嗜盐古菌启动子 DNA 片段的功能检测

黄玉屏^{1,3} 刘 鹏² 刘 义² 沈韫芬³ 沈 萍^{1*}

(武汉大学¹生命科学学院²化学与分子科学学院 武汉 430072)

(3中国科学院水生生物研究所 武汉 430072)

摘要将来源于嗜盐古菌染色体 DNA 的启动子片段 RM07 或 RM13 插入到启动子探针载体 pYLZ-2 的报告基因 lacZ 之前 通过 β-半乳糖苷酶酶活性的检测 ,进一步确证 RM07 和 RM13 片段在大肠杆菌(*Escherichia coli*)中的启动 功能。同时用微量热技术检测了大肠杆菌 DH5α 及其重组菌株在 LB 培养基中 37℃生长过程的热输出功率。T2 (pYLZ-2), TEOT(pYL726), TEO7-X(pYL702), TE131(pYL131)和 TE13X(pYL132)菌株的生长速率分别比大肠杆菌 DH5α 降低了 6.5%、11%、41.1%、47.5%和 42.7%。当启动子启动了基因表达时,菌株的生长速率显著降低,热力学参数 与酶活性检测结果有较好的一致性。微量热结果表明基因的表达比质粒 DNA 的复制过程需要消耗更多的能量, 对细菌的生理代谢有较大改变。微量热技术为检测基因的表达和转录调控提供了新的方法和思路。

关键词 启动子 微量热技术 沿半乳糖苷酶基因 嗜盐古菌

中图分类号:078 文献标识码:A 文章编号 10001-6209(2006)02-0200-05

启动子是 DNA 链上指导 RNA 聚合酶结合并起 始 mRNA 合成的 DNA 序列 ,是控制基因表达的重要 部位¹¹。没有启动子 ,DNA 就不能进行有效的转 录。细菌基因的启动子结构一般为-35(TTGAC)和 -10(TATAAT) 两个保守区间的距离为 17 个碱基左 右。古生菌的启动子结构与真核生物 RNA 聚合酶 II 型启动子相似, TATA 框是其主要的基本元件, 嗜 盐古菌启动子的一致序列为-29TTTWWW-24(W=A 或T),它决定了启动子活性的强弱,是嗜盐古菌启 动子元件中的重要功能区[2,3]。一般检测启动子的 功能是在启动子之后紧接着一种易检测产物的报告 基因 根据报告基因产物的量来判断启动子的强弱。 如 β -半乳糖苷酶(β -galactosidase)、氯霉素乙酰转移 酶 Chloramphenicol acetyltransferase)和 β-葡糖醛酸糖 苷酶(β-glucuronidase)等这些可分析酶活性的编码基 因用作报告基因已有多年了,还有一些抗性基因由 于其直观性及简便性,也广泛用作选择标记。本研 究室从嗜盐古菌染色体上分离到许多在大肠杆菌中 具有启动子功能的 DNA 片段^[4],本研究将其中的 RM07 和 RM13 启动子 DNA 片段插入到 lacZ 报告基 因前 通过 β-半乳糖苷酶酶活性的测定 确定这两个 DNA 片段的启动功能。

利用现代微量热技术可以连续、准确地检测和

记录生物体系代谢过程的热效应。微量热技术已经 广泛用于微生物学研究,例如用于研究酵母代谢、食 品中微生物活性的检测等^[56]。因为现代微量热计 能检测低于 1µw 热功率,几乎可以测量所有过程 (物理、化学、生物)产生的热,所以微量热技术是研 究微生物活性的灵敏技术^[7]。启动子是影响外源基 因表达效率的关键因素,而外源基因的表达往往会 影响宿主细胞的生理和代谢^[1]。本研究将微量热技 术应用于所分离的启动子 DNA 片段的功能检测是 一个新的探索,为启动子活性检测提供了新的方法 和思路。

1 材料和方法

1.1 材料

1.1.1 菌株和质粒:大肠杆菌(*Escherichia coli*) DH5α,T1,T2,TE07,质粒pRM07和pRM13均由本实 验室保存。启动子探针载体pYLZ-2 由德国 Bandlow 教授惠赠^[8]。

1.1.2 试剂和仪器:T4 DNA 连接酶, EcoR I、 BamHI、Hind III 为 TaKaRa 公司产品,琼脂糖为 Spanish 公司产品,凝胶中 DNA 回收纯化试剂盒为中 鼎生物技术有限公司产品,酵母浸出粉和胰蛋白胨 为 Oxoid 公司产品,其它试剂为国产分析纯。采用

基金项目 科技部 973 专项基金(2004CB719603) 国家自然科学基金(30470033) 中国博士后科学基金(2003034506)

^{*} 通讯作者。Tel: 86-27-68754533 ;Fax 86-27-68754833 ;E-mail: pingshen@whu.edu.cn

作者简介 黄玉屏 (1968 -),女,湖北人,副教授,博士,从事微生物遗传学研究。E-mail: yphuang86@ yahoo.com.cn

瑞典 LKB-2277 生物活性检测仪^[9]进行热谱测定。

1.2 重组质粒的构建

pYLZ-2 在 LacZ 报告基因前有 EcoR [、Hind Ⅲ 和 BamH | 酶切位点用于启动子的克隆,分别以质 粒 pRM07 和 pRM13 为模板 PCR 扩增 RM07 片段及 RM13 片段。RM07 扩增引物为 PHU07:5'-CG GAATTCGATCAGTCCCGTTCAC-3' (EcoR[), PHD07: 5'-AGGGATCCATAGCCGCCAACATCAAC-3' (BamH[), 以 PHU13:5'-GGGAATTCAGCGCCGCTGACTGC-3'和 PHD131: 5'-GTCGGATCCGGGATAACGATGGACATGT-3'及 PHU13 和 PHD132:5'-GACGGATCCATACGACGA CGTTAT-3'这两对引物分别 PCR 扩增得到 RM13-1 和 RM13 片段。PCR 扩增的反应条件为起始 300s, 94℃ 45s, 57℃ 45s, 72℃ 80s, 延迟 300s, 35 次循 环。扩增出的片段用 EcoR | 和 BamH | 两种限制 性内切酶进行双酶切,回收后再与 pYLZ-2 载体 EcoR | 和 BamH | 双切线性片段连接 转化 E. coli DH5α,得到的重组质粒分别是 pYL702、pYL131 和 pYL132 直组子分别为 TE07-2、TE131 和 TE132。

1.3 DNA 操作技术

质粒 DNA 的提取、酶切、连接、转化等技术均参照文献 10 进行。

1.4 β-半乳糖苷酶活性测定

大肠杆菌在有安苄青霉素(终浓度 100mg/mL) 的 LB 培养基中 37℃培养过夜,然后按 1% 接种量接 入三角瓶中,培养至对数生长中晚期,取出测定其 β-半乳糖苷酶活性,测定方法参照文献 11 进行。按 以下公式计算 β-半乳糖苷酶的活性(单位 U):

$$U = \frac{1000 \times [(OD_{420}) - (1.75 \times OD_{550})]}{t \times v \times OD_{600}}$$

公式中,t = 反应时间; v = 用作检测活性的菌悬液体积(mL); OD₆₀₀ = 检测开始时细胞的密度; OD₄₂₀ = 邻-硝基苯酚的光吸收值和细胞碎片的光散射之和; OD₅₅₀ = 细胞碎片的光散射值。

1.5 细菌热输出功率的检测

采用停流法进行检测。整个流通系统经清洗、 消毒且获得稳定的基线后,用 LKB2132 蠕动泵将菌 液泵入量热计中,当整个流通池(约 0.6mL)中充满 菌液后停泵,并关闭检测系统的进出口管道。 LKB2210 记录仪自动连续跟踪记录流通池内细菌生 长的产热曲线,当记录笔返回基线后,实验结束。其 中一份 LB 培养基中加入异丙基-β-D-硫代半乳糖苷 (IPTG),终浓度为 1mmol/L。细菌接种量为 1 × 10⁶ 个细胞/mL,温度为 37℃。

2 结果

2.1 重组菌株的 β-半乳糖甘酶酶活性的检测

以氯霉素抗性检测的结果表明 RM07 片段和 RM13 片段在大肠杆菌中都具有较强的启动功能^[4], 为了进一步确证这两个 DNA 片段的功能 将它们克 隆到 pYLZ-2 启动子探针载体(7955bp)的报告基因 LacZ上游,通过检测 LacZ表达产物 β-半乳糖甘酶 的活性大小即可检测待研究启动子活性的大小。 pYLZ-2 载体 LacZ 基因前不仅没有启动子,而且在 其 N 端还缺少 8 个氨基酸 ,所以 Lac Z 基因需要外源 的 ATG 才能开始翻译^[8]。将来自盐生盐杆菌染色 体的 DNA 片段 RM07 和 RM13 分别插入 LacZ 基因 前检测它们的启动功能时,需要加入ATG 起始密码 子 并考虑阅读框的正确性。重组质粒 pYL726 为 RM07 片段(492bp,GenBank No.: AF245452)通过 HindⅢ酶切直接克隆到 pYLZ-2 载体上,重组子为 TE07^[4] 起始密码子 ATG 位于 443bp 处,在 LacZ 基 因前有 72 个碱基。重组质粒 pYL702 起始密码子位 于 PCR 引物中,在 LacZ 前融合仅有 21 个碱基。 RM13 片段(1003bp, GenBank No: AY819789)中有两 对典型的细菌启动子保守序列,分别位于107bp~ 139bp 和 899bp~930bp 区域。第一对引物 PCR 扩增 片段 RM13-1 大小约为 700bp ,第二对引物扩增片段 RM13 大小约为 1000bp, PCR 引物中均有起始密码 子。重组质粒中细菌启动子保守序列与推测起始密 码子、LacZ基因之间的距离见图 1。

图 1 重组质粒中推测的启动区域(promoter), 起始密码 子(ATG)与 *lac* Z 之间距离的示意图

Fig. 1 Schematic representation of the distance among promoter consensus sequences , putative initiator codon (ATG) and *lacZ* gene in recombinant plasmids. The elements are represented by rectangular boxes from the 5' to the 3' end (left to right), with their names in their respective boxes. The lines joining the boxes represent the inter-element regions , with their length , in base pairs , shown underneath.

pRM07 的条件实验结果表明当培养基中加入葡 萄糖或培养基的 NaCl 浓度和 pH 值变化时,氯霉素 ©中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.d

抗性强度也会随之变化^[12]。异丙基-β-D-硫代半乳 糖苷(IPTG)是乳糖的类似物,可以诱导乳糖操纵子 的表达,但是它对细胞又是有毒的^[13]。当培养基中 加入微量的 IPTC(1mmol/L)后检测菌株的β-半乳糖 甘酶的活性及其生长变化。

LacZ 基因表达产生 β-半乳糖苷酶 β-半乳糖苷 酶可分解 X-Gal ,使生长在含 X-Gal 平板上的菌落呈 蓝色。在加有 X-Gal 的 LB 平板上 ,T2 菌落呈白色 , TE07 菌落呈淡蓝色 ,其余重组子菌落呈蓝色。检测 到的 β-半乳糖苷酶的活性见表 1。

表1 大肠杆菌转化子的 β-半乳糖苷酶活性

Table 1 The β -galactosidase activity of E. coli strains							
Transformant	Plasmid -	β-galactosidase activity/U					
		+ IPTG	– IPTG				
TE07-2	pYL702	0.441 ± 0.02	0.346 ± 0.01				
TE07	pYL726	0.043 ± 0.001	0.036 ± 0.003				
TE131	pYL131	0.086 ± 0.005	0.073 ± 0.005				
TE132	pYL132	0.743 ± 0.011	0.651 ± 0.03				
T1	pUC18	17.75 ± 0.10	1.19 ± 0.07				
T2	pYLZ-2	< 0.005	< 0.005				

Each value represents the mean of three assays. + IPTG :IPTG was added in the growth medium ; - IPTG : IPTG was not added in the growth medium.

2.2 大肠杆菌菌株生长代谢的热输出功率的检测 在 37℃下,用停流法测定了以上大肠杆菌菌株 生长代谢的热功率输出曲线(图 2)。图中曲线 1 为

LB 培养基中未加 IPTG,曲线 2 为 LB 培养基中加入 1mmol/L IPTG 的菌株生长代谢热功率输出曲线。

大量研究表明细菌代谢热谱图与细菌生长 4 个 过程相对应^[9,14~16]。热谱图中第一个峰呈指数增加 的时段对应细菌生长的指数期,细菌生长代谢热谱 曲线的指数生长期产热功率与培养时间之间符合 $\ln P_t = \ln P_0 + k \cdot t$ 的线性方程^[9],式中 t 为指数生长 期开始后的某一时刻, $P_t 和 P_0$ 分别为指数生长期 t 时刻和开始的热输出功率, k 为生长速率常数。在 热谱曲线上取一系列指数生长期的 $P_t - t$ 数据,代 入上式中 线性拟合得到了大肠杆菌的生长速率常 数 $k(= 2)_{0}$ 所有结果在相同的实验条件下都有较 好的相关性及重现性。同时,由 $t_{c} = (\ln 2) k$ 可以 得到各种大肠杆菌菌株的传代时间(表 2)。

图 2 中生长代谢热功率输出曲线反映了 6 株大 肠杆菌在相同的生长条件下生长代谢活性的变化, 大肠杆菌 DH5α 无论是否携带质粒,其热谱图上的 峰型和峰的个数都是相同的。与 DH5α 菌株相比, T2 菌株的生长速率常数仅降低 6.5%,在 LacZ 基因 前插入启动子片段后,重组子 TE07、TE07-2、TE131 和 TE132 生长速率分别降低了 11%、41.1%、47.5% 和 42.7%,最大热输出功率显著降低,对数生长期 热输出总功率则显著增加。

Fig.2 Growth power-time curves of E. coli DH5 α and its recombinants cultured in LB liquid medium. A : E. coli DH5 α ; B : E. coli T2 ; C : E. coli TE07 ; D : E. coli TE07-2 ; E : E. coli TE131 ; F : E. coli TE132.

			表 2 5	大肠杆菌的热动	动力学参数						
Table 2 Thermokinetic parameters of different E. coli strains											
$E.\ coli$	Medium	Plasmid	k/\min^{-1}	R	$t_{\rm G}/{\rm min}$	$t_{\rm max}/{\rm min}^{-1}$	$P_m/\mu w$	Q_{log}/J			
$DH5\alpha$	LB		0.03779	0.99787	18.3	140	39.02	69.14			
	LB + IPTG		0.03721	0.99742	18.6	129	39.36	71.84			
T2	LB	pYLZ-2	0.03534	0.99815	19.6	148	38.01	71.81			
	LB + IPTG		0.03465	0.9988	20.0	137	38.52	70.57			
TE07	LB	pYL726	0.03363	0.99823	20.6	157	35.85	72.12			
	LB + IPTG		0.02657	0.9995	26.1	183	37.69	82.41			
TE07-2	LB	pYL702	0.02226	0.99968	31.1	204	29.00	76.74			
	LB + IPTG		0.02127	0.99878	32.6	187	33.68	89.72			
TE131	LB	pYL131	0.01983	0.99925	35.0	261	26.26	80.71			
	LB + IPTG		0.01981	0.99923	35.0	223	29.62	89.52			
TE132	LB	pYL132	0.02167	0.99936	32.0	209	31.54	83.30			
	I B + IPTC		0.0191	0 99873	36.3	201	32 55	90.42			

k growth rate constant ; R correlation ; t_G generation time ; P_m imaximum thermal power ; t_{max} the time corresponding to P_m ; Q_{log} :total thermal power in the log growth period.

讨论 3

β-半乳糖苷酶活性检测结果表明 RM07 和 RM13 片段在大肠杆菌 DH5α 中是有启动功能的,并且 TE132 比 TE07-2 菌株的酶活性高,可能 RM13 片段 比 RM07 片段启动活性强。菌株 TE07 与 TE07-2 携 带质粒的 LacZ 前插入的启动子均为 RM07 片段,但 是前者的 β-半乳糖苷酶酶活性远低于后者 ,分析序 列发现 pYL726 中 LacZ 基因与 ATG 之间有两个 TAG 弱终止密码子,可能因此影响了 LacZ 的表达。

已有的研究结果表明细菌热谱图上的产热峰是 细菌代谢过程的反映。相同生长条件下6株大肠杆 菌的峰型是相同的,提示大肠杆菌 DH5α携带质粒 对其自身的代谢过程和代谢机制影响较小。虽然菌 株 TE07 与 TE07-2 携带质粒大小相同,但是前者生 长速率远高于后者,可见热力学参数与酶活性检测 结果有较好的一致性,即酶活性越高,生长速率越 低。从热力学参数推测 RM13-1 片段启动活性应该 比 RM13 片段强,但是菌株 TE131 比 TE132 的 β-半 乳糖苷酶酶活性低很多,原因可能是 RM13-1 片段 107bp~139bp区域的启动子保守序列启动 LacZ表 达后,以其下游 59bp 处 ATG 作为起始密码子,而不 是用 PCR 引物中的 ATG ,那么在 LacZ 前就融合有 170 个氨基酸,而质粒 pYL132 的 LacZ 基因则可能 是由位于 RM13 片段 899bp~930bp 区域的这对启动 子保守序列启动,LacZ前只融合有3个氨基酸(图 1)。因此菌株 TE131 的 LacZ N-末端融合的这 170 个氨基酸可能会导致其酶活性大大降低 这些推测 需要用分子生物学方法进一步分析和验证。

从表 1 可见在培养基中加入 IPTG 后,所有 β-半

乳糖苷酶阳性的菌株酶活性均有所增加,图2和表 2的结果表明微量的 IPTG 对大肠杆菌的生长有刺 激作用,可见检测启动子活性时一定要在相同的条 件下进行检测和比较。图 2 中培养基加入 IPTG 后 在 500min 左右的时间处均多了一个产热峰。这一 现象表明微量热技术虽然是一种灵敏的检测技术, 能提示一些用常规生物学方法难以检测到的现象, 但是新的现象仍需要生物学方法揭示其机理。

总之 β-半乳糖苷酶酶活性的分析和微量热技 术进一步确证了来源于嗜盐古生菌染色体 DNA 的 启动子片段 RM07 和 RM13 的启动功能,其中 RM13 的前 700 碱基对(RM13-1 片段)在大肠杆菌中可能 也具有较高的启动活性。研究结果表明基因的表达 比质粒 DNA 的复制过程需要消耗更多的能量,对细 菌的生理代谢有较大改变。如果将微量热技术和生 物学方法结合 那么这一灵敏快捷的技术将会在研 究启动子调控、确定转录起始位点及基因表达等方 面起重要作用。

> 参 考 文 献

- [1] Dale JW. Regulation of Gene expression. In :Molecular Genetics of Bacteria. 3rd ed. London : John wiley & Sons , 1998.
- [2] Soppa J. Normalized nucleotide frequencies allow the definition of archaeal promoter elements for different archaeal groups and reveal base-specific TFB contacts upstream of the TATA box. Molecular Microbiology, 1999, 31: 1589-1601.
- [3] Geiduschek EP, Ouhammouch M. Archaeal transcription and its regulators. Molecular Microbiology, 2005, 56(6): 1397 - 1407.
- [4] 黄玉屏,段珍红,熊 音,等.盐生盐杆菌启动子 DNA 片段 的特征序列及其功能分析,武汉大学学报(理学版),2001, 47(4):456-462. © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn

- [5] Nilsson A, Larsson C, Gustafsson L. Catabolic capacity of Saccharomyces cerevisiae in relation to the physiological state and maintenance requirement. Thermochim Acta, 1995, 250: 233 – 245.
- [6] Nunomura K, Ki-Sook K, Fujita T. Calorimetric studies of microbial activities in relation to the water content of food. J Gen Appl Microbiol, 1986, 32:361-365.
- [7] Gustafsson L. Microbiological calorimetry. Thermochim Acta , 1991, 193: 145 – 171.
- [8] Hermann H, Hacker U, Bandlow W, et al. pYLZ vectors: Saccharomyces cerevisiae/Escherichia coli shuttle plasmids to analyze promoters. Gene ,1992, 119:137 – 141.
- [9] Xie CL, Tang HK, Song ZH, et al. Microcalorimetric study of bacterial growth. *Thermochim Acta*, 1988, 123:33-41.
- [10] Sambrook J, Fritsch EF, Maniatis T, et al. Molecular Cloning, A Laboratory Manual. New York : Cold Spring Harbor Press, 1989.
- [11] Ausubel FM, Brent R, Kingston RE, et al. 精编分子生物学实

验指南(第四版). 马学军,舒跃龙,等译. 北京:科学出版 社, 2005.

- [12] 王 茵,黄玉屏,段珍红,等.盐生盐杆菌 DNA 片段 RM07 的 – 35、–10 区缺失分析.微生物学通报,2004,**31**(1)59– 74.
- [13] Figge J, Wright C, Collins CJ, et al. Stringent regulation of stably integrated chloramphenicol acetyltransferase genes by E. coli lac repressor in monkey cells. Cell, 1988, 52:713-722.
- [14] Belaich A, Belaich JP. Microcalorimetric study of the anaerobic growth of *Escherichia coli* growth thermograms in a synthetic medium. *J Bacterial*, 1976, **125**:14-18.
- [15] Ralph H, Christina M, Ingelf L. Kinetic investigation of microbial metabolism. *Thermochimica Acta*, 1994, 239:17-32.
- [16] Ruming Z, Yi L, Zhixiong X, et al. Microcalorimetric study of the action of Ce(III) ions on the growth of E. coli. Biol Trace Elem Res, 2002, 86(2):167-175.

Function of promoter DNA fragments from halophilic archaea in Escherichia coli

HUANG Yu-ping^{1,3}, LIU Peng², LIU Yi², SHEN Yun-fen³, SHEN Ping^{1,*}

(¹ College of Life Science , ² College of Chemistry and Molecular , Wuhan University , Wuhan 430072 , China)

(³ Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan 430072 , China)

Abstract RM07 and RM13 DNA fragments could function as promoter in Escherichia coli , which were isolated from an archaeon Halobacterium halobium R1. In the present study , promoter activities of these two fragments were confirmed by β -galactosidase activity analysis and microcalorimetric studies. They were cloned into promoter-probe vector pYLZ-2 respectively. Four recombinant strains TE07 , TE07-2 , TE131 and TE132 were obtained , and all fragments were found to be active in E. coli DH5 α . The β -galactosidase activity of TE132 was higher than that of TE07-2. Both TE07 and TE131 had weak β -galactosidase activity. Then the heat output of E. coli DH5 α and its transformants had been detected by a microcalorimetric method at 37 °C. Compared with E. coli DH5 α , the growth rate constant of E. coli T2 (pYLZ-2), TE07 , TE07-2 , TE131 and TE132 strain was reduced 6.5% ,11% ,41.1% , 47.5% and 42.7% respectively. When IPTG was added to LB medium , β -galactosidase activity and heat output had been enhanced slightly in all strains. The results suggested that there was close correspondence between promoter activity and microcalorimetric results , and the heat output of growth was mainly affected by gene expression in E. coli. The higher β -galactosidase activity of E. coli was , the lower its growth rate constant was. At the meantime , Microcalorimetric studies implied that 700bps of RM13 (RM13-1) fragment would have stronger promoter activity than RM13. Microcalorimetry may be used as a new approach for analyzing the regulation of foreign gene expression.

Keywords : Promoter ; Microcalorimetric method ; LacZ ; Halophilic archaea

Foundation item : Key Project of Chinese National Programs for Fundamental Research and Development (2004CB719603); National Natural Science Foundation of China (30470033); China Postdoctoral Science Foundation (2003034506)

^{*} Corresponding author. Tel 86-27-68754533 ;Fax 86-27-68754833 ;E-mail pingshen@whu.edu.cn

Received :1 September 2005/Accepted :28 October 2005/Revised :13 December 2005