Vol. 42 No. 2 April 2002

4 株鹅源新城疫病毒融合蛋白基因的克隆及序列分析*

万洪全 吴艳涛 刘秀梵** 张如宽

(扬州大学农业部畜禽传染病学重点开放实验室 扬州 225009)

摘 要测定了 4 株鹅源新城疫病毒(NDV)融合蛋白(F)基因 5 端 1700 核苷酸片段的序列,并由此推导了 F 蛋白氨基酸序列,并对鹅源 NDV 的基因型分类地位进行探讨。结果表明 4 株病毒 F 基因的同源性大于 97%,与 DNV 标准强毒株 F48E8 F 基因的同源性为 86.0%~86.8% F 基因转录起始序列及起始密码子位置与已知 NDV 完全相同;F 蛋白具有和已知 NDV 相似的各种功能区,F 蛋白前体 F0 裂解位点附近的氨基酸序列为 112 RRQKRF 117 ,符合 NDV 强毒株的特征。对 F 基因第 334~1682 位核苷酸之间 3 种限制性内切酶 $Hinf I \setminus Bsto I \setminus Rsa$ I 酶切图谱的分析表明 A 株病毒的基因型与文献报道的 $I \sim IIII$ 型有明显差异。

关键词: 鹅,新城疫病毒,融合蛋白基因,序列,基因型

中图分类号 S85 文献标识码:A 文章编号 10001-6209(2002)02-0208-06

新城疫病毒(Newcastle disease virus, NDV)是一种负单股 RNA 病毒 基因组全长 15186 个核苷酸(nt)编码 6 种结构蛋白,即基质蛋白(M)核衣壳蛋白(NP)磷蛋白(P)大蛋白(L)血凝素—神经氨酸酶蛋白(HN)及融合蛋白(F),其中 HN 和 F 位于病毒囊膜表面,前者负责识别细胞受体并介导病毒对细胞的吸附,后者则参与病毒的穿透、细胞融合和溶血等过程。NDV 可以感染多种禽类,其中在鸡可致严重发病,造成重大的经济损失,现有的文献记载一般认为水禽如鸭、鹅对 NDV 具有较强的抵抗力[1],感染后症状轻微或不表现临诊症状^{2]}。然而自 1997 年以来,我国华东地区部分省市陆续爆发一种被称为"鹅的禽副粘病毒感染"或"鹅副粘病毒病"的传染病^{3,4]},对养鹅业构成较大威胁。本实验室从江苏、浙江和广东等地的患病鹅群分离到数株 NDV,对其生物学特性进行了鉴定,并用这些野毒株和从野毒株中获得的克隆毒株成功地复制了本病,从而证实了 NDV 是本病的一种主要病原。本文报道 4 株鹅源 NDV 毒株 F 基因部分片段的序列测定及分析结果。

1 材料和方法

1.1 毒株

鹅源 NDV 克隆株 JS/1/97/Go、JS/3/98/Go、ZJ/1/00/Go、GD/1/98/Go 由本室保存,为从江苏、浙江和广东3省患病鹅群分离的野毒株经克隆、纯化而得。

1.2 分子生物学试剂

禽白血病病毒反转录酶(AMV)、Taq DNA聚合酶及PGEM-T Easy 载体等分子生物学

作者简介: 万洪全(1970 –) 男 江苏省涟水县人 扬州大学畜牧兽医学院讲师 博士 主要从事动物病毒分子生物学及其致病机理研究。

收稿日期 2001-01-31 修回日期 2001-05-20 © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn

^{*}国家自然科学基金重大项目(39893290)

^{**}通讯作者

试剂购自 Promega 公司或 Boehringer mennheim 公司。

1.3 F基因部分片段的扩增、克隆及测序

根据已发表的 NDV 核酸序列设计 2 对引物,引物对 P1 和 P2 用于扩增 F 基因 5'端约 890nt,引物对 P3 和 P4 用于扩增 F 基因 3'端约 850nt,前一引物对的下游引物 P2 和后一引物对的上游引物 P3 之间有部分交叉;病毒的增殖、纯化、RNA 抽提及 F 基因的扩增、克隆、鉴定均按常规进行,所用质粒载体为 PGEM-T Easy 载体,测序工作由宝生物工程(大连)有限公司完成。引物 P1、P2、P3 及 P4 的序列为;

- P1 5'-GCC CAA TTC CCG AAT CAT CAC GAC GCT TAA-3'
- P2 5'-GTG AAG CTT GAG TCT GTG AGT CGT AC-3'
- P3 5'—CAC CGG TAC CCC TAT TCT GTA CG—3'
- P4 5'—TTA AGC TTG TAG TGG CTC TCA TCT GAT C-3'

1.4 鹅源 NDV F 基因部分序列的分析比较及其基因型分析

利用基因分析软件 DNASTER 对测定的序列及由其推导的氨基酸序列进行分析,比较 鹅源 NDV 之间及其与鸡源 NDV 标准株 F48E8 株 F 基因的核苷酸同源性,并参照 Ballagi 等^[5]的方法对鹅源 NDV 的基因型进行分析。

2 结果和讨论

2.1 鹅源 NDV F 基因部分序列及 F 蛋白氨基酸序列分析

通过 RT-PCR-技术扩增、克隆了 4 株鹅源 NDV F 基因 5'端约 890nt 及 3'端约 850 nt 片段,经测序获得 F 基因 170nt(F 基因全长为 1705nt)片段的序列。对测序结果的分析表明,4 株病毒 F 基因具有相同的转录起始序列—ACGGGTAGAA—,蛋白质翻译的起始密码子 ATG 的位置亦完全相同,即都在 47~49nt;比较从起始密码码子 ATG 到 3'端第 1700nt 间 1654nt 片段的同源性可见,4 株病毒 F 基因的同源性为 97.8%~98.9%,与 F48E8 株 F 基因的同源性为 86.0%~86.8%。在绘制的遗传发生树(图 1)上,4 株病毒靠得很近,形成 1 个分支,而 F48E8 株则形成另 1 分支。

图 1 鹅源 NDV 及其与鸡源 NDV F48E8 株 F 基因的遗传发生关系

Fig. 1 Phylogenetic analysis of NDV strains of goose origin and a standard challenge strain F48E8

由 F 基因推导的氨基酸序列可看出,和已知的 NDV 一样,鹅源 NDV F 蛋白具有 N 末端信号肽区(第 1~25 位氨基酸)、F 蛋白裂解激活区域(第 112~116 位氨基酸)、融合诱导区(第 117~142 位氨基酸)和 C 末端跨膜区(第 500~522 位氨基酸)等重要功能区;F 蛋白一级结构中,含有 6 个可糖基化位点(第 85~87、191~193、366~368、447~449、471~473及 541~543 位氨基酸)和 12 个半胱氨酸残基(第 25、76、199、338、347、362、370、394、399、

401、424、523 位氨基酸 》。4 株病毒信号肽区氨基酸序列相当一致 ,与近年来华东地区流行的鸡源 NDV 的相应序列 ,待发表 ,相近 ,与国外报道的序列⁶¹则存在较大差异(表 1);压蛋白裂解位点附近的序列为¹¹² RRQKRF¹¹⁷ ,符合 NDV 强毒株的特征 ,这一结果与病毒生物学特性鉴定结果(待发表)相吻合。

表 1 19 株 NDV F 蛋白信号肽序列的比较

Table 1 Comparison of N-terminal signal sequenese of F protein among 19 NDV strains

Strain Amino acid sequences [©] of signal peptide (position 1 ~ 25)																									
Strain							Am	ino	acid	sequ	ience	es ^②	of sig	gnal	pept	ide (posi	tion	1 ~ 1	25)					
D26/76	M	G	\mathbf{S}	R	\mathbf{S}	\mathbf{S}	T	R	I	P	V	P	L	M	L	T	V	R	I	M	L	A	L	\mathbf{S}	C
QUE/66																			V						
ULS/67																			V	A					
B1/47					P			K			A		M				I		V	A					
LAS/46					P			K			A		M				I		V	A		V			
BEA/45			P		P			K	N				M						V	A		V			
TEX/48			P		P			K	N		T		M						V	A		V			
AUS/32			P								I						D			A					
MIY/51											A					31	I	W		A				G	
HER/33													P				I	I		V		T			
ITA/45		R								(I	I		A		T			
F48E8			P	K				No	V	91	A									A		A			
FJ/2/99/Ch ^①				K	P	P		7		A						I	T					I			
SH/1/97/Ch				K	P	1			S				P			I	T			T		I			
ZJ/2/97/Ch		1		K	P				\mathbf{S}				P			I	T	Q		Т		I			
JS/1/97/Go				K	P					A						I	T					I			
JS/3/98/Go				K	P					A						I	Т					I		G	
ZJ/1/00/Go				K	L					A						I	Т					I		G	
GD/1/98/Go				K	P					A						I	Т					I			

 $[\]bigcirc$ Ch = strains of chicken origin , Go = strains of goose origin ; \bigcirc The sequences of goose strains were determined in the present study , the remainder were obtained from papers or the data unpublished.

2.2 鹅源 NDV 基因型的分析结果

图 2 鹅源 NDV F 基因第 334~1682mt 间 3 种限制性内切酶的酶切位点分布图谱

Fig. 2 Cleavage sites distributions in the F gene (hwtween 334 ~ 1682nt) of 4 NDV Strains of goose origin

Table 2 Characteristic cleavage sites between the 334 ~ 1682nt part of the F gene of some NDV genotypes and strains

Genotype		Hin	ıf]				Bst	0]	Rsa 1						
or strain ⁽⁾	736 ^②	883	1064	1350	372	752	1116	1260	1478	1601	872	973	1160	1249	1625
Ţ		+		_	-	+	+	-	-(0	+	+	+	-	-	+
Π	-	+/-	-	-	-	_	+	(-1)	0	+/-	+/-	_	-	-	+/-
111	-	+	-	-	-	+/-	1	7-	-	+/-	+	-	_	-	+/-
IV.	-	+	-	-	-	1) +	+/-	-	+/-	+	-	-	-	+
V	-	-	+	- (J- (+	+	+	+	+	_	_	-	-	-
VI a	-	÷	+	(3)		+	+	+	+	+	-	_	-	-	+
VIь	-	+ (OT !) -	_	+	+	+/-	+	-	-	-	+	_	+
VI c	-	+	+	_	-	+	+	+	+	+	-	-	-	_	+
VI a	-	+	+	+	+	_	+	+	-	+	-	+	-	_	+
V I b	-	+	+	-	_	+	+	+	-	+	-	-	-	_	_
VII.	+	+	+	-	-	+	-	+	÷	-	-	+	_	-	+
F48E8	-	+	-	_	-	_	+	<u>.</u>	-	+	+	_	_	_	-
JS/1/97/Go	-	+	+	-	_	+	+	+	-	-	+	+	-	+	+
JS/3/98/Go	-	+	+	_		+	+	+	_	_	-	+	-	+	+
ZJ/1/00/Ga	-	+	+	-	_	+	+	+	-	-	+	÷	+	+	+
GD/1/98/Go	-	+	+	_	_	+	+	+	-	-	+	+	-	-	+

 \bigcirc Go = strains of goose origin; \bigcirc The cleavage sites distributions of F gene of goose strains were determined in the present study, the remainder were obtained from papers.

Ballagi 等^[5] 和 Lominica 等^[7] 曾依据 NDV F 基因第 334~1682nt 间 $Hinf I \setminus Bsto I \setminus Rsa I 3$ 种限制性内切酶酶切图谱的不同,将 NDV 分成 8 种基因型($I \sim W \mathbb{Z}$),每种基因型有其特定的图谱特征;例如 V 型 NDV F 基因在 883nt 处无 Hinf I 位点,872nt 和 1625nt 处无 Rsa I 位点, $V \mathbb{Z}$ NDV F 基因在 683nt 和 872nt 处缺少 Rsa I 位点,但在 $V \mathbb{Z}$ NDV 缺

表 3 I~ W型 NDV 及部分 NDV 分离株 F蛋白 N端 27 个高变位点的氨基酸残基比较

Table 3	Amino acid	sequenses of 27	residue sites	in the	variable	portion	of the F	protein
---------	------------	-----------------	---------------	--------	----------	---------	----------	---------

Genotype	4 ^A	5	16	17	19	22	23	24	28	33	51	65	81	86	91	93	98	104	107	112	113	114	115	116	117	121	124
or																											
strain	\mathbf{R}^{B}	\mathbf{S}	T	I	V	A	L	S	P	D	N	L	L	R	L	T	\mathbf{S}	E	T	R	R	Q	K	R	F	I	G
I(Le) ^c			V																	G	K		G		L		
[[(Le)						V														G			G		L		
(Me/Ve)		P		V		V																					
Ш					I			G	L														R				S
${ m IV}$			I		I	T			L														R				S
V	K	P	I	T	I	I			L									G									\mathbf{S}
VI	K	P	I	T	I	I			L									G	\mathbf{S}								\mathbf{S}
VII a	K	P	I	T	I	I			L									G	\mathbf{S}							V	\mathbf{S}
Шь	K	P	I	T	V	I			\mathbf{S}									G					R			V	\mathbf{S}
₩ early ^D	K		I	T	T	I			L									G				R				V	\mathbf{S}
₩ recent	K		V	T	I	I			L													R				L	\mathbf{S}
F48E8	K		I	V	I				L														R				\mathbf{S}
FJ/1/99/Ch	K	P	I	T	I	I			L									G	\mathbf{S}) \					V	\mathbf{S}
SH/1/97/Ch	K	P	I	T	I	I			L							\mathbf{S}		G	S								\mathbf{S}
ZJ/1/97/Ch	K	P	I	T	I	I			L							S		G	S								S
JS/1/97/Go	K	P	I	T	I	I			L					G		0		G	\mathbf{S}							V	\mathbf{S}
JS/3/98/Go	K	P	I	T	I	I						<						G	\mathbf{S}							V	\mathbf{S}
ZJ/1/00/Go	K	L	I	T	I	I												G	\mathbf{S}							V	S
GD/1/98/Go	K	P	I	T	I	I			L									G	\mathbf{S}							V	S

A 'residue site'; B 'amino acid residues shared by most strains of genotype $I \sim VIII$; C 'Le = lentogenic strain, Me = mesogenic strain, Ve = velogenic strain; D 'early = early strains, recent = recent strains

参考文献

- [1] 殷 震,刘景华.动物病毒学.第2版.北京,科学出版社,1997.743~748.
- [2] Calnek B W. Diseases of poultry. Tenth edition. Ames , Iowa , USA : Jowa state university press , 1998. 541 ~ 550.
- [3] 辛朝安 任 涛 罗开键 等.养禽与禽病防治,1997,16(1)5.
- [4] 王永坤,田慧芳,周继宏,等.江苏农学院学报,1998,19(1)59~62.
- [5] Ballagi A, Wehmann E, Herczeg J, et al. Archives of Virology, 1996, 141 243 ~ 162.
- [6] Tetsuya T , Takemasa S , Hideki H , et al . Virology , 1989 ,169 273 ~ 282 .
- [7] Lomniczi B , Wehmann E , Herczeg J , et al . Archives of virology , 1998 ,143 49 ~ 64.
- [8] Herczeg J , Wehmann E , Bragg R R , et al . Archives of Virology , 1999 ,144 2087 ~ 2099 .

Sequence Analysis of the Fusion(F) Protein Genes of Four Newcastle Disease Virus Strains Causing Clinical Disease in Geese*

Wan Hongquan Wu Yantao Liu Xiufan Zhang Rukuan (College of Animal Science and Veterinary Medicine, Yangzhou University, Yangzhou 225009, China)

Abstract: Four strains of Newcastle disease virus (NDV), which have proven to be responsible for the disease outbreaks in south and east China reigons called "geese paramyxovirus infection" or " avian paramyxovirus infection of geese", were examined for the features of their fusion (F) protein genes. A 1700 nucleotides (nt) fragment of the F gene (1705nt) of each of the 4 strains were sequenced, the results revealed that the NDV strains of goose origin share common transcriptional sequence and translational start position with the hitherto reported NDV, the F gene homologies among the 4 strains were $97.8\% \sim 98.9\%$, while the corresponding homologies between these strains and the standard challenge strain F48E8 were only 86.0 ~ 86.8%. The deduced amino acid sequences near cleavage site of FO proteins showed a 112 RRQKR/F117 motif, comforming well with that of the virulent strains. The cleavage sites distribution of 3 restriction enzymes (Hinf [, Bsto [,Rsa [) in 75% region of the F gene between 334 ~ 1682nt), which is used to group NDV strains into different genotypes, were also analysed with the aid of computer program MegAlign, it is very interesting to find that the 4 strains showed a distinct distribution pattern from all the genotypes so far reported genotype $I \sim VII$), characterized by the simultaneously presence of a Bst o I site at 752nt and two Rsa I sites at 872nt and 973nt. Additionally ,3 out of the 4 strains , despite their different geographical locations, showed a novel Rsa I site at position 1249 which is absent in all of the other genotypes. The 4 NDV strains of goose origin were essentially virulent ones, and probably belong to a new genotype.

Key words: Geese , Newcastle disease virus , F protein gene , Sequence , Genotype

^{*} Major Project of National Natural Science Foundation of China 39893290)