微生物学报 Acta Microbiologica Sinica 2017, 57(4): 560-570 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20160336

Research Article

23 株不同地理来源嗜酸硫杆菌的系统发育及其遗传差异

蔺朋武¹,刘敏瑞²,张敏²,王爱英¹,倪永清^{2*}

¹石河子大学生命科学学院,新疆石河子 832000 ²石河子大学食品学院,新疆石河子 832000

摘要:【目的】研究不同地理来源嗜酸硫杆菌的系统发育及其遗传差异,以及基因指纹图谱技术聚类与嗜酸 硫杆菌地理来源的相关性。【方法】采用 16S-23S rRNA 间隔区(ITS)序列建立系统发育树,并结合 ERIC 和 BOXAIR 两种引物进行 rep-PCR,以及 rus 基因扩增,对不同地理来源嗜酸硫杆菌进行分析。【结果】分离自 不同样点的 23 株嗜酸硫杆菌遗传差异显著,依据 ITS 序列系统发育树被划分为 5 个大类群,与 rep-PCR 指纹 图谱的分类结果较为接近,其中 Acidithiobacillus ferrooxidans 在 ITS 系统发育和 BOXAIR-PCR 指纹聚类分析 中被划分为 2 个类群,但在 ERIC-PCR 中归为 1 个类群,rus 基因分组中,在系统发育和聚类分析中处于同一 类群的菌株拥有不同类型的 rus 基因,说明嗜酸硫杆菌的亚铁氧化途径与系统发育类群无明显相关性;ITS 基 因拥有区分近缘种或亚种的能力,且 BOXAIR-PCR 的分辨能力较强,非常适于嗜酸硫杆菌的遗传差异分析。

关键词:嗜酸硫杆菌, ITS 序列, rep-PCR, rus 基因,遗传差异

近些年来,随着生物冶金技术的迅猛发展, 以及人们环保意识的不断增强,越来越多的嗜酸 微生物被广泛用于各种低品位矿石的处理^[1],同化 学冶金方法相比,生物冶金环境污染小,能耗低, 浸矿成本低,具有很大潜力的应用价值。研究发 现,嗜酸硫杆菌属包含 6 个种,分别是 Acidithiobacillus ferrooxidans 、 Acidithiobacillus ferridurans 、 Acidithiobacillus thiooxidans 、 Acidithiobacillus caldus、Acidithiobacillus ferrivorans 和 Acidithiobacillus albertensis^[2–3]。它们可通过氧 化亚铁、硫或含硫复合物获得能量,是一种嗜酸、 革兰氏染色阴性、短杆状和专性好氧的无机化能 自养菌^[4]。其广泛分布在含硫金属矿、含硫温泉、 煤矿废渣废堆、微生物冶金操作间、地热和火山 口以及酸性矿山废水等处。在嗜酸硫杆菌属中最 早被分离出来用于微生物浸矿的菌种是 *A. ferrooxidans*^[5-6],由于在浸矿过程中表现出诸多优 点,其一直是国内外学者研究的焦点。

众所周知,不同地理来源的嗜酸硫杆菌菌株, 其生理生化特征千差万别,浸矿能力也存在明显

基金项目: 国家自然科学基金(31260001, C010101)

^{*}通信作者。E-mail:niyqlzu@sina.com

收稿日期: 2016-08-23;修回日期: 2016-10-13;网络出版日期: 2016-10-21

差异^[7]。一系列的研究包括 G+C 含量测定、DNA 指纹图谱 RAPD (random amplified polymorphic DNA)、PFGE (pulsed-field gelectrophoresis)和 DNA 同源杂交等技术手段均被用于进行相关研究^[8-9], 以发现不同菌株之间的差异,进而进行分子地理 学的相关研究。许多基于 PCR 的 DNA 分子指纹 图谱技术由于其较高的灵敏度、可靠性和可重复 性被认为是微生物分类学中强有力的工具,常被 用于嗜酸硫杆菌的系统发育分析和遗传差异研 究^[10]。吴学玲等^[11-12]采用 BOXAIR 和(GTG)5 对 21 株嗜酸硫杆菌进行了系统的分类和鉴定,发现 不同亲缘关系的菌株对 Cu²⁺的耐受能力也存在较 大差异,不同的嗜酸硫杆菌菌株还具有不同的亚 铁氧化途径。Paulino 等^[13]采用 BOXAIR 和 ERIC 指纹用于鉴定 A. ferrooxidans 和 A. caldus 菌株, 取得了良好的效果,且研究认为,相对于传统的 基于 16S rRNA 基因的分子生物学鉴定, ITS 序列 具有更高的分辨率和较强的种内鉴定能力[13-14]。 但一直以来,该技术在嗜酸硫杆菌鉴定及其系统 发育研究方面的报道较少。

此外, Acidithiobacillus 可以通过氧化亚铁和 含硫复合物参与地球生物化学铁、硫循环中。研 究发现 Acidithiobacillus 中存在 2 种不同类型的铜 蓝蛋白^[3,15–17], 而负责编码这 2 种蛋白的基因分别 为 rusA 和 rusB, 它们同属于 rus 操纵子, 同时该 操纵子还编码 2 种细胞色素 c 和 aa_3 细胞色素氧化 酶, 进而参与亚铁氧化^[16], 其中 rusA 电子传递速 率较高, 在该过程中的作用显著, 而 rusB 的电子 传递速率较低, 这一点还有待进一步研究^[18]。

因此,为了研究不同地域、不同环境下的嗜酸硫杆菌菌株的多样性和生态演替规律,以及菌株地理分布的相关性和异质性,本研究采用 ITS 序列分析其系统发育关系,结合 BOXAIR 和 ERIC 指纹图谱技术,同时扩增 rus 基因,分析不同菌株

可能存在的亚铁氧化途径对分离自新疆富蕴、云南 腾冲、湖北大冶、江西德兴、江西永平和广东云浮 等地的20株嗜酸硫杆菌和3株标准菌株进行实验, 并对结果进行分析,比较不同地理来源嗜酸硫杆菌菌 株的多样性、遗传差异和亚铁氧化途径,了解在大 尺度的空间范围,极端的栖息环境产生明显地理隔 离情况下,不同来源的硫杆菌是否具有不同的亚铁 氧化途径,是否表现出显著的环境差异,从而为了解 冶金微生物谱系地理和分子地理学提供理论依据。

1 材料和方法

1.1 样品采集和处理

1.1.1 样品采集:样品采集自中国 6 个不同的采 样地,包括新疆富蕴、云南腾冲、湖北大冶、广 东云浮、江西德兴和江西永平。样品经采集后装 入已灭菌的保鲜盒中,并迅速运往实验室。样品 运回实验室后,部分放置在-80 °C 超低温冰箱, 用于菌株分离的样品暂时放在-20 °C 保存,以上 步骤均在无菌条件下完成。

1.1.2 培养方法和培养基:本实验采用的固体 培养基分别是 FeTSBo 培养基^[19]和 Solid 2:2 培 养基^[20-21],为了最大限度地避免富集实验对样品 的影响,确保获得最大多样性的菌株,我们对用 于菌株分离的样品采取不经过富集培养,而是经 梯度稀释后,直接进行涂布的方法,稀释梯度分 别为 10⁻¹、10⁻²、10⁻³,每个梯度做 3 个平行。取 0.2 mL 稀释液涂布后,经 10 d 左右,固体培养基 表面长出铁锈红色的小菌落时,挑取单菌落接种 至装有 9 K (pH 2.0)液体培养基^[22]的锥形瓶中,在 170 r/min,30 °C 条件下扩大培养,至培养液变为红 棕色,取 0.2 mL 菌液均匀涂布在固体培养基平板上 进行纯化培养。如此交替进行 3 次,直到在显微镜 上观察到菌体形态单一,即认为获得纯培养菌株。

1.2 DNA 提取

将菌株分别转接至 400 mL 9 K 液体培养基中, 于 30 °C、170 r/min 条件下进行扩大培养 3–5 d, 至菌液变成红棕色后,在 4 °C、12000 r/min 条件 下离心收集菌体后,弃上清,使用稀硫酸(pH 1.5) 清洗菌斑,去除三价铁沉淀并转移至 2 mL EP 管 中,然后参照 Bergamo 等^[23]和 Mohapatra 等^[24]的方 法抽提基因组 DNA,DNA 提取后保存在–20 °C, 采用超微量分光光度计定量核酸浓度和纯度。

1.3 主要试剂和仪器

PCR 引物购自上海捷瑞生物工程有限公司; DNA 分子量 marker 及其他 PCR 扩增所需试剂均 购自天根生化科技(北京)有限公司;其余试剂均为 进口或国产分析纯;高速冷冻离心机为德国 Thermo 公司 Fresco21型;PCR 仪为德国 Biometra 公司 Tprofessional;凝胶成像系统为法国 Vilber 多功能成像系统;水平电泳仪为美国 Bio Rad 公 司 PowerPac Universal、电泳槽 SUBCEILGT (20×25 cm);超微量分光光度计为德国 Thermo Scientific Nano Drop 2000/2000C。

1.4 ITS 序列的扩增和系统发育分析

采用 1 对细菌 ITS 特异性引物(表 1)扩增菌株 ITS 序列。扩增体系(25 μL)为:10×Taq PCR master

mix 12.5 µL, 引物各 0.5 µL (20 µmol/mL), 模板 1 µL (约 50 ng), 用 ddH₂O 补齐至 25 µL。反应程 序为 95 °C 预变性 5 min 后,进行 35 个循环(94 °C 变性 1 min, 55 °C 退火 1 min, 72 °C 延伸 2 min), 最后 72 °C 下延伸 8 min。扩增产物经 1.5%琼脂 糖凝胶电泳检测后,送上海生工测序公司测序, 将所得结果用 BLAST 序列搜索工具进行比对,获 得同源性高的相关种属的序列。再利用 CLUSTAL X 1.83 软件进行联配,进化距离的计算采用邻接 法 neighbor-joining method,在 MEGA v.5.1 软件中 用 p-distances 法和 Kimura-2 parameter 双参数法建 立系统发育树,系统发育树分支的置信度采用 bootstrap 法, 重复 1000 次。

1.5 rep-PCR 指纹图谱聚类分析

本研究采用 2 种 rep-PCR 引物 BOXAIR 和 ERIC (表 1)。扩增体系(25 µL)为:10×*Taq* PCR master mix 12.5 µL,模板 3 µL (约 150 ng),引物 各 1 µL (20 µmol/mL),用 ddH₂O 补齐至 25 µL。 反应程序为:95 °C 预变性 7 min 后,94 °C 变性 1 min,53 °C (BOXAIR)/52 °C (ERIC)退火 1 min, 65 °C 延伸 2 min,35 个循环,最后 72 °C 下延伸 16 min。扩增产物使用 1.5%琼脂糖凝胶和 0.5×TBE 电泳缓冲液,在 4 V/cm 电压下电泳 2 h。电泳完成

		Table 1. Ofgonucleonde primers used in this study utilized				
Genes	Primers	Nucleotide sequence of primers $(5' \rightarrow 3')$	Annealing temperature/°C	References		
ITS	ITS-F	GACTGGGGTGAAGTCGTAAC	55	Ni YQ et al ^[14]		
	ITS-R	TGGCTGGGTTGCCCCATTCGG				
rep	BOXAIR	CTACGGCAAGGCGACGCTGACG	53	Wilson and Sharp ^[25]		
rusA	ERIC-1R	ATGTAAGCTCCTGGGGATTCAC	52	Nieto et al ^[26]		
rusB	ERIC-2	AAGTAAGTGACTGGGGTGAGCG				
	rusA-F	ACTGGTATGTAACTGTTGGTGCG	55	Amouric et al ^[27]		
	rusA-R	GTGTATCCGAACTTGCCATCT				
	rusB-F	CACAAGGGTCGGCATGTCG	61	Amouric et al ^[27]		
	rusB-R	GTATCCGAACCCCCCACTC				

表 1. 本研究中所用引物

actamicro@im.ac.cn

后,使用 Vilber 多功能成像系统对电泳凝胶进行成像分析。rep-PCR 指纹图谱采用 GelCompar II 5.10 (AppliedMaths, sint-Martens-Latem, Belgium)凝胶分析软件进行分析,相似性分析采用 Pearson 系数,使用非加权算术平均连锁法(UPGMA, unweighted pair group method with arithmetic mean)输出树状图。

1.6 rus 基因的扩增及分析

rusA/rusB 基因扩增体系(25 μL)为:10×*Taq* PCR master mix 12.5 μL,引物各 0.5 μL (20 μmol/mL), 模板 1 μL (约 50 ng),用 ddH₂O 补齐至 25 μL。PCR 条件:95 °C 2 min 30 s;94 °C 变性 1 min, 55 °C/61 °C 退火 30 s,72 °C 延伸 1 min,进行 35 个 循环,最后 72 °C 下延伸 7 min,目的条带为 436 bp/ 440 bp。扩增产物经 1.5%琼脂糖凝胶电泳检测。

2 结果和分析

2.1 嗜酸硫杆菌菌株分离

纯化后的菌株经抽提基因组 DNA,采用细菌 ITS 特异性引物扩增硫杆菌 ITS 序列,扩增产物经 1.5%琼脂糖凝胶电泳检测后,送上海生工测序公 司测序,将测序结果进行 BLAST 序列搜索,以获 得同源性高的相关种属的序列,并将其提交至 GenBank 中,初步鉴定得到的硫杆菌菌株。从鉴 定菌株中选取具有代表性的20株嗜酸硫杆菌进行 分析研究,本实验使用的3 株标准菌株均来自美 国模式培养物保藏中心(American type culture collection,ATCC),分别为ATCC33020、ATCC23270 和 ATCC19859。菌株的详细信息见表 2。液体纯

表 2. 23 株分离自不同环境的 Acidithiobacillus 菌株以及取样地

-rappo 2. Opened of 2 .) $remaining rappo and rappo 2. Opened remaining rappo 2.$	Table 2.	Sources of 23	Acidithiobacillus	strains isolated	from different	environmer
---	----------	---------------	-------------------	------------------	----------------	------------

Strains	Description and sources
DXS9-14S	Acid mine drainage from Dexing Copper mine, Jiangxi Province (江西德兴), China
DXS6-9S	Acid mine drainage from Dexing Copper mine, Jiangxi Province (江西德兴), China
DXW2-9S	Sediment from Dexing Copper mine, Jiangxi Province (江西德兴), China
DXW2-10S	Sediment from Dexing Copper mine, Jiangxi Province (江西德兴), China
DXW9-2S	Sediment from Dexing Copper mine, Jiangxi Province (江西德兴), China
YFS5-1	Acid mine drainage from Yunfu sulfur mine, Guangdong Province (广东云浮), China
YFS2-1S	Acid mine drainage from Yunfu sulfur mine, Guangdong Province (广东云浮), China
YFW4-3S	Sediment from Yunfu sulfur mine, Guangdong Province (广东云浮), China
YFW1-3S	Sediment from Yunfu sulfur mine, Guangdong Province (广东云浮), China
YPS10-5	Acid mine drainage from Yongping Copper mine, Jiangxi Province (江西永平), China
YPS9-4	Acid mine drainage from Yongping Copper mine, Jiangxi Province (江西永平), China
YPW6-4S	Sediment from Yongping Copper mine, Jiangxi Province (江西永平), China
YPW3-6S	Sediment from Yongping Copper mine, Jiangxi Province (江西永平), China
XJFY-9	Soli from Fuyun Copper mine, Xinjiang Uygur Autonomous Region (新疆富蕴), China
HBDY-21	Soli from Daye Copper mine, Hubei Province (湖北大冶), China
HBDY-26	Soli from Daye Copper mine, Hubei Province (湖北大冶), China
HBDY-29	Soli from Daye Copper mine, Hubei Province (湖北大冶), China
YNTR-9	Hot spring water from Tengchong, Yunnan Province (云南腾冲), China
YNTR-23	Hot spring water from Tengchong, Yunnan Province (云南腾冲), China
YNTR-35	Hot spring water from Tengchong, Yunnan Province (云南腾冲), China
ATCC23270	Type strain from ATCC. Acid bituminous effluent coal mine, USA
ATCC19859	Type strain from ATCC. Acid mine drainage from coal ore, USA
ATCC33020	Type strain from ATCC. Uranium mine, Japan

培养物经离心后,加入新鲜9K液体培养液重新 悬浮,补充 7% DMSO (二甲基亚砜)后放置在 -80°C 超低温冰箱冷冻保藏^[2]。

2.2 ITS 序列系统发育分析

扩增从不同环境中分离筛选出的23株嗜酸硫 杆菌菌株的 ITS 序列并测序,通过 NCBI (National Center of Biotechnology Information)中的 BLAST 比对工具在 GenBank 数据库中进行同源性比对, 选取同源性最高的序列构建系统发育树见图 1。在 系统发育树中,23 株嗜酸硫杆菌被划分为 5 个大 类群,表明这些菌株具有较大的异质性。其中绝 大多数菌株(21 株)被划分在前 3 个类群,在 Group I 中包含 3 个不同地理来源的菌株,与已知 2 株模式菌株 ATCC23270 和 ATCC19859 构成 1 个 分支,且相似性较高,说明其系统发育非常接近, 因此可以确定,该类群为 A. ferrooxidans; Group II

图 1. 基于 ITS 序列的嗜酸硫杆菌系统发育树

Figure 1. Neighbour-joining tree showing the phylogenetic relationships among *Acidithiobacillus* strains ITS sequences and related sequences acquired from GenBank. Numbers at the nodes indicate the bootstrap values (65%) based on neighbour-joining analyses of 1000 resampled datasets. Bar: 1% sequence divergence.

actamicro@im.ac.cn

的菌株来源更加丰富,包括4个不同的地理来源, 与*A. ferrooxidans* JCM7811-P4 同源性最高,可确 定隶属于*A. ferrivorans*;Group III中以*A. ferridurans* ATCC33020 为代表菌株,包含 HBDY-21、 HBDY-26、HBDY-29和YNTR-35,在该类群中, 除了YNTR-35,其余3株均来自湖北大冶,表明 微生物与栖息境有某种程度的关联;Group IV和 Group V包含菌株较少,与前3个类群明显不同。

ITS 系统发育树中 Group IV仅含有 1 株菌株 YNTR-9,分离自云南腾冲热泉,在 NCBI 序列比 对时发现与其最相似的菌株为 *A. ferrooxidans* JCM7811-P1,相似度仅为 93%,是一个较为独特 的类群,但在系统发育树上,该类群与 Group III 同在 1 个大的进化枝,亲缘关系较近,因此其可 能是 *A. ferridurans* 中另 1 个不同系统发育类群的 菌株,表明这 2 类菌株在生理生化特征方面可能 存在不同之处;菌株 YFW4-3S 与 *A. ferrooxidans* A1 构成 1 个独立分支。

2.3 rep-PCR 指纹图谱聚类分析

由 ERIC-PCR 和 BOX-PCR 指纹图谱(图 2, 3)可以清晰看到嗜酸硫杆菌指纹图谱产生的条带 较多,能够较好地反映不同硫杆菌菌株在基因组 水平上的差异,在实验过程中,为确保实验的可 重复性,经重复实验,优化反应条件和反应体系, 在较大的程度上保证了数据的可靠性。其中 ERIC-PCR 指纹图谱分布在 400–5000 bp,共产生 5–12 个可重复且较为明显的条带;BOX-PCR 指纹 图谱主要集中在 200–4000 bp 范围内,包括 6–13 个

Figure 2. The dendrogram based on the UPGMA cluster analysis of the ERIC-PCR fingerprinting data.

http://journals.im.ac.cn/actamicrocn

图 3. BOX-PCR 指纹图谱的聚类分析树状图

Figure 3. The dendrogram based on the UPGMA cluster analysis of the BOX-PCR fingerprinting data.

明显的亮带,两者均有若干较暗的条带;比较 2 种不同引物指纹图谱可以看出,大多数的 PCR 产 物条带的大小为 300-4000 bp,但是不同种的嗜酸 硫杆菌带谱明显不同。

在指纹图谱聚类分析中,按照 ERIC-PCR 相 关聚类树形图(图 2)将实验中所使用的 23 株嗜酸 硫杆菌划分为 4 个大类群,而 BOX-PCR(图 3)的 聚类树形图却将所有菌株划分为 5 个类群,与 ITS 系统发育结果一致,虽然部分菌株在 2 种聚类分 析中存在一些差异,但总体而言,2 种引物指纹图 谱聚类结果较为接近。

2.4 rus 基因扩增结果分析

rus 基因的扩增结果如图 4 所示 ,23 株不同地

理来源的嗜酸硫杆菌菌株中有 13 株 (DXS6-9S, DXW2-9S,DXW9-2S,YFW4-3S,YPW6-4S,XJFY-9, HBDY-21,HBDY-29,YNTR-9,YNTR-23,YNTR-35, ATCC23270,ATCC33020)只含有 *rusA* 基因,条带 大小为 436 bp;另外的 4 株菌株(DXW2-10S, YFW1-3S,YPS10-5,YPS9-4)仅含有 *rusB* 基因, 条带大小为 440 bp;其余的 6 株菌株(DXS9-14S, YFS2-1S,YFS5-1,YPW3-6S,HBDY-26,ATCC19859) 含有 2 种类型的 *rus* 基因。

2.5 基因分组和系统发育异质性之间的关系

不同地理来源的 23 株嗜酸硫杆菌的系统发育 分组和基因型分组见表 3。其中,大部分菌株的系 统发育分组和基因型分组基本是一致的,如 ITS

Figure 4. Banding profiles of *rusA* gene and *rusB* gene of 23 *Acidithiobacillus* strains. A: *rusA* gene; B: *rusB* gene. Lane 1: DXS9-14S, lane 2: DXS6-9S, lane 3: DXW2-9S, lane 4: DXW2-10S, lane 5: DXW9-2S, lane 6: YFW1-3S, lane 7: YFS2-1S, lane 8: YFS5-1, lane 9: YFW4-3S, lane 10: YPS10-5, lane 11: YPW6-4S, lane 12: YPW3-6S, lane13: YPS9-4, lane 14: XJFY-9, lane 15: HBDY-21, lane 16: HBDY-26, lane 17: HBDY-29, lane 18: YNTR-9, lane 19: YNTR-23, lane 20: YNTR-35, lane 21: ATCC19859, lane 22: ATCC23270, lane 23: ATCC33020, M:DNA marker, K: negtive control.

表 3.	嗜	酸疏杆菌	菌的系统发	育分组	和基因	国型分组	1
Table	3.	The ph	ylogenetic	groups	and g	genetic g	groups
of the	23	Acidithi	obacillus s	trains			

Strains	Phy	logenetic g	roups	Genetic
Suallis	ITS	ERIC	BOX	groups
ATCC19859	1	2	1	rusA/rusB
ATCC23270	1	2	1	rusA
DXS6-9S	1	2	1	rusA
DXW2-9S	1	2	1	rusA
YFS2-1S	1	2	1	rusA/rusB
YPS10-5	1	2	1	rusB
YFW1-3S	1	2	2	rusB
DXW9-2S	1	2	3	rusA
YPS9-4	1	2	3	rusB
YFS5-1	1	4	1	rusA/rusB
YPW6-4S	2	1	4	rusA
XJFY-9	2	3	4	rusA
DXW2-10S	2	3	4	rusB
YNTR-23	2	3	4	rusA
DXS9-14S	2	3	4	rusA/rusB
YPW3-6S	2	3	4	rusA/rusB
HBDY-29	3	1	2	rusA
YNTR-35	3	1	2	rusA
ATCC33020	3	1	2	rusA
HBDY-26	3	1	2	rusA/rusB
HBDY-21	3	3	2	rusA
YNTR-9	4	1	5	rusA
YFW4-3S	5	4	1	rusA

系统发育树中 Group I、Group II和 Group III的菌 株在 rep-PCR 中也被聚在了一起,但在功能基因 分组中,这些菌株表现出了较大的异质性,系统 发育的前3个类群中均有3种类型的 rus 基因,但 在系统发育分析中较为特殊的菌株 YNTR-9 和 YFW4-3S 却只含有 rusA 基因、rusA 基因和 rusB 基因编码2种类型的铜蓝蛋白,这2种蛋白在硫 杆菌氧化亚铁的过程中具有非常重要的作用^[11]。 因此,可以看出,系统发育分型与 rep-PCR 聚类 分型是有联系的,而菌株的亚铁氧化途径却没有 表现出与前者的相关性。

3 讨论

本研究中所使用样品采集自中国 6 个不同样 地,实验通过 2 种不同的固体培养基和 9 K 液体 培养基从样品中分离嗜酸硫杆菌,分离效果良好。 采用形态学观察,结合基于 ITS 序列系统发育树, 分离的嗜酸硫杆菌被划分为 5 个大类群,根据 Amouric 等^[27]和 Hedrich 等^[2]对 *A. ferrooxidans* 和 *A. ferridurans* 的定义,20 株嗜酸硫杆菌中有 9 株 属于 A. ferrooxidans, 4 株隶属于 A. ferridurans。 其中 Group I 和 Group II 菌包含分离自不同地理 来源、不同类型样品的样品,由此可见,同一类 群中的菌株也表现出了较高的异质性,可能是由 于环境因素促使不同的地理位置出现相似的生态 位,导致不同地理来源不同菌株,形成相同或相近 的基因型,从而使得其具有较近的亲缘关系而出现 在同一类群,该结果与 rep-PCR 聚类分析一致。

此外,分离自湖北大冶的3株菌(HBDY-21、 HBDY-26 和 HBDY-29)均被包含在 Group III中, 说明相同地理来源的菌株,其栖息的生态位也可 能相同或相似,遗传差异较小。菌株 YNTR-9 和 YFW4-3S 与以上 3 个种的菌株明显不同, 被单独 划分为独立类群,在 ITS 系统发育树中,与 YNTR-9 最相近的菌株 A. ferridurans JCM7811-P1 的序列相似性只有 93%,因此可以推断 YNTR-9 或为 A. ferridurans 的 1 个亚种,这一点有待进一 步研究; YFW4-3S 与 A. ferrooxidans A1 构成 1 个 独立分支, Amouric 等^[27]的报道也有类似的表述, 文中基于 rrs 基因的进化树显示 A. ferrooxidans A1 和 A. ferrooxidans A2 隶属于含有模式菌 ATCC23270 的大类群,但前者不同于后者的是前 者可以产生较多的胞外多糖,而基于 ITS 序列的 系统发育树中,以上2株菌是同属于 A. ferrooxidans 的1个独立类群,后面基于 rus 基因 的分析显示,其仅含有 rusA 基因,因此我们认为 其可能是 A. ferrooxidans 的 1 个亚种。

在 rep-PCR 聚类分析中, ERIC 和 BOXAIR-PCR 均表现出了较好的分辨能力,本实 验中所使用的 23 株嗜酸硫杆菌按照 ERIC-PCR 相 关树形图(图 2)可被划分为4个大类群,而 BOX-PCR (图 3)却将所有菌株划分为5个类群, 虽然部分菌株在2种分类中存在一些差异,如 A. ferrooxidans 在 ITS 系统发育和 BOXAIR-PCR 指 纹聚类分析中被划分为 2 个类群,但在 ERIC-PCR 中归为1个类群。但总体而言2种引物指纹图谱 聚类结果较为接近,部分聚类结果与 ITS 系统发 育相似, 菌株 ATCC33020、HBDY-26、HBDY-29 和 YNTR-35 在 2 种指纹图谱聚类分析中都被划分 在 1 个类群中,此外, BOX-PCR 指纹图谱将 YNTR-9 划为1个独立的类群 Group V,与 ITS 基 因系统发育树一致。在表 3 中, ITS 系统发育树中 Group I、Group II和 Group III的菌株在 rep-PCR 中也被聚类在一起,但在功能基因 rus 的分组中, 这3个类群中存在3种类型的 rus 基因。有趣的是, 在系统发育分析中较为特殊的菌株 YNTR-9 和 YFW4-3S 却只含有 rusA 基因 ,表明嗜酸硫杆菌的 亚铁氧化途径与该菌株的基因型组别、系统发育 类群无明显相关性,这可能是因为在长期的进化 过程中,所有的菌株对环境压力具有一定的适应 性[11],从而使得这些菌株具有较大的异质性和丰 富的遗传多样性^[2,27],进一步说明 rep-PCR 技术在 嗜酸硫杆菌种间拥有一定的分类鉴定能力,其中 BOX-PCR 在聚类中将菌株 YFW4-3S 与 A. ferrooxidans A1 划为1个独立分支,与 ITS 序列系统 发育分析结果更为接近,因此可以说明 BOXAIR 引 物更适合区分亲缘关系比较相近的 Acidithiobacillus。

参考文献

- Bosecker K. Bioleaching: metal solubilization by microorganisms. *FEMS Microbiology Reviews*, 1997, 20(3/4): 591–604.
- [2] Hedrich S, Johnson DB. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(11): 4018–4025.
- [3] Hallberg KB, González-Toril E, Johnson DB. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal

mine-impacted environments. Extremophiles, 2010, 14(1): 9-19.

- [4] Tupikina OV, Kondrat'eva TF, Samorukova VD, Rassulov VA, Karavaiko GI. Pheno- and genotypic characteristics of *Acidithiobacillus ferrooxidans* strains as affected by physicochemical properties of pyrites. *Hydrometallurgy*, 2006, 83(1/4): 255–262.
- [5] Vestal JR, Lundgren DG. The sulfite oxidase of *Thiobacillus ferrooxidans* (*Ferrobacillus ferrooxidans*). Canadian Journal of Biochemistry, 1971, 49(10): 1125–1130.
- [6] Merroun ML, Geipel G, Nicolai R, Heise KH, Selenska-Pobell S. Complexation of uranium (VI) by three eco-types of *Acidithiobacillus ferrooxidans* studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopy. *BioMetals*, 2003, 16(2): 331–339.
- [7] Kelly DP, Wood AP. Reclassification of some species of *Thiobacillus* to the newly designated genera *Acidithiobacillus* gen. nov., *Halothiobacillus* gen. nov. and *Thermithiobacillus* gen. nov. *International Journal of Systematic and Evolutionary Microbiology*, 2000, 50(2): 511–516.
- [8] Xie JP, Jiang HC, Liu XX, Liu XD, Zhou JZ, Qiu GZ. 16S rDNA based microbial diversity analysis of eleven acid mine drainages obtained from three Chinese copper mines. *Journal of Central South University of Technology*, 2011, 18(6): 1930–1939.
- [9] Waltenbury DR, Leduc LG, Ferroni GD. The use of RAPD genomic fingerprinting to study relatedness in strains of *Acidithiobacillus ferrooxidans. Journal of Microbiological Methods*, 2005, 62(1): 103–112.
- [10] Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of *Lactobacillus* species. *FEMS Microbiology Letters*, 2001, 205(1): 31–36.
- [11] Wu XL, Liu LL, Zhang ZZ, Deng FF, Liu XX. Phylogenetic and genetic characterization of *Acidithiobacillus* strains isolated from different environments. *World Journal of Microbiology & Biotechnology*, 2014, 30(12): 3197–3209.
- [12] Wu XL, Fan HW, Duan H, Zhang ZZ, Liu LL, Liu XX. RAPD to study relatedness of 20 Acidithiobacillus ferrooxidans strains. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 569-576. (in Chinese)
 吴学玲,范宏伟,段红,张真真,刘莉莉,刘新星. RAPD用于 20 株嗜酸氧化亚铁硫杆菌菌株亲缘性研究.中国有色金属学报, 2014, 24(2): 569-576.
- [13] Paulino LC, Bergamo RF, de Mello MP, Garcia O Jr, Manfio GP, Ottoboni LMM. Molecular characterization of *Acidithiobacillus ferrooxidans* and *A. thiooxidans* strains isolated from mine wastes in Brazil. *Antonie van Leeuwenhoek*, 2001, 80(1): 65–75.
- [14] Ni YQ, Yang Y, Bao JT, He KY, Li HY. Inter- and intraspecific genomic variability of the 16S–23S intergenic spacer regions (ISR) in representatives of *Acidithiobacillus thiooxidans* and *Acidithiobacillus ferrooxidans*. FEMS Microbiology Letters, 2007, 270(1): 58–66.
- [15] Sasaki K, Ida C, Ando A, Matsumoto N, Saiki H, Ohmura N. Respiratory isozyme, two types of rusticyanin of

Acidithiobacillus ferrooxidans. Bioscience, Biotechnology, and Biochemistry, 2003, 67(5): 1039–1047.

- [16] Holmes DS, Bonnefoy V. Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms//Rawlings DE, Johnson DB. Biomining. Berlin Heidelberg: Springer, 2007: 281–307.
- [17] Hallberg KB, Amouric A, Brochier-Armanet C, Bonnefoy V, Johnson DB. Physiological and phylogenetic heterogeneity among iron-oxidizing *Acidithiobacillus* spp. and characteristics of the novel species *Acidithiobacillus ferrivorans*. *Advanced Materials Research*, 2009, 71–73: 167–170.
- [18] Ida C, Sasaki K, Ando K, Blake II RC, Saiki H, Ohmura N. Kinetic rate constant for electron transfer between ferrous ions and novel Rusticyanin isoform in *Acidithiobacillus ferrooxidans*. *Journal of Bioscience and Bioengineering*, 2003, 95(5): 534–537.
- [19] Johnson DB. Selective solid media for isolating and enumerating acidophilic bacteria. *Journal of Microbiological Methods*, 1995, 23(2): 205–218.
- [20] Peng JB, Yan WM, Bao XZ. Plasmid and transposon transfer to *Thiobacillus ferrooxidans*. Journal of Bacteriology, 1994, 176(10): 2892–2897.
- [21] Johnoson DB, McGinness S. A highly effecient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria. *Journal of Microbiological Methods*, 1991, 13(2): 113–122.
- [22] Silverman MP, Lundgren DG. Studies on the chemoautotrophic iron bacterium *Ferrobacillus ferrooxidans*: I. An improved medium and a harvesting procedure for securing high cell yields. *Journal of Bacteriology*, 1959, 77(5): 642–647.
- [23] Bergamo RF, Novo MTM, Verissimo RV, Paulino LC, Stoppe NC, Sato MIZ, Manfio GP, Prado PI, Garcia Jr O, Ottoboni LMM. Differentiation of *Acidithiobacillus ferrooxidans* and *A. thiooxidans* strains based on 16S–23S rDNA spacer polymorphism analysis. *Research in Microbiology*, 2004, 155(7): 559–567.
- [24] Mohapatra BR, Broersma K, Nordin R, Mazumder A. Evaluation of repetitive extragenic palindromic-PCR for discrimination of fecal *Escherichia coli* from humans, and different domestic- and wild-animals. *Microbiology and Immunology*, 2007, 51(8): 733–740.
- [25] Wilson LA, Sharp PM. Enterobacterial repetitive intergenic consensus (ERIC) sequences in *Escherichia coli*: evolution and implications for ERIC-PCR. *Molecular Biology and Evolution*, 2006, 23(6): 1156–1168.
- [26] Nieto PA, Covarrubias PC, Jedlicki E, Holmes DS, Quatrini R. Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile *Acidithiobacillus ferrooxidans*. *BMC Molecular Biology*, 2009, 10(1): 63.
- [27] Amouric A, Brochier-armanet C, Johnson DB, Bonnefoy V, Hallberg KB. Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. *Microbiology*, 2011, 157(1): 111–122.

http://journals.im.ac.cn/actamicrocn

Phylogenetic and genetic heterogeneity of 23 *Acidithiobacillus* strains isolated from different geographical locations

Pengwu Lin¹, Minrui Liu², Min Zhang², Aiying Wang¹, Yongqing Ni^{2*}

¹ School of Life Sciences, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
 ² School of Food Sciences, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, China

Abstract: [Objective] To study the phylogenetic and genetic heterogeneity of 23 *Acidithiobacillus* strains from various geographical locations, as well as the relationship between the DNA fingerprinting classification and geographical origin of *Acidithiobacillus*. [Methods] Partial 16S-23S rRNA gene intergenic spacer (ITS) was used to construct corresponding phylogenetic trees based on the sequence homology. *rus* gene amplification and rep-PCR assay with two different primers (BOXAIR and ERIC) were performed to analyze genetic heterogeneity of *Acidithiobacillus* strains from diverse environment. [Results] *Acidithiobacillus* revealed a great genetic heterogeneity. The whole isolates were classified into five groups by ITS sequence analysis. This result was similar with that obtained by rep-PCR. *Acidithiobacillus ferrooxidans* strains were always divided into two groups of phylogenetic and BOXAIR fingerprinting cluster analysis. However, these were clustered one group in the ERIC dendrogram. Genotypic analysis of the *rus* gene suggested that different iron oxidation pathways have been evolved in these closely related bacteria. Taken together, the iron oxidation pathway of *Acidithiobacillus* and phylogenetic groups have no obvious correlation. ITS gene has been proven very useful in distinguishing closely related species or subspecies of *Acidithiobacillus*, to BOXAIR-PCR, which has been recommended as reliable tool for genetic heterogeneity analysis of *Acidithiobacillus*.

Keywords: Acidithiobacillus, 16S-23S rRNA gene intergenic spacer, Repetitive element PCR, rus gene, genetic heterogeneity

(本文责编:张晓丽)

Supported by the National Natural Science Foundation of China (31260001, C010101) *Corresponding author. E-mail: niyqlzu@sina.com

Received: 23 August 2016; Revised: 13 October 2016; Published online: 21 October 2016