网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

二甲戊灵降解菌群富集及其微生物群落结构演替  PDF

  • 焦思雨 1,4
  • 马青云 2,4
  • 孔德龙 3,4
  • 周义清 4
  • 江旭 4
  • 张伟 3
  • 罗晓霞 1
  • 阮志勇 4
1. 塔里木大学 生命科学与技术学院,新疆 阿拉尔; 2. 华中农业大学 生命科学技术学院,湖北 武汉; 3. 新疆师范大学 生命科学学院,新疆 乌鲁木齐; 4. 中国农业科学院农业资源与农业区划研究所,北方干旱半干旱耕地高效利用全国重点实验室,北京

最近更新:2025-04-09

DOI: 10.13343/j.cnki.wsxb.20250109

CSTR: 32112.14.j.AMS.20250109

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

二硝基苯胺类农药二甲戊灵作为苗前封闭除草剂,在新疆棉田广泛被用于杂草防控。二甲戊灵化学性质稳定,残留期长,具有生物积累性和生物放大性的特点,其大量使用导致土壤生态系统风险加剧。因此,二甲戊灵残留修复问题受到广泛关注。

目的

富集具有二甲戊灵降解能力的微生物菌群,深入研究二甲戊灵胁迫下富集培养过程中微生物群落的演替特征,确定二甲戊灵降解菌群的关键微生物。

方法

通过富集传代培养法,将长期受二甲戊灵胁迫的棉田土壤接种至含不同浓度二甲戊灵(0、1.2、12 mg/L)的基础无机盐培养基中,进行连续传代培养。采用高通量测序技术探究二甲戊灵胁迫下微生物群落结构的演替规律。

结果

通过富集培养获得了2个具有二甲戊灵降解功能的微生物菌群,其中L4组(低浓度组第4代)在11 d内对1.2 mg/L二甲戊灵的降解率达到100%,H4组(高浓度组第四代)在相同时间内对12 mg/L二甲戊灵的降解率为37.2%。高通量测序分析结果显示,二甲戊灵胁迫显著降低了微生物群落的α多样性,且细菌群落对二甲戊灵胁迫的响应强于真菌群落。二甲戊灵浓度差异显著改变了微生物群落结构。高浓度二甲戊灵胁迫降低了微生物网络的稳定性、复杂性及模块化程度。线性判别分析(linear discriminant analysis effect size, LEfSe)显示,高浓度组细菌群落中的特征类群为无色杆菌属(Achromobacter)、雷夫松氏菌属(Leifsonia)、Candidatus_Nucleicultrix、肠杆菌属(Enterobacter)和金黄杆菌属(Chryseobacterium);低浓度组的特征类群为甲基营养菌属(Methyloversatilis)、假黄单胞菌属(Pseudoxanthomonas)、屈曲杆菌属(Ancylobacter)、甲基红杆菌属(Methylorubrum)、热单胞菌属(Thermomonas)和假黄色细杆菌属(Pseudoflavitalea)。篮状菌属(Talaromyces)、木霉属(Trichoderma)、副顶孢霉属(Paracremonium)、帚霉属(Scedosporium)和Sarocladium为高浓度组真菌群落的特征类群。基于PICRUSt2分析发现,二甲戊灵添加组显著富集了与降解相关的功能途径。属水平物种与二甲戊灵降解相关性分析结果显示,在低浓度组中,Methylorubrum、生丝微菌属(Hyphomicrobium)、微杆菌属(Microbacterium)、红假单胞菌属(Rhodopseudomonas)和镰孢菌属(Fusarium)与二甲戊灵降解呈正相关;在高浓度组中,HyphomicrobiumLeifsoniaRhodopseudomonasTalaromycesTrichoderma与二甲戊灵降解呈正相关。

结论

通过不同浓度二甲戊灵胁迫富集获得到了2个具有二甲戊灵降解能力的天然微生物群落。结合高通量测序技术,探究了二甲戊灵降解菌群富集过程中微生物群落的演替规律,初步确定了二甲戊灵降解菌群的关键微生物,为二甲戊灵高效微生物降解菌株的筛选提供了理论依据。

二甲戊灵属于二硝基苯胺类除草剂,作为苗前封闭除草剂,广泛应用于棉花、玉米等多种作物的种植中,在全球范围内被大量使[

1-3]。新疆是我国最大的棉花产区,具有显著的种植优势,对新疆37个主要植棉区的杂草防除现状调查发现,98%以上的棉田使用二甲戊灵进行喷雾封闭处理以防控杂[4]。然而,随着二甲戊灵的大量使用,其残留问题逐渐显现。二甲戊灵能被土壤强烈吸附且难以解吸,其降解半衰期受环境因素影响显著。在山东、安徽的棉田土壤中,二甲戊灵的降解半衰期为5.48-11.50 d[5];在马铃薯田土壤中,其半衰期为20.0-30.1 d[6]。二甲戊灵通过吸附、挥发、径流和淋溶等方式进入水体、土壤和空气等环境,对生态系统造成了一定程度的危[7]。此外,二甲戊灵极易被植物吸收,并通过食物链和食物网对其他生物造成潜在危[8-11]。目前,二甲戊灵的降解方式主要包括物理法、化学法和微生物降[3,7,12-15]

与传统的化学和物理修复方法相比,生物修复被认为是一种高效、低成本且可持续的替代方[

16],近年来在二甲戊灵降解研究中得到了广泛应用。微生物在污染物降解过程中发挥着关键作用,许多微生物能够通过自身的代谢活动将有机污染物分解为无害物[17]。尽管已有大量关于二甲戊灵降解微生物的报道,但大多数菌株的降解率仍维持在80%以下,仅少数几株细菌可在短时间内几乎完全降解二甲戊[18]。例如,列城芽孢杆菌(Bacillus lehensis) XJU 3 d内完全降解浓度为200 mg/L的二甲戊灵,但需通过微生物细胞固定化来实[19],黄海希瓦氏菌(Shewanella marisflavi) EP1在35 ℃条件下可在2 d内完全降解浓度为50 mg/L的二甲戊[20]。因此,挖掘更多高效的二甲戊灵降解菌株资源仍具有重要意义。目前,二甲戊灵降解细菌主要来源于芽孢杆菌属(Bacillus)和假单胞菌属(Pseudomonas),降解真菌主要为镰孢菌属(Fusarium)和曲霉属(Aspergillus)[18]。二甲戊灵的微生物降解涉及多种代谢机制,包括硝基还原、N-脱烷基化、苯环氧化和侧链环[14,18,21]。然而,目前大多数二甲戊灵降解菌株是通过传统分离培养方法获得的,菌株种类相对有限,且多数研究集中在单一菌株的降解能力上。相比之下,微生物菌群降解二甲戊灵的相关研究较少。与单一微生物相比,微生物菌群通常表现出更强的代谢多功能性和环境适应性,能够通过协同作用实现更复杂的代谢过程,减少中间产物积累,避免反馈抑制,从而提高降解效率,在极端环境下的生存能力和对高浓度污染物的耐受性更[22-24]。因此富集高效的二甲戊灵降解微生物菌群具有重要的应用价值。本研究采用富集培养的方法,成功获得了2个具有二甲戊灵降解能力的微生物菌群,并运用高通量测序技术深入解析了不同浓度二甲戊灵胁迫下微生物群落的演替特征,确定了二甲戊灵降解菌群富集过程中的关键核心微生物。这不仅有助于深入理解微生物在二甲戊灵降解过程中的作用机制,还为高效降解微生物的定向筛选和合理利用提供了理论指导。本研究旨在通过富集培养方法获得二甲戊灵降解菌群;揭示二甲戊灵降解菌群富集过程中微生物群落演替的规律;探究不同浓度二甲戊灵胁迫下微生物群落结构与功能的差异;利用高通量测序技术,结合线性判别分析(linear discriminant analysis effect size, LEfSe)和物种共发生网络分析等方法,识别二甲戊灵降解菌群的关键微生物。

1 材料与方法

1.1 主要试剂和培养基

二甲戊灵原药(纯度为96%)购自上海阿拉丁生化科技股份有限公司;分析级甲醇、二氯甲烷均购自Sigma-Aldrich公司。使用甲醇溶解二甲戊灵,配制成1 g/L的母液,过滤除菌后保存备用。

基础无机盐培养基(g/L):K2HPO4 0.5,KH2PO4 0.5,MgSO4 0.1,NaCl 0.2,pH 7.0±0.2,121 ℃灭菌30 min,用于二甲戊灵降解体系的富集传代。

1.2 土壤采集

选取新疆建设兵团第一师十三团一块长期施用除草剂二甲戊灵的棉田采集土壤样本。棉田位于阿拉尔市,属于塔里木河冲积细土平原。在棉田20 m×5 m的样方内均匀设置5个取样点(深度0-20 cm)进行取样。样品充分混合后作为1个重复,共设置3个生物学重复。将收集到的所有土壤样品一分为二:一部分用干冰运输到实验室并储存在-80 ℃,用于微生物群落测定;另一部分储存在4 ℃,用于土壤理化性质的测定。

1.3 土壤化学性质的测量

采用电位法测定土壤pH值;重铬酸钾氧化法测定有机质含量;酸消解-凯氏定氮法测定全氮含量;乙酸铵溶液浸提-火焰光度计测定速效钾含量;碳酸氢钠浸提-钼锑抗比色法测定有效磷含[

25-27]

1.4 二甲戊灵残留量检测

采用高效液相色谱(HPLC)法对二甲戊灵进行定量和定性检测。在待测定的二甲戊灵降解培养液中加入等体积的二氯甲烷,剧烈振荡后静置,待水相和有机相完全分层并出现明显分界线。去除水相后,加入无水硫酸钠以完全去除残留水分,随后吸取有机相至圆底烧瓶中,用氮气吹干。用适量甲醇溶解样品,经0.22 μm孔径尼龙滤膜过滤后,进行HPLC测定分析。

HPLC测定条件:二甲戊灵残留浓度通过高效液相色谱(HPLC)法进行测定,进样量为10 μL。使用Eclipse Plus C18色谱柱(4.6 mm×100 mm,3.5 μm),流动相为甲醇:水(85:15,体积比),流速为0.8 mL/min,光电二极管阵列检测器的波长为245 nm,柱温为30 ℃。

1.5 降解菌群富集传代体系的构建

采用富集传代培养的方法富集二甲戊灵降解菌群,将5 g采集的土壤样品分别加入95 mL含二甲戊灵终浓度为0 mg/L (N组)、1.2 mg/L (L组)和12 mg/L (H组)的基础无机盐培养基中。富集液在30 ℃恒温摇床中160 r/min避光培养。培养11 d后,取出锥形瓶,将富集液以5%的接种量(5 mL)进行液体转接,转接至新鲜的含二甲戊灵终浓度为0、1.2和12 mg/L的基础无机盐培养基中,在相同的条件下连续培养4代。每次所得的富集液除用于液体转接外,剩余10 mL用于降解菌株分离培养以及二甲戊灵残留量测定,其余部分用于菌体收集(0.22 μm水系滤膜过滤)。采用高效液相色谱(HPLC)法检测富集传代体系中除草剂二甲戊灵的残留量。

1.6 DNA提取和高通量测序

采用OMEGA Soil DNA Kit (Omega Bio-Tek公司)提取DNA。定量后用引物341F (5′-CCTAYGGGRBGCASCAG-3′)和806R (5′-GG ACTACNNGGGTATCTAAT-3′)扩增细菌16S rRNA基因V3-V4区[

28],ITS5F (5′-GGAAG TAAAAGTCGTAACAAGG-3′)和ITS2R (5′-GCT GCGTTCTTCATCGATGC-3′)扩增真菌ITS1区[29]。PCR采用NEB Q5 DNA高保真聚合酶(New England Biolabs公司),由上海派森诺生物科技股份有限公司完成。Axygen凝胶(Invitrogen公司)回收试剂盒回收目的片段。利用TruSeq Nano DNA LT Library Prep Kit (Illumina公司)进行建库。质检后在Illumina NovaSeq平台上,使用NovaSeq 6000 SP Reagent Kit (500 cycles)进行2×250 bp的双端测序。

1.7 数据分析

原始序列数据经引物切除、序列质量过滤、去噪、拼接和嵌合体去除等处理后,按100%的序列相似度进行归并,生成特征性序列扩增子序列变异(amplicon sequence variants, ASVs)丰度数据表格。细菌和真菌的分类信息分别选用Silva数据库(http://arb-silva.de/)和UNITE数据库(https://unite.ut.ee/)进行注释。由Shannon指数和Chao1指数表征细菌和真菌群落的α多样性。以微生物群落的Bray-Curtis距离对不同浓度二甲戊灵胁迫下富集传代过程的所有样本进行主坐标分析(principal coordinates analysis, PCoA),以评估富集传代过程中微生物群落结构的变化。同时,使用置换多元方差分析(permutational multivariate analysis of variance, PERMANOVA),检验二甲戊灵浓度及传代次数对群落结构的影响。采用LEfSe分析鉴定不同浓度二甲戊灵胁迫下各分组群体间属水平显著差异的微生物标志物(LDA>4,P<0.05)。筛选细菌或真菌门水平之间的Spearman相关系数P>0.001或|r|<0.60,并且具有相对丰度>0.01%的ASV (真菌相对丰度>0.001%)用于网络构建。使用Gephi平台进行微生物相互作用的可视化。采用PICRUSt2预测微生物群落功能,并根据最新的KEGG数据库信息预测菌落的功能组成。

2 结果与分析

2.1 土壤样品理化性质和富集菌群对二甲戊灵的降解

棉田土壤的理化性质如表1所示,土壤pH为6.3,土壤有机质(soil organic matter, SOM)含量为11.2 g/kg,速效氮(available nitrogen, AN)含量为0.8 g/kg,总钾(total potassium, TK)含量为229.0 mg/kg,总磷(total phosphorus, TP)含量为26.9 mg/kg。

表1  棉田土壤理化性质
Table 1  Physicochemical properties of cotton soil
ItemsResults
pH 6.3±0.1
SOM (g/kg) 11.2±2.9
AN (g/kg) 0.8±0.1
TK (mg/kg) 229.0±16.7
TP (mg/kg) 26.9±1.0

Results are presented as the mean±SD (n=3).

在30 ℃、160 r/min避光培养条件下,富集液对除草剂二甲戊灵的降解表现出显著变化。H1组(H组P1时期)在二甲戊灵终浓度12 mg/L的条件下降解率为13.4%,L1组(L组P1时期)在二甲戊灵终浓度1.2 mg/L的条件下降解率为33.5% (图1)。经过富集传代培养后,H4组(H组P4时期)在二甲戊灵终浓度12 mg/L的条件下降解率显著提升至37.2%,而L4组(L组P4时期)对终浓度1.2 mg/L二甲戊灵的降解率可达100%。结果表明,经过多次传代培养,二甲戊灵胁迫下的H组和L组富集液均表现出显著的二甲戊灵降解能力。

fig

图1  富集传代过程中除草剂二甲戊灵降解率。A:L组富集传代过程中各时期二甲戊灵降解率;B:H组富集传代过程中各时期二甲戊灵降解率。不同小字母表示组间存在显著差异(P<0.05)。

Figure 1  Degradation rate of herbicide pendimethalin during enrichment and culture. A: Pendimethalin degradation rate of L group in each period during enrichment and culture; B: Pendimethalin degradation rate in each period of enrichment and culture in group H. Different small letters indicate significant differences at P<0.05.

2.2 除草剂胁迫下微生物α多样性的演替

采用Shannon指数和Chao1指数来反映微生物α多样性对不同浓度二甲戊灵胁迫的响应。ANOVA分析结果表明,二甲戊灵浓度的差异导致微生物群落α多样性发生显著变化(图2A、2B),微生物群落α多样性在不同培养阶段也呈现出显著差异(图2C、2D)。随着富集传代过程的推进,微生物群落α多样性明显降低。在培养前期(P1、P2时期),二甲戊灵添加组(L、H组)的细菌群落Shannon指数和Chao1指数均显著低于未添加组(N组)。高浓度组(H组)的细菌群落Chao1指数显著低于低浓度组(L组)。到了传代后期(P3、P4时期),L组细菌群落的多样性和丰富度逐渐恢复。值得注意的是,整个培养阶段H组细菌群落的α多样性始终低于L组。对于真菌群落,在P1时期,L、H组的多样性指数均低于N组。所有分组的α多样性随着传代培养的持续进行而逐渐降低,且在大部分培养阶段,N组的α多样性高于L、H组。

fig

  

fig

  

图2  二甲戊灵胁迫下微生物α多样性演替。A:培养过程中不同浓度二甲戊灵胁迫下细菌群落群落α多样性演替;B:培养过程中不同浓度二甲戊灵胁迫下真菌群落群落α多样性演替,其中Chao1指数表示群落丰富度,Shannon指数表示群落多样性;C:细菌群落α多样性在不同培养阶段的差异;D:真菌群落α多样性在不同培养阶段的差异。不同小字母表示组间存在显著差异(P<0.05)。

Figure 2  Microbial alpha diversity succession under pendimethalin stress. A: Succession of bacterial community alpha diversity under different concentrations of pendimethalin stress during cultivation; B: Succession of fungal community alpha diversity under different concentrations of pendimethalin stress during cultivation, community diversity is indicated by the Shannon index and community richness is indicated by the Chao1 index; C: Differences in bacterial community alpha diversity at different cultivation stages; D: Differences in fungal community alpha diversity at different cultivation stages. Different small letters indicate significant differences at P< 0.05.

2.3 微生物群落结构对二甲戊灵胁迫的响应

2.3.1 不同浓度二甲戊灵胁迫对微生物群落结构的影响

基于微生物群落的Bray-Curtis距离对不同浓度二甲戊灵胁迫下传代过程中的所有样本进行PCoA分析。结果表明,不同浓度的二甲戊灵显著改变了微生物群落结构(P=0.001),微生物群落根据不同二甲戊灵浓度(0、1.2和12 mg/L)明显分开。PERMANOVA分析显示,不同浓度二甲戊灵胁迫,无论是细菌群落(图3A)还是真菌群落(图3C),不同浓度二甲戊灵胁迫下的微生物组成均存在显著差异(P=0.001)。

fig

图3  培养过程中所有分组基于Bray-Curtis距离的PCoA分析。A:细菌培养过程中不同浓度二甲戊灵胁迫下群落结构的演替;B:不同培养时期所有分组细菌群落结构的演替;C:真菌培养过程中不同浓度二甲戊灵胁迫下群落结构的演替;D:不同培养时期所有分组真菌群落结构的演替。

Figure 3  PCoA analysis based on Bray-Curtis distance was performed for all groups during the incubation. A: The succession of community structure under different concentrations of pendimethalin stress during bacterial culture; B: Succession of bacterial community structure in all groups at different culture periods; C: Succession of community structure under different concentrations of pendimethalin stress during fungal culture; D: Succession of fungal community structure in all groups at different culture periods.

2.3.2 微生物群落结构随富集传代时间的变化

连续传代培养显著改变了微生物群落结构。PCoA分析表明,无论是细菌群落还是真菌群落,不同培养阶段的样本间存在明显差异。其中,P3和P4时期的样本聚集在一起,表明这2个时期样本间的微生物群落较为相似,而与P1时期的样本距离最远,说明随着富集传代的进行微生物群落组成发生了显著变化(P=0.001)。使用PERMANOVA分析不同培养阶段样品之间的差异(图3B、3D),结果表明细菌和真菌群落结构随富集传代的进行发生了显著变化(P=0.001)。

2.3.3 富集传代过程中微生物群落物种组成的变化

富集培养初期(P1),所有分组(N、L、H)细菌的优势门(相对丰度>5.0%)包括假单胞菌门(Pseudomonadota)和拟杆菌门(Bacteroidota)(图4A)。N组细菌群落的优势属(相对丰度>1.0%)包括黄土壤杆菌属(Flavisolibacter)、鞘氨醇单胞菌属(Sphingomonas)、亚硝化螺菌属(Nitrosospira)(图4B)。L组优势属前3包括FlavisolibacterSphingomonas和假黄单胞菌属(Pseudoxanthomonas);H组的优势属前3为Pseudoxanthomonas、无色杆菌属(Achromobacter)和Sphingomonas。所有分组真菌的优势门(相对丰度>5.0%)均为子囊菌门(Ascomycota)(图4C)。培养初期(P1),N组真菌的优势属(相对丰度>1.0%)前3分别为枝鼻菌属(Cladorrhinum)、拟青霉属(Pseudeurotium)和Fungi_gen_Incertae_sedis (图4D);L组真菌的优势属前3分别为葡萄穗丝孢属(Botryotrichum)、AspergillusFusarium。H组真菌优势属前3分别为Fusarium、节纹菌属(Arthrographis)和Botryotrichum

fig

  

fig

  

图4  富集传代过程中微生物群落门水平和属水平物种相对丰度(显示值为3个平行的均值)以及优势菌群在培养过程中的演替。A:细菌门水平(前20)相对丰度;B:细菌属水平(前20)相对丰度;C:真菌门水平相对丰度;D:真菌属水平(前20)相对丰度:E:细菌优势门相对丰度变化;F:细菌优势属相对丰度变化;G:真菌优势门相对丰度变化;H:细菌优势属相对丰度变化。

Figure 4  The relative abundances of microbial taxa at the phylum and genus levels were quantified during enrichment subculturing (the display value was three parallel mean values), and the successional dynamics of dominant microbial taxa across cultivation stages. A: The relative abundance of the top 20 bacterial phyla; B: The relative abundance of the top 20 dominating bacterial genera; C: Fungal phyla relative abundance; D: The relative abundance of the top 20 fungal genera; E: Temporal shifts in dominant bacterial phyla; F: Temporal shifts in dominant bacterial genera; G: Temporal shifts in dominant fungal phyla; H: Temporal shifts in dominant bacterial genera across subculture stages.

经富集传代培养,细菌群落和真菌群落优势的物种发生了显著变化。到了P4期,N组细菌群落的优势门前3为Pseudomonadota、放线菌门(Actinomycetota)和Bacteroidota;L组的优势门未发生变化;H组的优势门为PseudomonadotaActinomycetota和酸杆菌门(Acidobacteriota)。N组细菌群落的优势属前3变为红球菌属(Rhodococcus)、微杆菌属(Microbacterium)和生丝微菌属(Hyphomicrobium)。L组的优势属前3包括Achromobacter、甲基红杆菌属(Methylorubrum)和Candidatus_Nucleicultrix;H组的优势属前3包括AchromobacterHyphomicrobium和肠杆菌属(Enterobacter)。在真菌群落中,N组富集的优势属为FusariumStarmerella;L组的优势属变为Fusarium和副顶孢霉属(Paracremonium);H组的优势属变为Fusarium、盘状菌属(Talaromyces)和木霉属(Trichoderma)。

2.3.4 二甲戊灵胁迫下传代过程中特定微生物类群的响应

采用LEfSe分析评估不同浓度二甲戊灵胁迫下各组样品中的特征类群(图5),LEfSe分析显示,甲基营养菌属(Methyloversatilis)、Pseudoxanthomonas、屈曲杆菌属(Ancylobacter)、甲基红杆菌属(Methylorubrum)、热单胞菌属(Thermomonas)和假黄色细杆菌属(Pseudoflavitalea)为L组中细菌的特征类群;H组中细菌的特征类群为Achromobacter、雷夫松氏菌属(Leifsonia)、Candidatus_Nucleicultrix、Enterobacter和金黄杆菌属(Chryseobacterium)。H组细菌特征类群的相对丰度随二甲戊灵浓度的提高而显著升高。N组细菌特征类群假单胞菌属(Pseudomonas)、RhodococcusNitrosospira和unclassified_Xanthomonadaceae相对丰度随二甲戊灵浓度的升高显著降低。H组真菌特征类群中TalaromycesTrichodermaParacremonium、帚霉属(Scedosporium)和Sarocladium相对丰度随二甲戊灵浓度的提高而升高,unclassified_Fungi、Starmerella相对丰度随二甲戊灵浓度的升高显著降低。

fig

  

fig

  

图5  使用LEfSe分析分析(LDA>4P<0.05)鉴定不同浓度二甲戊灵胁迫下各分组群体间属水平显著差异微生物标志物。A:细菌属水平差异物种LDA得分;B:真菌属水平差异物种LDA得分;C:差异物种在细菌属水平上的丰度变化;D:真菌属水平上差异物种丰度的变化。星号表示差异显著,*:P<0.05;**:P<0.01;***:P<0.001。

Figure 5  Under varying concentrations of pendimethalin stress, microbial markers with significant differences in genus levels among groups were identified using LEfSe analysis (LDA>4, P<0.05). A: LDA score of different species at bacterial genus level; B: LDA score of different species at fungal genus level; C: Abundance changes of different species at the bacterial genus level; D: Changes in the abundance of different species at the fungal genus level. The asterisk indicates a significant difference, *: P<0.05; **: P<0.01; ***: P<0.001

2.4 细菌群落在不同浓度二甲戊灵胁迫下的功能预测

微生物群落结构的改变可能会进一步诱导整个群落代谢功能的变化。使用PICRUSt2来预测所有分组细菌群落的功能。PCoA结果显示,二甲戊灵胁迫下细菌群落功能与其群落β多样性结果相似(图6A)。不同培养阶段细菌群落功能存在显著差异(P=0.001)。P1和P2时期细菌群落功能相似,而到了P3和P4时期,细菌群落功能发生变化,与P1和P2时期明显分开(图6B)。根据PICRUSt2预测,在P1时期,与N组相比,L组和H组的大部分与外源物质降解相关的代谢通路上调(图6C)。到了P4时期,与外源物质降解相关的代谢通路主要富集在N组(图6D)。

fig

  

fig

  

图6  细菌群落在不同浓度二甲戊灵胁迫下的功能预测。A:基于Bray-Curtis距离,不同浓度二甲戊灵胁迫下各分组细菌群落功能的PCoA分析;B:富集培养过程中各时期细菌群落功能基于Bray-Curtis距离的PCoA分析;C:P1时期受二甲戊灵胁迫影响的降解途径的热图;D:P4时期受二甲戊灵胁迫影响的降解途径的热图。

Figure 6  The function of bacterial community under different concentrations of pendimethalin stress. A: Based on the Bray-Curtis distance, PCoA analysis of the function of bacterial community in each group under different concentrations of pendimethalin stress; B: PCoA analysis of bacterial community function at different culture periods of enrichment culture based on Bray-Curtis distance; C: The heat map of the degradation pathway affected by pendimethalin stress in the P1; D: The heat map of the degradation pathway affected by pendimethalin stress in the P4.

2.5 微生物群落共发生网络分析

利用微生物共发生网络来表征二甲戊灵胁迫下富集传代过程中细菌、真菌群落内及群落间的模式信息和相互作用。根据微生物功能预测结果,将4个富集培养时期分为培养前期(P1、P2)和培养后期(P3、P4),构建12个网络(图7图8)。微生物共发生网络分析结果显示,富集前期,N组网络的复杂节点数和边数较多,模块化程度较高,网络较为复杂(表2)。与N组相比,L、H组的节点数和边数减少,模块化程度降低(表2)。L组具有高节点度的关键类群为寡养杆菌属(Stenotrophobacter)、HyphomicrobiumBerkelbacteriaFlavisolibacter等。H组具有高节点度的关键类群为科恩氏菌属(Cohnella)、藤黄色单胞菌属(Luteimonas)、Candidatus_Paracaedibacter、Sphingomonas等。在二甲戊灵胁迫下,不同处理组真菌网络图的节点数和边数变化不大(图7B)。L组具有高节点度的关键类群为FusariumPseudeurotiumThelonectria等;H组具有高节点度的关键类群为PseudeurotiumTrichodermaTalaromyces、沃氏霉属(Wardomyces)等。

fig

图7  基于相关性分析的细菌群落和真菌群落富集前期(P1P2)的共现网络。A:细菌各分组的网络图。B:真菌各分组的网络图。N代表网络节点,L代表网络链接。节点根据不同门水平进行着色,每个节点的大小与节点度成正比。连接的颜色表示节点之间的交互。

Figure 7  The co-occurrence network of bacterial community and fungal community in the early stage of enrichment (P1, P2) based on correlation analysis. A: The network diagram of each group of bacteria; B: The network diagram of each group of fungi. N represents the network node, L represents the network link. Nodes are colored according to different gate levels, and the size of each node is proportional to the node degree. The color of the connection represents the interaction between nodes.

fig

图8  基于相关性分析的细菌群落和真菌群落富集后期(P3P4)的共现网络。A:细菌各分组的网络图。B:真菌各分组的网络图。N代表网络节点,L代表网络链接。节点根据不同门水平进行着色,每个节点的大小与节点度成正比。连接的颜色表示节点之间的交互。

Figure 8  The co-occurrence network of bacterial community and fungal community in the late stage of enrichment (P3, P4) based on correlation analysis. A: The network diagram of each group of bacteria; B: The network diagram of each group of fungi. N represents the network node, L represents the network link. Nodes are colored according to different phylum level, and the size of each node is proportional to the node degree. The color of the connection represents the interaction between nodes.

表2  共现网络的拓扑性质
Table 2  Topological properties of co-occurring networks
NetworkGroupsNodesEdgesDegreeModularityDensity
Bacteria N1-N2 826 2 862 6.930 0.942 0.008
L1-L2 536 2 919 10.892 0.892 0.020
H1-H2 240 1 907 15.892 0.645 0.006
N3-N4 153 143 1.869 0.757 0.012
L3-L4 152 162 2.132 0.912 0.014
H3-H4 79 19 0.481 0.848 0.006
Fungi N1-N2 72 46 1.278 0.811 0.018
L1-L2 69 13 0.377 0.888 0.006
H1-H2 71 31 0.873 0.855 0.012
N3-N4 33 6 0.364 0.667 0.011
L3-L4 36 11 0.611 0.661 0.017
H3-H4 33 1 0.061 0.000 0.002

Filter ASVs (amplicon sequence variants) with a Spearman correlation coefficient (ρ)>0.6 and a P<0.001 at the phylum level between bacteria or fungi, and with a relative abundance>0.01% (for fungi, relative abundance>0.001%) for network construction.

到了富集培养后期,细菌网络中N组与L组的节点数和边数接近,H组的节点数和边数明显低于N组与L组。N、H组网络模块化程度低于L组。富集后期,L组具有高节点度的关键类群为假黄节杆菌属(Pseudoflavitalea)、Achromobacter、unclassified_Alcaligenaceae、unclassified_Paracaedibacteraceae、假节杆菌属(Pseudarthrobacter);H组各个类群的节点度都比较低,节点度较高的关键类群有MethylorubrumPseudoflavitalea、别样棒菌属(Allobaculum)、AchromobacterEnterobacter。富集后期,二甲戊灵胁迫对真菌群落相互作用的影响并不显著,但与前期相比,所有分组的节点数和边数都明显降低(图8)。真菌群落中,N组具有高节点度的关键类群为unclassified_Fungi和Fusarium;L组具有高节点度的关键类群为FusariumParacremonium、葡萄穗霉属(Stachybotrys)、unclassified_Fungi、unclassified_HelotiaceaeArthrographis;H组具有高节点度的关键类群为Fusarium

2.6 富集阶段优势属与二甲戊灵降解率相关性分析

选择属水平相对丰度前20的优势属与二甲戊灵降解进行相关性分析(图9)。结果显示,在低浓度组中MethylorubrumHyphomicrobiumMicrobacterium、红假单胞菌属(Rhodopseudomonas)和Fusarium与二甲戊灵降解呈正相关;在高浓度组中HyphomicrobiumLeifsoniaRhodopseudomonasTalaromycesTrichoderma与二甲戊灵降解呈正相关。

fig

图9  富集阶段优势属与二甲戊灵降解相关性分析

Figure 9  Correlation analysis between dominant genera and pendimethalin degradation during the enrichment phase. *: P<0.05; **: P<0.01.

3 讨论

3.1 二甲戊灵胁迫对细菌群落的影响

与未添加组相比,二甲戊灵的添加降低了细菌群落的α多样性,可能是由于对二甲戊灵敏感的细菌类群受到抑制,导致其数量减少甚至消失。在以往关于四环素(tetracycline, TC)降解菌群富集的研究中也有类似的情况发[

30]。在未添加二甲戊灵的条件下,细菌群落因缺乏碳源和氮源,大部分物种无法维持正常的代谢,物种多样性在培养过程中持续降低。这表明外源营养物质的缺乏也会对微生物群落的多样性产生影响。L组的α多样性总体呈现先下降后恢复的趋势,说明低浓度除草剂胁迫对细菌群落产生了适当的选择压力,富集后期形成了较为稳定的微生物群落。相比之下,H组的α多样性在后期无上升趋势,表明高浓度二甲戊灵胁迫对细菌群落多样性造成的破坏更强且持续时间更久。β多样性分析表明,二甲戊灵浓度和传代次数均为驱动微生物群落结构发生变化的关键因素。在L组细菌特征类群中,已知MethyloversatilisMethylorubrumAncylobacter是甲基营养型微生物,能够利用甲醇等物质作为能源,并在代谢过程中产生多种有机酸等物质,为微生物群落中的其他类群提供营[31-34],同时这些类群也具有污染物降解能力。Pseudoxanthomonas能够降解苯和甲苯。尽管关于ThermomonasPseudoflavitalea在污染物降解中的报道较少,但不排除这些类群可能在降解过程中与其他类群相互作用,共同参与二甲戊灵的降解。在高浓度二甲戊灵胁迫下,AchromobacterLeifsoniaCandidatus_Nucleicultrix、EnterobacterChryseobacterium的相对丰度随二甲戊灵浓度的提高而显著升高。此外,LeifsoniaCandidatus_Nucleicultrix和Enterobacter在H组富集初期的相对丰度接近0。在污染物胁迫下经富集培养后,这些相对丰度由低到高的菌群可能在除草剂降解过程中起关键作[35-37]AchromobacterLeifsoniaEnterobacterChryseobacterium已知具有多种污染物降解能[38-42]Enterobacter中的一些类群含有硝基还原酶基[43-44],其产生的硝基还原酶可能会还原二甲戊灵中的硝基,从而实现污染物的降解。不同浓度二甲戊灵胁迫驱使微生物群落发生改变,L组和H组所富集到的降解微生物存在明显差异,分别形成了各自的特征类群。

3.2 二甲戊灵胁迫对真菌群落的影响

二甲戊灵胁迫对真菌α多样性的影响不如对细菌显著。在大多数培养阶段,未添加二甲戊灵组的α多样性高于添加组,说明二甲戊灵胁迫抑制了部分不耐受的真菌类群。在整个培养阶段Ascomycota始终占据绝对优势地位,所有分组中Fusarium的相对丰度均超过50.0%。在H组代表性真菌标志物中,TalaromycesTrichoderma在富集初期的相对丰度几乎为0,但其相对丰度随二甲戊灵浓度的提高而显著升高。这些真菌类群在先前报道中已被证明具有污染物降解能[

45-46]Fusarium是一种土壤传播的真菌,其中许多与植物的毁灭性真菌病害有关,据报道,Fusarium能够有效矿化高浓度的有毒环境污染物,并降解杀虫剂、除草剂[47-50]Talaromyces存在于陆地和海洋环境的各种生态系统中,Talaromyces stipitatus中含有编码细胞色素P450单加氧酶的tropD[51-53]Trichoderma atroviride T23和Sarocladium terricola同样含有编码细胞色素P450单加氧酶的基[54-56]。细胞色素P450单加氧酶能够催化烷基降解,而烷基降解是二甲戊灵降解的途径之一,因此这些类群可能具有二甲戊灵降解能力。FusariumTrichoderma已被报道具有二甲戊灵降解功能。关于Paracremonium在污染物降解中的报道较少,仅有关于Paracremonium sp. LCB1具有降解木质素能力的报[57]Scedosporium具有对原油生物降解的能[58-59]

3.3 二甲戊灵胁迫下微生物群落功能预测

除草剂胁迫下微生物群落组成发生变化,而群落组成的变化可能会进一步改变整个群落的代谢功能。采用高通量测序技术并结合PICRUSt2功能预测,结果显示不同处理组间细菌群落功能差异显著(P=0.001)。L组样本的离散程度较大,细菌群落功能变异度较高,功能冗余增加。P1与P2时期细菌群落功能更为接近,而P3与P4时期细菌群落功能更为接近。在富集培养前期(P1、P2),与外源污染物降解相关的代谢通路在L组和H组显著上调。例如,苯甲酸盐、氟苯甲酸盐、苯乙烯、乙苯、二甲苯等物质的降解通路在P1、P2时期H组中显著上调,而这些物质所包含的甲基、苯环等官能团与二甲戊灵相似,这些物质降解过程中所发生的反应可能与二甲戊灵降解过程相似。到了富集培养后期(P3、P4),外源物质降解相关的代谢通路在N组明显上调,值得注意的是,N组不具备二甲戊灵作为富集体系的碳源和氮源。整个体系在P3、P4时期呈现出外源营养物质缺乏的状态,但与物质降解相关的代谢通路丰度却明显上调。Wang[

60]报道指出,营养物质缺乏会对细胞的基因表达、细胞周期以及生理和行为产生显著影响。因此,多种外源物质降解通路上调可能意味着长时间外源营养物质缺乏导致群落内大量物种丰度减少甚至消失,极端环境下保留下来的耐饥饿或自养型微生物激活了一系列的应激反应,菌群试图通过细胞内储存的物质或在富集环境中寻求其他可利用的物质,通过对富集环境中外源物质的降解生成可利用的物质来为细菌群落提供营养。因此,代谢通路上调可能是菌群在极端环境下的生存策略,而并非真正的污染物降解能力。

3.4 二甲戊灵胁迫降低了微生物共发生网络的稳定性

外源污染物胁迫会对微生物群落造成一定程度的影[

61-62]。在持续压力下,微生物群落表现出不稳定群落的网络特[63]。细菌和真菌群落均受到了二甲戊灵胁迫的影响。二甲戊灵胁迫导致细菌群落多样性降低,菌群趋向单一化,从而降低了网络的稳定性和模块化程度,且浓度越高对细菌网络稳定性的破坏越严重。N组和H组的模块化程度低于L组。在传代后期,N组因缺乏碳源和氮源导致微生物大量衰减,菌群无法维持正常的代谢活动,从而导致网络结构稳定性逐渐下降。H组中二甲戊灵浓度为L组的10倍,在高浓度除草剂胁迫下,保留下来的大多是高效的降解菌株,细菌群落结构简单,物种间的相互作用减少,模块化程度降低。相比之下,除草剂胁迫对真菌群落相互作用的影响并不显著。

3.5 微生物与二甲戊灵降解率相关性分析

经过富集传代培养,最终得到了2个具有二甲戊灵降解能力的微生物群落L4和H4。L组降解率较高可能是由于微生物多样性较高、物种网络更为复杂,物种间相互交流更密切,从而提高了整体的降解效率。此外,L组采用田间推荐剂量富集,环境压力小于H组,群落整体代谢更为稳定。高浓度除草剂可能会产生底物抑制效应,从而降低微生物污染物降解酶的活性,导致群落降解能力下降。优势属与二甲戊灵降解的相关性分析结果显示,在不同二甲戊灵胁迫下,富集到的与二甲戊灵降解相关的类群存在一定差异。低浓度组中,MethylorubrumHyphomicrobiumMicrobacteriumRhodopseudomonasFusarium与二甲戊灵的降解呈正相关;高浓度组中,HyphomicrobiumLeifsoniaRhodopseudomonasTalaromycesTrichoderma与二甲戊灵降解呈正相关。这些类群大多为广谱降解菌株,具有多种污染物的降解能力。值得注意的是,HyphomicrobiumRhodopseudomonas为两组共有的微生物类群,不受二甲戊灵浓度的扰动,始终与二甲戊灵降解呈显著正相关。这些类群可能具有更强的环境适应能力,在竞争中能迅速占据优势地位,或者与其他微生物类群的相互交流更密切,在群落中占据主导地位。在不同浓度二甲戊灵胁迫下,降解微生物类群组成差异较大,这种差异可能是由于不同微生物类群对二甲戊灵的耐受程度不同所导致的。

4 结论

通过不同浓度二甲戊灵胁迫富集得到了2个具有二甲戊灵降解能力的天然微生物群落。高通量数据分析结果显示:(1) 二甲戊灵胁迫降低了微生物群落多样性,显著改变了微生物群落结构与功能;(2) 富集传代也是改变微生物群落的重要驱动力。不同浓度二甲戊灵对微生物群落产生的选择压力不同。在低浓度处理下,微生物菌群表现出代谢多功能性和更强的环境适应性;而在高浓度二甲戊灵胁迫下,耐受微生物占据主导地位,其余微生物生态位减小,逐渐被淘汰,微生物群落简化,只有高效降解类群被富集。在未添加二甲戊灵的条件下,微生物之间资源竞争加剧,仅保留一些能够耐受极端环境或自养型类群。总之,不同浓度二甲戊灵胁迫导致微生物群落结构改变的原因有所差异。随着富集传代次数的增加,微生物群落经历了一系列演替。在传代过程中,一些微生物类群逐渐适应了环境条件,这些优势类群在群落中占据大部分生态位,其他类群逐渐减少甚至消失,微生物群落逐渐简化,功能冗余减少。二甲戊灵浓度不同以及富集传代次数增加共同导致了微生物群落结构的变化。二甲戊灵降解菌群富集过程不仅是目标微生物定向富集的过程,同时也是物种淘汰的过程。无降解能力或不耐受二甲戊灵的微生物类群在培养过程中逐渐被筛选掉。高浓度除草剂富集最终得到了可降解二甲戊灵的微生物群落,但群落结构简单,稳定性差。低浓度二甲戊灵胁迫下,最终得到的微生物群落可在11 d内完全降解1.2 mg/L的二甲戊灵,且群落多样性丰富,模块化程度高,网络结构复杂,功能更稳定。通过探究二甲戊灵降解菌群富集过程中微生物群落的演替,初步确定了二甲戊灵降解菌群富集过程中的关键微生物。总的来说,本研究揭示了除草剂降解菌群富集过程中微生物群落的演替规律,为二甲戊灵高效微生物降解菌株资源的筛选和合理利用提供了理论依据。

作者贡献声明

焦思雨:研究构思和设计、数据收集和处理、论文撰写和修改;马青云:数据收集和处理、图表设计和排版;孔德龙:协助实验操作与讨论;周义清:协助实验操作;江旭:文献查阅整理与格式校对;张伟:文献查阅整理与格式校对;罗晓霞:样品采集、全文指导与修改;阮志勇:对论文进行整体的指导和修改。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

VIGHI M, MATTHIES M, SOLOMON KR. Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2017, 20(1): 1-21. [百度学术] 

2

胡佳月, 张国强, 韩小强, 杨德松. 二甲戊灵降解细菌的筛选、鉴定及其降解特性研究[J]. 河南农业科学, 2017, 46(7): 64-70. [百度学术] 

HU JY, ZHANG GQ, HAN XQ, YANG DS. Screening, identification and degradation characterization of pendimethalin degrading bacteria[J]. Journal of Henan Agricultural Sciences, 2017, 46(7): 64-70 (in Chinese). [百度学术] 

3

NI HY, YAO L, LI N, CAO Q, DAI C, ZHANG J, HE Q, HE J. Biodegradation of pendimethalin by Bacillus subtilis Y3[J]. Journal of Environmental Sciences, 2016, 41: 121-127. [百度学术] 

4

朱玉永, 赵冰梅, 王林. 新疆棉田杂草发生与防除现状及对策[J]. 中国棉花, 2021, 48(2): 1-7. [百度学术] 

ZHU YY, ZHAO BM, WANG L. Current status of weed occurrence and control in cotton field of Xinjiang and its countermeasures[J]. China Cotton, 2021, 48(2): 1-7 (in Chinese). [百度学术] 

5

李新国, 李慧冬. 气相色谱-质谱法测定二甲戊灵在棉花和土壤中的残留及消解动态[J]. 安徽农业科学, 2020, 48(22): 187-189. [百度学术] 

LI XG, LI HD. Residue and digestion dynamics of pendimethalin in cotton and soil by gas chromatography-mass spectrometry method[J]. Journal of Anhui Agricultural Sciences, 2020, 48(22): 187-189 (in Chinese). [百度学术] 

6

陈莉, 李文华, 王学东, 贾春虹. 二甲戊灵在两种土壤及马铃薯中的残留降解动态[J]. 中国土壤与肥料, 2014(5): 90-94. [百度学术] 

CHEN L, LI WH, WANG XD, JIA CH. Dynamics of residues and degradation of pendimethalin in two typical soil and potato[J]. Soil and Fertilizer Sciences in China, 2014(5): 90-94 (in Chinese). [百度学术] 

7

张楠楠, 纪宇曦, 陈国栋, 肖海兵, 万素梅, 董红强, 贾清华. 二硝基苯胺类除草剂降解菌Pseudomonas sp. L217S4的筛选及降解特性[J]. 农药, 2023, 62(6): 416-421. [百度学术] 

ZHANG NN, JI YX, CHEN GD, XIAO HB, WAN SM, DONG HQ, JIA QH. Screening and degradation characteristics of dinitroaniline herbicide-degrading bacterium Pseudomonas sp. L217S4[J]. Agrochemicals, 2023, 62(6): 416-421 (in Chinese). [百度学术] 

8

MEROLA C, FABRELLO J, MATOZZO V, FAGGIO C, IANNETTA A, TINELLI A, CRESCENZO G, AMORENA M, PERUGINI M. Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages[J]. Science of the Total Environment, 2022, 828: 154414. [百度学术] 

9

DANION M, le FLOCH S, CASTRIC J, LAMOUR F, CABON J, QUENTEL C. Effect of chronic exposure to pendimethalin on the susceptibility of rainbow trout, Oncorhynchus mykiss L., to viral hemorrhagic septicemia virus (VHSV)[J]. Ecotoxicology and Environmental Safety, 2012, 79: 28-34. [百度学术] 

10

GUPTA P, VERMA SK. Impacts of herbicide pendimethalin on sex steroid level, plasma vitellogenin concentration and aromatase activity in teleost Clarias batrachus (Linnaeus)[J]. Environmental Toxicology and Pharmacology, 2020, 75: 103324. [百度学术] 

11

AHMAD MI, ZAFEER MF, JAVED M, AHMAD M. Pendimethalin-induced oxidative stress, DNA damage and activation of anti-inflammatory and apoptotic markers in male rats[J]. Scientific Reports, 2018, 8(1): 17139. [百度学术] 

12

BASHA B, MANZOOR A, ALROWAILI ZA, IHSAN A, SHAKIR I, AL-BURIAHI MS. Ba2-xHoxSr2-yNiyFe12O22 and its composite with MXene: synthesis, characterization and enhanced visible light mediated photocatalytic activity for colored dye and pesticide[J]. RSC Advances, 2023, 13(43): 29944-29958. [百度学术] 

13

SAMIA B, SOCORRO J, DURAND A, QUIVET E, WORTHAM H. Photolytic degradation of commonly used pesticides adsorbed on silica particles[J]. Science of the Total Environment, 2024, 949: 174964. [百度学术] 

14

HAN YJ, TANG ZG, BAO HF, WU DM, DENG XL, GUO GW, YE BC, DAI B. Degradation of pendimethalin by the yeast YC2 and determination of its two main metabolites[J]. RSC Advances, 2019, 9(1): 491-497. [百度学术] 

15

PINTO AP, SERRANO C, PIRES T, MESTRINHO E, DIAS L, TEIXEIRA DM, CALDEIRA AT. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures[J]. Science of the Total Environment, 2012, 435: 402-410. [百度学术] 

16

ZHANG LG, QIU XY, HUANG L, XU JJ, WANG WW, LI Z, XU P, TANG HZ. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater[J]. Journal of Hazardous Materials, 2021, 419: 126524 [百度学术] 

17

KUPPAN N, PADMAN M, MAHADEVA M, SRINIVASAN S, DEVARAJAN R. A comprehensive review of sustainable bioremediation techniques: eco friendly solutions for waste and pollution management[J]. Waste Management Bulletin, 2024, 2(3): 154-171. [百度学术] 

18

邱露, 李昆太, 程新, 彭帅英. 二甲戊灵微生物降解研究进展[J]. 生物灾害科学, 2021, 44(4): 397-403. [百度学术] 

QIU L, LI KT, CHENG X, PENG SY. Progress of microbial degradation of pendimethalin[J]. Biological Disaster Science, 2021, 44(4): 397-403 (in Chinese). [百度学术] 

19

MORE VS, TALLUR PN, NIYONZIMA FN, MORE SS. Enhanced degradation of pendimethalin by immobilized cells of Bacillus lehensis XJU[J]. 3 Biotech, 2015, 5(6): 967-974. [百度学术] 

20

宁国静, 李非里, 黄杰勋. 厌氧下Shewanella marisflavi EP1还原转化二甲戊乐灵[J]. 环境科学与技术, 2015, 38(2): 19-24. [百度学术] 

NING GJ, LI FL, HUANG JX. Reductive biotransformation of pendimethalin by Shewanella marisflavi EP1 under anaerobic conditions[J]. Environmental Science & Technology, 2015, 38(2): 19-24 (in Chinese). [百度学术] 

21

曹敏, 何健, 倪海燕. 二硝基苯胺类除草剂微生物降解研究进展[J]. 微生物学通报, 2020, 47(1): 282-294. [百度学术] 

CAO M, HE J, NI HY. Research progress on microbial degradation of dinitroaniline herbicides[J]. Microbiology China, 2020, 47(1): 282-294 (in Chinese). [百度学术] 

22

PILEGGI M, PILEGGI SAV, SADOWSKY MJ. Herbicide bioremediation: from strains to bacterial communities[J]. Heliyon, 2020, 6(12): e05767. [百度学术] 

23

RUAN ZP, CHEN K, CAO WM, MENG L, YANG BG, XU MJ, XING YW, LI PF, FREILICH S, CHEN C, GAO YZ, JIANG JD, XU XH. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling[J]. Nature Communications, 2024, 15(1): 4694. [百度学术] 

24

LI X, FENG CL, LEI M, LUO K, WANG LY, LIU RG, LI YY, HU YN. Bioremediation of organic/heavy metal contaminants by mixed cultures of microorganisms: a review[J]. Open Chemistry, 2022, 20(1): 793-807. [百度学术] 

25

DONG JR, ZHAO WQ, SHI PY, ZHOU MH, LIU ZY, WANG YC. Soil differentiation and soil comprehensive evaluation of in wild and cultivated Fritillaria pallidiflora Schrenk[J]. Science of the Total Environment, 2023, 872: 162049. [百度学术] 

26

WEN XF, YIN LS, ZHOU ZY, KANG ZY, SUN QL, ZHANG Y, LONG YN, NIE XB, WU ZY, JIANG CB. Microplastics can affect soil properties and chemical speciation of metals in yellow-brown soil[J]. Ecotoxicology and Environmental Safety, 2022, 243: 113958. [百度学术] 

27

LI YQ, LI CL, XIN Y, HUANG T, LIU J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114129. [百度学术] 

28

YANG N, RØDER HL, WICAKSONO WA, WASSERMANN B, RUSSEL J, LI XJ, NESME J, BERG G, SØRENSEN SJ, BURMØLLE M. Interspecific interactions facilitate keystone species in a multispecies biofilm that promotes plant growth[J]. The ISME Journal, 2024, 18(1): wrae012. [百度学术] 

29

THENAPPAN DP, THOMPSON D, JOSHI M, MISHRA AK, JOSHI V. Unraveling the spatio-temporal dynamics of soil and root-associated microbiomes in Texas olive orchards[J]. Scientific Reports, 2024, 14(1): 18214. [百度学术] 

30

CHEN XL, KE YC, ZHU Y, XU MB, CHEN C, XIE SG. Enrichment of tetracycline-degrading bacterial consortia: microbial community succession and degradation characteristics and mechanism[J]. Journal of Hazardous Materials, 2023, 448: 130984. [百度学术] 

31

CAI TM, QIAN LH, CAI S, CHEN LW. Biodegradation of benazolin-ethyl by strain Methyloversatilis sp. Cd-1 isolated from activated sludge[J]. Current Microbiology, 2011, 62(2): 570-577. [百度学术] 

32

HU B, LIDSTROM ME. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production[J]. Biotechnology for Biofuels, 2014, 7(1): 156. [百度学术] 

33

CAOYR, WANG Q, JIN RX, TANG SK, JIANG Y, HE WX, LAI HX, XU LH, JIANG CL. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil[J]. Antonie Van Leeuwenhoek, 2011, 99(3): 629-634. [百度学术] 

34

FIRSOVA J, DORONINA N, LANG E, SPRÖER C, VUILLEUMIER S, TROTSENKO Y. Ancylobacter dichloromethanicus sp. nov.-a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane[J]. Systematic and Applied Microbiology, 2009, 32(4): 227-232. [百度学术] 

35

KIM NK, OH S, LIU WT. Enrichment and characterization of microbial consortia degrading soluble microbial products discharged from anaerobic methanogenic bioreactors[J]. Water Research, 2016, 90: 395-404. [百度学术] 

36

GRAN-SCHEUCH A, FUENTES E, BRAVO DM, JIMÉNEZ JC, PÉREZ-DONOSO JM. Isolation and characterization of phenanthrene degrading bacteria from diesel fuel-contaminated Antarctic soils[J]. Frontiers in Microbiology, 2017, 8: 1634. [百度学术] 

37

WANG HZ, LV YF, BAO JF, CHEN YY, ZHU LD. Petroleum-contaminated soil bioremediation and microbial community succession induced by application of co-pyrolysis biochar amendment: an investigation of performances and mechanisms[J]. Journal of Hazardous Materials, 2024, 466: 133600. [百度学术] 

38

LIANG DH, HU YY. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater[J]. Journal of Hazardous Materials, 2021, 402: 124032. [百度学术] 

39

ZHANG SD, HOU JJ, ZHANG XT, CHENG L, HU WJ, ZHANG QZ. Biochar-assisted degradation of oxytetracycline by Achromobacter denitrificans and underlying mechanisms[J]. Bioresource Technology, 2023, 387: 129673. [百度学术] 

40

PENG XX, ZHENG QH, LIU L, HE YZ, LI TY, JIA XS. Efficient biodegradation of tetrabromobisphenol A by the novel strain Enterobacter sp. T2 with good environmental adaptation: kinetics, pathways and genomic characteristics[J]. Journal of Hazardous Materials, 2022, 429: 128335. [百度学术] 

41

YANG Y, ZHANG Y, LIU C, SU ZQ, ZHAO RZ, ZHOU JT. Low-temperature phenol-degrading microbial agent: construction and mechanism[J]. Archives of Microbiology, 2023, 205(5): 193. [百度学术] 

42

ZHANG YX, XU ZX, CHEN ZJ, WANG GJ. Simultaneous degradation of triazophos, methamidophos and carbofuran pesticides in wastewater using an Enterobacter bacterial bioreactor and analysis of toxicity and biosafety[J]. Chemosphere, 2020, 261: 128054. [百度学术] 

43

LI ZJ, GAO JJ, TIAN YS, WANG B, XU J, FU XY, HAN HJ, WANG LJ, ZHANG WH, WANG Y, DENG YD, GONG ZH, PENG RH, YAO QH. ElNFS1, a nitroreductase gene from Enterobacter ludwigii, confers enhanced detoxification and phytoremediation of 4-nitrobenzaldehyde in rice[J]. Environmental Pollution, 2022, 314: 120292. [百度学术] 

44

PITSAWONG W, HAYNES CA, KODER RL, RODGERS DW, MILLER AF. Mechanism-informed refinement reveals altered substrate-binding mode for catalytically competent nitroreductase[J]. Structure, 2017, 25(7): 978-987.e4. [百度学术] 

45

ZHANG XY, KONG DW, LIU XY, XIE HH, LOU XY, ZENG C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp.[J]. Chemosphere, 2021, 273: 129666. [百度学术] 

46

LEI QQ, ZHONG JF, CHEN SF, WU SY, HUANG YH, GUO P, MISHRA S, BHATT K, CHEN SH. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides[J]. Environmental Research, 2023, 235: 116570. [百度学术] 

47

AHUACTZIN-PÉREZ M, TLECUITL-BERISTAIN S, GARCÍA-DÁVILA J, GONZÁLEZ-PÉREZ M, GUTIÉRREZ-RUÍZ MC, SÁNCHEZ C. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling[J]. Science of the Total Environment, 2016, 566: 1186-1193. [百度学术] 

48

SÁNCHEZ C. Fusarium as a promising fungal genus with potential application in bioremediation for pollutants mitigation: a review[J]. Biotechnology Advances, 2024, 77: 108476. [百度学术] 

49

HILL R, BUGGS RJA, VU DT, GAYA E. Lifestyle transitions in fusarioid fungi are frequent and lack clear genomic signatures[J]. Molecular Biology and Evolution, 2022, 39(4): msac085. [百度学术] 

50

PARK JY, HONG JW, GADD GM. Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide[J]. Chemosphere, 2009, 75(6): 765-771. [百度学术] 

51

DAVISON J, AL FAHAD A, CAI MH, SONG ZS, YEHIA SY, LAZARUS CM, BAILEY AM, SIMPSON TJ, COX RJ. Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7642-7647. [百度学术] 

52

WANGZJ, WANG Z, WANG GQ, ZHANG QZ, WANG Q, WANG WX. New insight into biodegradation mechanism of phenylurea herbicides by cytochrome P450 enzymes: successive N-demethylation mechanism[J]. Environment International, 2023, 182: 108332. [百度学术] 

53

REISKY L, BÜCHSENSCHÜTZ HC, ENGEL J, SONG T, SCHWEDER T, HEHEMANN JH, BORNSCHEUER UT. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases[J]. Nature Chemical Biology, 2018, 14(4): 342-344. [百度学术] 

54

GUO TM, LI CY, ZHAO YM, HUANG XX, LUO ZY, LI HL, LIU AR, AHAMMED GJ, CHEN SC. Cytochrome P450 CYP736A12 is crucial for Trichoderma asperellum-induced alleviation of phoxim phytotoxicity and reduction of pesticide residue in tomato roots[J]. Journal of Hazardous Materials, 2024, 471: 134299. [百度学术] 

55

SUN JN, KARUPPIAH V, LI YQ, PANDIAN S, KUMARAN S, CHEN J. Role of cytochrome P450 genes of Trichoderma atroviride T23 on the resistance and degradation of dichlorvos[J]. Chemosphere, 2022, 290: 133173. [百度学术] 

56

GE HY, PENG ZX, LU DL, YANG ZG, LI HP. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Sarocladium terricola strain PYR-233 isolated from petrochemical contaminated sediment[J]. Journal of Environmental Management, 2024, 363: 121419. [百度学术] 

57

ZHAO B, LIU R, GUO Q, XU G, ZHANG L, SUN P, CAO Y, HU SL. The use of newly isolated fungal cultures for the selective delignification of bamboo culms[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1265420. [百度学术] 

58

ATAKPA EO, ZHOU HH, JIANG LJ, MA YH, LIANG YP, LI YH, ZHANG DD, ZHANG CF. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria[J]. Chemosphere, 2022, 290: 133337. [百度学术] 

59

YUAN XY, ZHANG XY, CHEN XP, KONG DW, LIU XY, SHEN SY. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii[J]. Bioresource Technology, 2018, 264: 190-197. [百度学术] 

60

WANG YC, LV YH, HU XR, LIN YT, CRITTENDEN JC, WANG C. Microbial metabolic flexibility guarantees function resilience in response to starvation disturbance[J]. Bioresource Technology, 2024, 393: 130137. [百度学术] 

61

WU CC, MA YJ, WANG D, SHAN YP, SONG XP, HU HY, REN XL, MA XY, CUI JJ, MA Y. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions[J]. Journal of Hazardous Materials, 2022, 423: 127258. [百度学术] 

62

MAQY, LI QQ, WANG J, PARALES RE, LI L, RUAN ZY. Exposure to three herbicide mixtures influenced maize root-associated microbial community structure, function and the network complexity[J]. Environmental Pollution, 2023, 336: 122393. [百度学术] 

63

HERNANDEZ DJ, DAVID AS, MENGES ES, SEARCY CA, AFKHAMI ME. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 2021, 15(6): 1722-1734. [百度学术]