摘要
叶片光合作用构成了植物能量和物质循环的基础。菌根真菌(mycorrhizal fungi)作为植物根系共生体系的关键组成部分,在调节植物营养吸收、水分利用以及抗逆性等方面发挥着重要作用,是影响森林生态系统功能和稳定性的关键生态因子。目前,对于不同菌根类型对木本植物光合能力及其对环境变化响应的影响还缺乏足够的认识。
目的
探讨不同菌根类型木本植物光合能力的差异,及其对叶片特征和环境因子变化的响应。
方法
基于中国植物性状数据库,并结合文献资料,确定了木本植物的菌根类型,共包括3种:丛枝菌根(arbuscular mycorrhiza, AM)、外生菌根(ectomycorrhiza, ECM),以及受AM和ECM这2种菌根共侵染的双菌根(AM+ECM)。在此基础上,建立了中国不同菌根类型木本植物性状数据库,每个样本均包含叶片光合能力、光合生理特征、叶片结构和养分特征,以及相关的环境因子等数据。
结果
在木本植物中,ECM植物叶片的光合能力显著高于AM植物。此外,菌根类型显著影响着植物叶片特征与光合能力之间的关系。木本植物的光合能力主要受叶片气孔导度和蒸腾速率的影响。AM植物的光合能力还受叶面积、比叶面积和氮磷含量的影响;AM+ECM植物则受比叶面积、比叶重和碳磷含量的影响;而ECM植物则受最大蒸汽压亏缺的影响。在环境因子方面,ECM植物的最大净光合速率和最大电子传递速率相较于AM和AM+ECM更容易受到温度和降水的影响。
结论
菌根类型对木本植物的光合能力具有显著影响,叶片特征主要通过调控最大电子传递速率来影响叶片的最大净光合速率。此外,环境因子对木本植物叶片形态和生理特征的影响也因菌根类型的不同而存在差异。
光合作用是植物将太阳能转化为化学能的关键生理过程,植物利用叶绿体类囊体膜上的光合色素捕获光能,并在一系列相关酶的催化作用下,将这些能量转化为支持其生长和代谢所需的化学
叶片的光合作用能力受到内在生理因素和外部环境条件的共同制约,这些限制因素主要源于植物的生长状况和外界环境的影
菌根是一种普遍存在的土壤真菌,与陆地植物根系形成共生关系,可以协助宿主植物获取养分,并从植物中获取碳水化合物等作为回
当前研究已证实,菌根接种对植物的光合作用具有显著影
1 数据与方法
1.1 数据的获取与整理
本研究中,木本植物的叶片性状和气候数据均来自Wang
1.2 数据处理
为了确定不同菌根类型之间光合能力(最大净光合速率、最大羧化速率和最大电子传递速率)的差异,采用SPSS 27.0软件进行单因素(one-way ANOVA)方差分析,并用R 4.3.3软件作图。为了进一步明确不同菌根类型木本植物光合能力与叶片特性(气孔导度、蒸腾速率、最大蒸汽压亏缺、叶面积、比叶面积、比叶重和碳氮磷含量)和环境因素(气温、降水量和生长季光合有效辐射总量)的关系,利用Origin 2024软件进行回归分析。通过双变量相关分析方法分别构建3种菌根类型下气候、叶片特征与光合能力的结构方程模型,并借助Microsoft Office 2021 PowerPoint进行绘图。
2 结果与分析
2.1 不同菌根类型木本植物光合能力的差异
对不同菌根类型木本植物光合能力的单因素方差分析结果表明,AM、ECM和AM+ECM植物的光合能力存在差异(

图1 不同菌根类型木本植物光合能力的差异
Figure 1 Differences in photosynthetic capacity of woody plants with different mycorrhizal types. A: The maximum net photosynthetic rate, Amax; B: The maximum carboxylation rate, Vcmax; C: The maximum electron transport rate, Jmax. The same below. The left side of the graph shows the distribution of data points, and the middle of the box is the average value. Different lowercase letters meant significant difference at 0.05 level.
2.2 不同菌根类型木本植物光合能力与叶片光合生理特性的关联
在木本植物中,随着气孔导度(stomatal conductance, Gs)的变化,AM、AM+ECM和ECM植物的Amax均呈现出先增加后显著降低的趋势(

图2 不同菌根类型木本植物叶片光合生理特性对光合能力的影响
Figure 2 Effects of photosynthetic physiological characteristics of woody leaves with different mycorrhizal types on photosynthetic capacity. A, D, G: Stomatal conductance, Gs; B, E, H: Transpiration rate, Tr; C, F, I: Vapor pressure deficit, VPD. *: P<0.05; **: P<0.01; ***: P<0.001. The same as below.
在气孔导度和蒸腾速率对Vcmax的影响方面,AM、AM+ECM和ECM植物表现出相似性(图
在木本植物中,AM、AM+ECM和ECM植物的Jmax随叶片气孔导度的变化,均呈现先升高后降低的趋势,分别在气孔导度为0.60、0.45和0.64 mol/(
2.3 不同菌根类型木本植物光合能力与叶片结构特征的关联
在木本植物中,AM植物的Amax随着叶片叶面积(leaf area, LA)的增加呈现出显著的降低趋势(

图3 不同菌根类型木本植物叶片结构特征对光合能力的影响
Figure 3 Effects of leaf structure characteristics on photosynthetic capacity of woody plants with different mycorrhizal types. A, D, G: Leaf area, LA; B, E, H: Specific leaf area, SLA; C, F, I: Leaf mass per area, LMA.
ECM植物的叶片Vcmax与叶面积呈显著负相关,AM植物的Vcmax随比叶面积和比叶重有显著变化,而在AM+ECM植物中,叶片结构特征对Vcmax无显著影响(图
AM植物的Jmax随叶面积的增加有显著降低趋势(
2.4 不同菌根类型木本植物光合能力与叶片养分含量的关联
在木本植物中,AM植物叶片Amax和Jmax均随叶片碳含量(leaf carbon content, Cmass)的增加呈现出显著的增长趋势,而AM+ECM和ECM植物则不受碳含量的显著影响(图

图4 不同菌根类型木本植物叶片养分含量对光合能力的影响
Figure 4 Effects of leaf nutrient content on photosynthetic capacity of woody plants with different mycorrhizal types. A, D, G: Leaf carbon content, Cmass; B, E, H: Leaf nitrogen content, Nmass; C, F, I: Leaf phosphorus content, Pmass.
AM植物的Amax随叶片磷含量(leaf phosphorus content, Pmass)的增加呈降低趋势(
2.5 不同菌根类型木本植物光合能力与气候因子的关联
如

图5 气候对不同菌根类型木本植物光合能力的影响
Figure 5 Effects of climate on the photosynthetic capacity of woody plants of different mycorrhizal types. A, D, G: Mean annual temperature, MAT; B, E, H: Mean annual precipitation, MAP; C, F, I: Total annual photosynthetically active radiation during the growing season when mean daily temperatures are >0 °C, PAR0.
AM和ECM植物的Vcmax随年均温、年降水和生长季光合有效辐射总量有显著的变化,而在AM+ECM植物中,年均温和生长季光合有效辐射总量对Vcmax的影响并不显著(图
三种菌根类型木本植物的Jmax与年均温、年降水和生长季光合有效辐射总量之间存在显著线性关系(图
2.6 气候和叶片特征对不同菌根类型木本植物光合能力影响的路径分析
通过双变量相关分析,选取了与叶片特征和光合能力有显著相关性的路径,分别构建了3种菌根类型的结构方程模型(

图6 气候和叶片特征对AM (A)、AM+ECM (B)和ECM (C)木本植物光合能力的影响路径
Figure 6 Influence pathways of climate and leaf characteristics on photosynthetic capacity of AM (A), AM+ECM (B) and ECM (C) woody plants. All paths in the figure were significantly correlated with their counterparts.
3 讨论
AM和ECM在生态系统中的功能和作用是多方面
3.1 不同菌根类型木本植物光合能力与叶片光合生理特征的关系
叶片是植物光合作用的核心器官,其光合能力与叶片的光合生理特征之间存在着密切的协同或权衡关系。深入探究两者之间的关联性,有助于揭示影响植物光合能力的内在因素。叶片的气孔导度和蒸腾速率是影响其光合能力的2个主要内部生理因素。本研究中,不同菌根类型植物的光合能力随气孔导度呈先升高后降低的趋势,产生这一现象的原因可能是:在一定范围内,气孔导度的增加会导致细胞内CO2浓度上升,从而促进羧化作用;然而,当CO2浓度超过一定阈值后,继续上升不仅会导致叶片最大羧化速率下降,还会抑制Rubisco酶的活
3.2 不同菌根类型木本植物光合能力与叶片结构特征和养分含量的关系
冯大兰
3.3 不同菌根类型木本植物光合能力与气候因子的关系
气候变化对叶片特征的影响会改变植物的光合作用,进而影响植物的整体适应
4 结论
本研究依托中国植物性状数据库,整合了不同菌根类型木本植物的最大净光合速率、最大羧化速率和最大电子传递速率数据,并结合叶片的光合生理特征、结构特征、养分含量以及气候因子,深入探讨了这些因素如何影响不同菌根类型木本植物的光合能力。研究发现,在木本植物中,ECM植物叶片的光合能力显著高于AM植物。菌根类型显著影响植物叶片特征与光合能力之间的关系。木本植物的光合能力主要受到叶片气孔导度和蒸腾速率的影响。此外,AM植物的光合能力还受叶面积、比叶面积和氮磷含量的影响;AM+ECM植物受比叶面积、比叶重和碳磷含量的影响;ECM植物受最大蒸汽压亏缺的影响。ECM植物的Amax和Jmax比AM和AM+ECM植物更容易受到温度和降水的影响。本研究初步揭示了不同菌根类型木本植物叶片光合能力与叶片特征之间的联系,为植物叶片光合生理研究提供了参考。
作者贡献声明
孙亚杰:数据处理、图表制作和稿件写作;臧娇娇:数据处理方法和稿件修改;马路平:图表制作和稿件修改;韦文敬:图表制作和稿件修改;高佳凯:数据处理和稿件修改;吴姗薇:数据处理和稿件修改;张鑫:稿件修改和图表制作;王双双:稿件修改;石兆勇:稿件选题、研究思路和稿件修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗. 植物光合作用循环电子传递的研究进展[J]. 植物生理学报, 2017, 53(2): 145-158. [百度学术]
XUE X, XU HM, WU HY, SHEN YB, XIAO JW, WAN YL. Research progress of cyclic electron transport in plant photosynthesis[J]. Plant Physiology Journal, 2017, 53(2): 145-158 (in Chinese). [百度学术]
JAFARIKOUHINI N, KAZEMEINI SA, SINCLAIR TR. Sweet corn nitrogen accumulation, leaf photosynthesis rate, and radiation use efficiency under variable nitrogen fertility and irrigation[J]. Field Crops Research, 2020, 257: 107913. [百度学术]
赵洪贤, 张洋军, 徐铭泽, 卫腾宙, 毛军, 雒宇, 贾昕, 查天山. 油蒿叶片氮分配对其最大净光合速率季节变异的影响[J]. 生态学报, 2022, 42(17): 7156-7166. [百度学术]
ZHAO HX, ZHANG YJ, XU MZ, WEI TZ, MAO J, LUO Y, JIA X, ZHA TS. Effects of leaf nitrogen allocation on seasonal variation in maximum net photosynthetic rate in Artemisia ordosica[J]. Acta Ecologica Sinica, 2022, 42(17): 7156-7166 (in Chinese). [百度学术]
CROFT H, CHEN JM, LUO XZ, BARTLETT P, CHEN B, STAEBLER RM. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity[J]. Global Change Biology, 2017, 23(9): 3513-3524. [百度学术]
赵燕红, 侯鹏, 蒋金豹, 姜赟, 张兵, 白君君, 徐海涛. 植被生态遥感参数定量反演研究方法进展[J]. 遥感学报, 2021, 25(11): 2173-2197. [百度学术]
ZHAO YH, HOU P, JIANG JB, JIANG Y, ZHANG B, BAI JJ, XU HT. Progress in quantitative inversion of vegetation ecological remote sensing parameters[J]. National Remote Sensing Bulletin, 2021, 25(11): 2173-2197 (in Chinese). [百度学术]
Dos SANTOS JA, CAMPOE OC, ASPINWALL MJ, de SOUZA CR, STAPE JL, ALVARES CA, GUILLEMOT J, le MAIRE G, LACLAU JP, NOUVELLON Y, CHRISTINA M, BATTIE-LACLAU P, MARRICHI AHC, CARNEIRO RL, MUNHOZ JSB, de PAULA RC, ARAÚJO MJ, DELIBERALI I, BARBOSA LO, MIGUEL EP. Climatic variables influence the photosynthetic capacity of forest plantations in Brazil[J]. New Forests, 2024, 55(6): 1939-1960. [百度学术]
张海宁, 张俊, 张栋甲, 李璐瑶, 田瑞萍, 王传宽, 全先奎. 兴安落叶松叶片解剖结构对气候暖化的响应及种源差异[J]. 应用生态学报, 2024, 35(8): 2073-2081. [百度学术]
ZHANG HN, ZHANG J, ZHANG DJ, LI LY, TIAN RP, WANG CK, QUAN XK. Response of leaf anatomical structure of Larix gmelinii to climate warming and provenance variation[J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2073-2081 (in Chinese). [百度学术]
李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. [百度学术]
LI XH, YAN HJ, WEI TZ, ZHOU WJ, JIA X, ZHA TS. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season[J]. Chinese Journal of Plant Ecology, 2019, 43(10): 889-898 (in Chinese). [百度学术]
王子奇, 查天山, 贾昕, 吴雅娟, 张明艳, 穆家伟. 油蒿光合参数季节动态及其与叶氮含量和比叶面积的关系[J]. 生态学杂志, 2017, 36(4): 916-924. [百度学术]
WANG ZQ, ZHA TS, JIA X, WU YJ, ZHANG MY, MU JW. Seasonal variation in photosynthetic parameters of Artemisia ordosica in relation to leaf nitrogen and specific leaf area[J]. Chinese Journal of Ecology, 2017, 36(4): 916-924 (in Chinese). [百度学术]
闫霜, 张黎, 景元书, 何洪林, 于贵瑞. 植物叶片最大羧化速率与叶氮含量关系的变异性[J]. 植物生态学报, 2014, 38(6): 640-652. [百度学术]
YAN S, ZHANG L, JING YS, HE HL, YU GR. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration[J]. Chinese Journal of Plant Ecology, 2014, 38(6): 640-652 (in Chinese). [百度学术]
张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展[J]. 生态学报, 2012, 32(18): 5907-5917. [百度学术]
ZHANG YM, ZHOU GS. Advances in leaf maximum carboxylation rate and its response to environmental factors[J]. Acta Ecologica Sinica, 2012, 32(18): 5907-5917 (in Chinese). [百度学术]
童永尚, 张春平, 董全民, 于泽航, 杨增增, 张小芳, 曹铨, 俞旸, 张正社. 氮素形态对高寒人工草地植物群落生物量分配及优势种叶片光合特性的影响[J]. 生态学杂志, 2024, 43(6): 1655-1663. [百度学术]
TONG YS, ZHANG CP, DONG QM, YU ZH, YANG ZZ, ZHANG XF, CAO Q, YU Y, ZHANG ZS. The effects of nitrogen forms on biomass allocation and photosynthetic characteristics of dominant species in alpine artificial grasslands[J]. Chinese Journal of Ecology, 2024, 43(6): 1655-1663 (in Chinese). [百度学术]
焦雪辉, 乔雨轩, 秦玉文, 史喜兵. 施氮模式和施氮量对细叶青冈幼苗生长的影响[J]. 东北农业大学学报, 2024, 55(5): 35-45. [百度学术]
JIAO XH, QIAO YX, QIN YW, SHI XB. Effects of nitrogen application mode and mount on growth of Cyclobalanopsis gracilis seedlings[J]. Journal of Northeast Agricultural University, 2024, 55(5): 35-45 (in Chinese). [百度学术]
杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. [百度学术]
DU YD, YUAN XY, FENG ZZ. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar[J]. Chinese Journal of Plant Ecology, 2023, 47(3): 348-360 (in Chinese). [百度学术]
BOWLES TM, JACKSON LE, CAVAGNARO TR. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes[J]. Global Change Biology, 2018, 24(1): e171-e182. [百度学术]
PHILLIPS RP, BRZOSTEK E, MIDGLEY MG. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests[J]. New Phytologist, 2013, 199(1): 41-51. [百度学术]
TEDERSOO L, BAHRAM M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes[J]. Biological Reviews of the Cambridge Philosophical Society, 2019, 94(5): 1857-1880. [百度学术]
PETERSON RL, MASSICOTTE HB. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces[J]. Canadian Journal of Botany, 2004, 82(8): 1074-1088. [百度学术]
TESTE FP, JONES MD, DICKIE IA. Dual-mycorrhizal plants: their ecology and relevance[J]. New Phytologist, 2020, 225(5): 1835-1851. [百度学术]
GAVITO ME, JAKOBSEN I, MIKKELSEN TN, MORA F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength[J]. New Phytologist, 2019, 223(2): 896-907. [百度学术]
戴伟红, 邹锋, 江盈, 左荣花, 田诗义, 殷慧敏, 熊欢. 接种4种外生菌根真菌对‘檀桥’板栗幼苗生长、光合及养分含量的影响[J]. 江西农业大学学报, 2023, 45(2): 311-321. [百度学术]
DAI WH, ZOU F, JIANG Y, ZUO RH, TIAN SY, YIN HM, XIONG H. Effect of four ectomycorrhizal fungi inoculation on growth, photosynthesis, and nutrient content of Castanea mollissima ‘tanqiao’ seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 311-321 (in Chinese). [百度学术]
YE QH, WANG H, LI H. Arbuscular mycorrhizal fungi improve growth, photosynthetic activity, and chlorophyll fluorescence of Vitis vinifera L. cv. Ecolly under drought stress[J]. Agronomy, 2022, 12(7): 1563. [百度学术]
ZHANG S, YUAN ML, SHI ZY, YANG S, ZHANG MG, SUN LR, GAO JK, WANG XG. The variations of leaf
SHI L, WANG J, LIU BH, NARA K, LIAN CL, SHEN ZG, XIA Y, CHEN YH. Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments[J]. Mycorrhiza, 2017, 27(8): 823-830. [百度学术]
ZHANG TZ, MENG FJ, YIN DC. Promotion of biomass, photosynthesis, and root growth of seedling biomass, photosynthesis, and root growth of Populus davidiana× P. bolleana by two species of ectomycorrhizal fungi[J]. Journal of Forestry Research, 2024, 35(1): 101. [百度学术]
VARGAS R, BALDOCCHI DD, QUEREJETA JI, CURTIS PS, HASSELQUIST NJ, JANSSENS IA, ALLEN MF, MONTAGNANI L. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature[J]. New Phytologist, 2010, 185(1): 226-236. [百度学术]
WANG H, HARRISON SP, LI M, COLIN PRENTICE I, QIAO SC, WANG RX, XU HY, MENGOLI G, PENG YK, YANG YZ. The China plant trait database version 2[J]. Scientific Data, 2022, 9(1): 769. [百度学术]
CORNELISSEN J, AERTS R, CERABOLINI B, WERGER M, van der HEIJDEN M. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4): 611-619. [百度学术]
石兆勇, 张晓龙, 肖莉, 徐晓峰, 李亚娟, 刘晨洲, 陈双臣. 菌根组合类型对森林总初级生产力应对温度和降水变化的影响[J]. 生态环境学报, 2017, 26(3): 379-385. [百度学术]
SHI ZY, ZHANG XL, XIAO L, XU XF, LI YJ, LIU CZ, CHEN SC. Responses of gross primary production to changes of temperature and precipitation in different forests dominated by different mycorrhizal strategies[J]. Ecology and Environmental Sciences, 2017, 26(3): 379-385 (in Chinese). [百度学术]
AVERILL C, TURNER BL, FINZI AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505(7484): 543-545. [百度学术]
ANCÍN M, GÁMEZ AL, JAUREGUI I, GALMES J, SHARWOOD RE, ERICE G, AINSWORTH EA, TISSUE DT, SANZ-SÁEZ A, ARANJUELO I. Does the response of Rubisco and photosynthesis to elevated [CO2] change with unfavourable environmental conditions?[J]. Journal of Experimental Botany, 2024, 75(22): 7351-7364. [百度学术]
ZHU XC, CAO QJ, SUN LY, YANG XQ, YANG WY, ZHANG H. Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl stress[J]. Frontiers in Plant Science, 2018, 9: 1363. [百度学术]
SLOT M, RIFAI WS, EZE EC, WINTER K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests[J]. New Phytologist, 2024, 244(4): 1238-1249. [百度学术]
LIU HY, WANG H, LI N, SHAO JJ, ZHOU XH, van GROENIGEN KJ, THAKUR MP. Phenological mismatches between above- and belowground plant responses to climate warming[J]. Nature Climate Change, 2022, 12: 97-102. [百度学术]
赵敏, 练琚愉, 刘小容, 刘慧, 叶清. 南亚热带森林2种菌根类型树木水分传导和养分利用策略的对比研究[J]. 热带亚热带植物学报, 2021, 29(6): 589-596. [百度学术]
ZHAO M, LIAN JY, LIU XR, LIU H, YE Q. Comparison studies on water transport and nutrient acquisition of trees with different mycorrhiza types in subtropical forest[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6): 589-596 (in Chinese). [百度学术]
冯大兰, 黄小辉, 刘芸, 朱恒星, 向仲怀. 4种木本植物在石漠化地区的生长状况及光合特性[J]. 北京林业大学学报, 2015, 37(5): 62-69. [百度学术]
FENG DL, HUANG XH, LIU Y, ZHU HX, XIANG ZH. Growth and photosynthetic characteristics of four woody plants in the rocky and desertified area[J]. Journal of Beijing Forestry University, 2015, 37(5): 62-69 (in Chinese). [百度学术]
XU HY, WANG H, COLIN PRENTICE I, HARRISON SP, WRIGHT IJ. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements[J]. New Phytologist, 2021, 232(3): 1286-1296. [百度学术]
程建峰, 陈根云, 沈允钢. 植物叶片特征与光合性能的关系[J]. 中国生态农业学报, 2012, 20(4): 466-473. [百度学术]
CHENG JF, CHEN GY, SHEN YG. Relational analysis of leaf characteristics and photosynthetic capacities of plants[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 466-473 (in Chinese). [百度学术]
张书娜, 王庆成, 郝龙飞, 李雯, 王昌亮. 光照和施肥对白桦林冠下水曲柳、胡桃楸苗木生长的影响[J]. 森林工程, 2015, 31(2): 51-56. [百度学术]
ZHANG SN, WANG QC, HAO LF, LI W, WANG CL. Effects of light and fertilization on the growth of Fraxinus mandshurica and Juglans mandshurica seedlings under the canopy of Betula platyphylla secondary forest[J]. Forest Engineering, 2015, 31(2): 51-56 (in Chinese). [百度学术]
XU JW, LIN GG, LIU B, MAO R. Linking leaf nutrient resorption and litter decomposition to plant mycorrhizal associations in boreal peatlands[J]. Plant and Soil, 2020, 448(1): 413-424. [百度学术]
石兆勇, 刘德鸿, 王发园, 丁效东. 菌根类型对森林树木净初级生产力的影响[J]. 生态环境学报, 2012, 21(3): 404-408. [百度学术]
SHI ZY, LIU DH, WANG FY, DING XD. Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem[J]. Ecology and Environmental Sciences, 2012, 21(3): 404-408 (in Chinese). [百度学术]
SHIKLOMANOV AN, COWDERY EM, BAHN M, BYUN C, JANSEN S, KRAMER K, MINDEN V, NIINEMETS Ü, ONODA Y, SOUDZILOVSKAIA NA, DIETZE MC. Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta-analysis[J]. Ecological Applications, 2020, 30(3): e02064. [百度学术]
WYKA TP, OLEKSYN J, ZYTKOWIAK R, KAROLEWSKI P, JAGODZIŃSKI AM, REICH PB. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species[J]. Oecologia, 2012, 170(1): 11-24. [百度学术]
LEÓN-SÁNCHEZ L, NICOLÁS E, PRIETO I, NORTES P, MAESTRE FT, QUEREJETA JI. Altered leaf elemental composition with climate change is linked to reductions in photosynthesis, growth and survival in a semi-arid shrubland[J]. Journal of Ecology, 2020, 108(1): 47-60. [百度学术]
SMITH SE, READ DJ. Mycorrhizal Symbiosis[M]. 3rd. San Diego, CA: Academic Press, 2008. [百度学术]
TEDERSOO L, BAHRAM M, ZOBEL M. How mycorrhizal associations drive plant population and community biology[J]. Science, 2020, 367(6480): eaba1223. [百度学术]
ZHANG HH, XU N, LI X, LONG JH, SUI X, WU YN, LI JB, WANG JF, ZHONG HX, SUN GY. Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil[J]. Frontiers in Plant Science, 2018, 9: 1156. [百度学术]
石兆勇, 张凯, 苗艳芳, 王发园. 不同菌根类型森林净初级生产力对降水的响应[J]. 水土保持通报, 2014, 34(1): 14-19. [百度学术]
SHI ZY, ZHANG K, MIAO YF, WANG FY. Responses of net primary productivity to precipitation in forests dominated by different mycorrhizal types[J]. Bulletin of Soil and Water Conservation, 2014, 34(1): 14-19 (in Chinese). [百度学术]
CRAINE JM, ELMORE AJ, AIDAR MPM, BUSTAMANTE M, DAWSON TE, HOBBIE EA, KAHMEN A, MACK MC, MCLAUCHLAN KK, MICHELSEN A, NARDOTO GB, PARDO LH, PEÑUELAS J, REICH PB, SCHUUR EAG, STOCK WD, TEMPLER PH, VIRGINIA RA, WELKER JM, WRIGHT IJ. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability[J]. New Phytologist, 2009, 183(4): 980-992. [百度学术]
ZHONG YL, CHU CJ, MYERS JA, GILBERT GS, LUTZ JA, STILLHARD J, ZHU K, THOMPSON J, BALTZER JL, HE FL, LAMANNA JA, DAVIES SJ, ADERSON-TEIXEIRA KJ, BURSLEM DFRP, ALONSO A, CHAO KJ, WANG XG, GAO LM, ORWIG DA, YIN X, et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide[J]. Nature Communications, 2021, 12: 3137. [百度学术]