240605.001 (in Chinese). [百度学术]