

Research Article 研究报告

赭曲霉 G 蛋白偶联受体的鉴定及生物信息学分析

高婧,梁志宏*

中国农业大学食品科学与营养工程学院,北京食品营养与人类健康高精尖创新中心,北京 100083

高婧,梁志宏. 赭曲霉 G 蛋白偶联受体的鉴定及生物信息学分析. 微生物学报, 2022, 62(11): 4414-4430. Gao Jing, Liang Zhihong. Identification and bioinformatics analysis of G-protein-coupled receptors in *Aspergillus ochraceus*. *Acta Microbiologica Sinica*, 2022, 62(11): 4414-4430.

摘 要:【目的】预测并分析赭曲霉(Aspergillus ochraceus)中存在的 G 蛋白偶联受体(G-proteincoupled receptors, GPCRs)的结构特征和理化性质,探究赭曲霉 GPCR 超家族蛋白的结构及所接 收配体的聚类情况以及与其他同源蛋白的进化关系,为深入开展赭曲霉中 GPCRs 的定位、功能 研究提供理论基础,也有望从 G 蛋白信号途径角度抑制赭曲霉毒素的产生,进一步控制粮食的真 菌毒素污染。【方法】基于已经报道的曲霉属典型 GPCRs 序列,在赭曲霉全基因组中进行 BLASTp 比对以获取候选 GPCRs 蛋白。通过 SMART 及多种软件进行保守结构域,特别是跨膜结构的分析, 进一步分析候选序列的理化性质、信号肽、二级结构及亚细胞定位等特征。最后,利用 MEGA 构 建赭曲霉中 GPCRs 与同源蛋白的系统发育树进行遗传关系的比较。【结果】明确赭曲霉存在 15 个具有典型 7 次跨膜结构的 GPCRs 蛋白,不存在信号肽及转运肽,均含有较高比例的α螺旋 结构,15 个蛋白质中有 7 个定位在细胞膜。赭曲霉中的 GPCRs 与黄曲霉等曲霉属中相应的同源 序列具有较近的亲缘关系。【结论】本研究首次对赭曲霉的 GPCR 超蛋白家族进行了预测,分析 其结构及理化性质,探讨了其与同源蛋白的聚类情况,为深入开展赭曲霉 GPCRs 的功能研究提 供理论基础。

关键词: 赭曲霉; G蛋白偶联受体; 基因家族; 进化分析; 真菌毒素防控

基金项目: 国家自然科学基金(32172170)

Supported by the National Natural Science Foundation of China (32172170) *Corresponding author. E-mail: lzh105@cau.edu.cn Received: 10 March 2022; Revised: 3 April 2022; Published online: 12 June 2022

Identification and bioinformatics analysis of G-protein-coupled receptors in *Aspergillus ochraceus*

GAO Jing, LIANG Zhihong^{*}

Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Abstract: [Objective] This study aims to predict and analyze the structural characteristics and physicochemical properties of G-protein-coupled receptors (GPCRs) in Aspergillus ochraceus and to explore the clustering of GPCR proteins and their evolutionary relationships with the homologous proteins. The findings are expected to lay a theoretical basis of further research on the locations and functions of GPCRs in A. ochraceus, help inhibit ochratoxin production from the perspective of G protein signaling pathway, and further control mycotoxin contamination in grains. [Methods] Candidate GPCR proteins were screened through BLASTp alignment of A. ochraceus genome against the reported typical GPCR sequences of Aspergillus sp. Conserved domains, especially transmembrane domains, were analyzed by SMART and a variety of software. The physicochemical properties, signal peptides, secondary structures, and subcellular localization of the candidate sequences were further analyzed. Finally, MEGA was used to construct a phylogenetic tree of GPCRs in A. ochraceus and homologous proteins, and the genetic relationship was elucidated. [Results] A total of 15 GPCR proteins with typical seven transmembrane helices were found in A. ochraceus, but they had no signal peptides or transit peptides. They all contained a large proportion of α -helices, and 7 of the 15 proteins were located at the cell membrane. GPCRs in A. ochraceus had close genetic relationship with the homologous sequences in A. flavus and other Aspergillus species. [Conclusion] In this study, the GPCRs in A. ochraceus were predicted for the first time. The structures and physicochemical properties of them and the clustering with homologous proteins were analyzed, laying a theoretical basis for further research on the functions of GPCRs in A. ochraceus.

Keywords: *Aspergillus ochraceus*; G-protein-coupled receptors; gene family; phylogeny analysis; mycotoxin control

赭曲霉(Aspergillus ochraceus)是一种广泛 分布于粮食和饲料中的丝状真菌,也是产生有 害次级代谢产物赭曲霉毒素(ochratoxin,OT)的 模式菌株。赭曲霉毒素 A (OTA)是我国粮食、 果蔬及其制品中污染最严重的真菌毒素之一, 其性质稳定且不易降解,污染范围广泛且涉 及种类很多,可以通过食物链在动物体内蓄 积,甚至海产品中也已检出^[1]。食品中 OTA 限量范围从婴儿食品的≤0.5 μg/kg 到干辣椒 的≤20 μg/kg (EC/1881-2020, GB2761—2017),饲 料限量是≤100 μg/kg (GB13078-2017)。近3年 欧盟食品和饲料类快速预警系统(food and feed safety alerts, RASFF)通报的97例真菌毒素预警 中,OTA占8%,仅次于黄曲霉毒素(aflatoxin, AF)。另一方面,OTA 被国际癌症研究机构列 为IIB 类致癌物,具有强烈的肝肾毒性、遗传 毒性、神经毒性、免疫毒性、血脑屏障损伤 性、致畸和致癌性^[2],严重威胁人类健康。如 何防控 OTA 的产生并控制食品中 OTA 的污染 是世界范围内亟待解决的问题。

鸟嘌呤核苷酸结合蛋白(G 蛋白)信号途径 是真核生物中最广泛也是最保守的信号转导途 径之一,G蛋白偶联受体(G-protein-coupled receptors, GPCRs)是动物、植物、真菌等真核 生物中普遍存在的跨膜受体家族,包括7个跨 膜结构域(transmembrane domain, TMD), 由 交替的胞内环(intracellular loop, IL1-IL3)和胞 外环(extracellular loop, EL1-EL3)连接^[3]。胞 外的氨基末端能够感知环境中多种信号分子, 通过蛋白质折叠修饰将信号传递给胞内的羧基 末端,激活同源异质三聚体 G 蛋白(Gαβγ)^[4]。 Ga 亚基上的二磷酸鸟苷(GDP)被三磷酸鸟苷 (GTP)替换,导致 Ga 亚基与 G β y 二聚体分离, 二者均能与各自的效应器相互作用,激活或抑 制特定的下游通路^[5-6],包括 cAMP 蛋白激酶 (cAMP-activated protein kinase A, cAMP-PKA) 途径^[7]、丝裂原活化蛋白激酶级联(mitogenactivated protein kinases, MAPK)途径^[8-11]和磷 脂酶 C (phospholipase C, PKC)途径^[12]等, 通 过调节下游基因表达,调控细胞生长、繁殖、 应激和代谢等活动^[13]。

GPCR 在哺乳动物中研究最为透彻,近年 来真菌相关研究日渐增多,目前可分为14类, 感测信息素、碳/氮源、脂质、离子、光子等 环境信号,调控营养、代谢和生长等多种生理 行为^[14]。构巢曲霉(A. nidulans)和黄曲霉(A. flavus)的 GprC 和 GprD (III类)已证实与真菌毒 素合成相关^[15],GprH (V类)是真菌中葡萄糖和 色氨酸传感器^[16]。在新型隐球菌(Cryptococcus neoformans)、烟曲霉(A. fumigatus)、黄曲霉中 相继发现,其毒素的生物合成受腺苷酸环化酶 的调控^[17],烟曲霉中通过 GprK (VI类)感知碳 源变化,激活 cAMP-PKA 通路从而调控毒素合 成。cAMP-PKA 是真菌毒素合成的主要调控途 径之一,其他还有 MAPK 通路,可部分调控过氧 化氢酶和超氧化物歧化酶基因的表达,影响 AF、 OTA、脱氧雪腐镰刀菌烯醇(deoxynivalenol, DON)等多种真菌毒素的生物合成^[18]。Affeldt 等构建的黄曲霉的 9 类 Δgpr 突变株在感知碳/ 氮源、脂质分子、环境压力等信号方面出现异 常,并且生长、次级代谢和毒力等细胞行为受 到影响,表明 GPCR 在信号感知与调节内部生 长代谢中起到重要的介导作用^[19]。另有研究验 证 cAMP 激活 PKA, 调控黄曲霉、构巢曲霉等 真菌中AF/杂色曲霉毒素(sterigmatocystin, ST) 的合成^[20],但也有研究表明 cAMP 途径不影响 尖孢镰刀菌(Fusarium oxysporum)中伏马菌素 (fumonisin, FB)的合成^[21]。在构巢曲霉 fadA 菌株中,组成型激活 Gα蛋白会抑制 ST 合成关 键基因 AnAfIR 的表达, 但会增强青霉素合成基 因 AnIpnA 的表达^[22],这与 Tsitsigiannis 等的研 究结果一致^[23]。可见, GPCRs介导外源信号分 子影响真菌毒素合成在不同菌种中结果不完全 一致,有时甚至会出现矛盾的现象,同时已报 道病原真菌的 GPCRs 超家族成员的数量及编 码基因序列在不同种类真菌之间也存在较大的 差异。综上所述,明确 GPCRs 的功能,对于探 明真菌产毒机理、真菌与寄主互作的机制,进 而防控农业生产中真菌危害具有重要的意义, 而目前为止, 赭曲霉中的 GPCRs 超家族尚未被 鉴定,其调节 OTA 合成的路径也未见报道。

本研究利用 NCBI 网站公布的赭曲霉菌株 fc-1 的全基因组数据,结合其他近缘模式曲霉 如黄曲霉、构巢曲霉中已报道的典型 GPCR 氨 基酸序列,通过生物信息学方法对赭曲霉 GPCRs 超家族成员进行鉴定;对其保守结构 域、理化性质、信号肽及转运肽和亚细胞定位 等特征进行分析;并对赭曲霉 GPCRs 及同源 蛋白的亲缘性进行比较,以期初步明确 GPCRs 超家族成员的组成,为进一步研究 GPCRs 在 赭曲霉生长、产毒及其与宿主互作过程中发挥 的作用奠定基础。

1 材料与方法

1.1 材料

赭曲霉菌株全基因组数据来自 NCBI 网站 (https://www.ncbi.nlm.nih.gov/ ; BioProject: PRJNA264608)^[24]。黄曲霉、构巢曲霉、烟曲 霉、米曲霉(A. oryzae)等曲霉属的 GPCRs 氨基 酸序列从 NCBI 网站、GPCRdb (https://www. gpcrdb.org/)及 Aspergillus Genome Database (http://www.aspgd.org/)中以关键词搜索,合并 去重复后获得。利用已发表的曲霉属中典型的 GPCRs 氨基酸序列在赭曲霉基因组中进行 BLASTp 比对(参数选择默认), E-value 值小于 0.001 的蛋白质作为候选 GPCR 蛋白。

1.2 保守结构域预测

利用 SMART 网站(http://smart.embl-heidelberg. de/)在线分析 *A.ochraceus* 中所含 GPCRs 所具有 的保守结构域特征^[25]。

1.3 跨膜结构域分析

利用 ExPASy 网站中的 Tmpred (https://ch.embnet.org/software/TMPRED_form.h tml)^[26]、TMHMM Server v.2.0 (https://services. healthtech.dtu.dk/service.php?TMHMM-2.0)^[27]及HMMTOP软件对候选 GPCRs 进行跨膜结构 域的分析,以做进一步的筛选。

1.4 蛋白质理化性质及疏水性预测

利用 ExPASy 网站中的 ProtParam (https:// web.expasy.org/cgi-bin/protparam/protparam/) 和 Protscale (https://web.expasy.org/protscale/)软件 对 GPCRs 进行理化性质分析及疏水性的预测^[28], 但不考虑蛋白质折叠后修饰情况。

1.5 信号肽及转运肽的预测

利用 ExPASy 网站中的 SignalP4.1Server (http://www.cbs.dtu.dk/services/SignalP-4.1/)^[29]

和 TargrtP (http://www.cbs.dtu.dk/services/TargetP/)^[30] 分别对 GPCRs 进行 N 端信号肽及转运肽的预测。

1.6 蛋白二级结构分析

利用 PHD 在线平台(https://npsa-prabi.ibcp. fr/)对 GPCRs 的二级结构进行分析。

1.7 蛋白亚细胞定位预测

利用 Softberry 网站中的 ProtComp v 9.0 (http://www.softberry.com/berry.phtml/)对 GPCRs 进行亚细胞定位预测。

1.8 系统发育树构建

通过 ClustalX 软件对赭曲霉及其他曲霉属 的 GPCRs 氨基酸序列进行多重序列比对分析^[31], 随后用 MEGA 5.1 中的邻近法(neighbor-joining) 构建系统发育树,各分支之间的距离计算采用 p-Distance 模型,系统可信度检测采用自举法 (bootstrapp)重复 1 000 进行^[32]。

2 结果与分析

2.1 赭曲霉 GPCRs 候选序列获取

在赭曲霉菌株 fc-1 全基因组(BioProject: PRJNA264608)序列中利用 BLASTp,与 A. flavus^[19]、A. nidulans、A. fumigatus 和 A. oryzae^[33]等曲霉属中已发表的典型的 GPCRs 的 氨基酸序列进行比对(表 1),共获取 E 值小于 0.001 的 15条候选 GPCRs 片段,由于赭曲霉中 未有 GPCR 蛋白及其编码基因的相关数据,故 本文中将获得的 GPCR 蛋白命名为 AoGprA-AoGprS 及 AoNopA。多数候选序列与黄曲霉中 的同源序列相似性最高,AoGprC 为 81%、 AoGprD 为 77%、AoGprJ 为 80%、AoGprP 为 90%、AoGprS 为 77%,AoGprO 与构巢曲霉同 源序列相似性最高,为 79%,其余候选序列与 其他曲霉中同源序列的同源性均低于 70% (结 果未显示)。

						Protein ID			
CI	C	Conserved			(Ne	o. of amino ac	ids)		
Class	Gene	domain (note)	A. niger	A. flavus	A. nidulans	A. fumigatus	A. oryzae	A. welwitschiae	A. steynii
Ι	gprA	STE2 GPCR	XP_	XP_	XP_	XP_	EIT81758.1	XP_	XP_
		(S. cerevisiae	001393734.1	002378818.1	660124.1	754193.1	(374 aa)	026625843.1	024708743.1
		pheromone	(378 aa)	(374 aa)	(430 aa)	(369 aa)		(379 aa)	(379 aa)
		receptor)							
II	gprB	STE3 GPCR	XP_	XP_	XP_	XP_	XP_	XP_	XP_024708
		(S. cerevisiae	001390270.2	002378906.1	681012.1	753848.1	023092254.1	026622518.1	957.1
		pheromone	(456 aa)	(465 aa)	(426 aa)	(460 aa)	(465 aa)	(457 aa)	(462 aa)
		receptor)							
III	gprC	Git3; Git3_C	XP_	XP_	XP_	XP_	XP_	XP_	XP_
		(S. pombe glucose	001396273.1	002372333.1	661369.1	749030.2	023088842.1	026620525.1	024709498.1
		receptor)	(446 aa)	(444 aa)	(439 aa)	(445 aa)	(373 aa)	(445 aa)	(441 aa)
	gprD	Git3; Git3_C	XP_	XP_	XP_	XP_	XP_	XP_	XP_
		(S. pombe glucose	001399296.1	002379581.1	660991.1	755596.1	023091006.1	026625230.1	024703046.1
		receptor)	(417 aa)	(415 aa)	(427 aa)	(418 aa)	(431 aa)	(417 aa)	(419 aa)
IV	gprF	PQ loop repeat	XP_	XP_	XP_	XP_	000	XP_	XP_
		(S. pombe	001393966.2	002382886.1	663324.1	747934.1	11705.1	026625633.1	024698429.1
		nitrogen sensor)	(385 aa)	(300 aa)	(312 aa)	(391 aa)	(388 aa)	(385 aa)	(384 aa)
	gprG	PQ loop repeat	XP_00139252	2 XP_	CBF	XP_	XP_	XP_	XP_
		(S. pombe	7.2	002380336.1	88144.1	752556.1	023089637.1	026631/83.1	024698997.1
T 7		nitrogen sensor)	(431 aa)	(426 aa)	(424 aa)	(431 aa)	(426 aa)	(431 aa)	(389 aa)
V	gprH	Secretin family	XP_	XP_	XP_	XP_	000	XP_	XP_
		(signal through	025449723.1	002382890.1	681531.1	001481495.1	11702.1	026624216.1	024698426.1
n 7	,	cAMP pathways)	(309 aa)	(428 aa)	(404 aa)	(413 aa)	(428 aa)	(309 aa)	(3/2 aa)
IV	gprJ	PQ loop repeat	AP	AP	XP	XP_ 750422.1	AP_ 00101000002	AP_	XP_ 024702222 1
		(S. pombe	(224)	(222 - 1)	(212 - 2)	/50433.1	(212 - 1)	(224 - 1)	(251 - 1)
νл	~~~V	DCS domain	(324 aa)	(522 aa)	(512 aa)	(520 aa)	(515 aa)	(524 aa)	(551 aa)
VI	gprĸ	(regulator of G	AF_ 025448082.1	AF_ 002385224 1	AF_ 681064.1	AF_ 746323.2	AF_ 001826832.1	AF_ 026620316.1	AF_ 024702045 1
		(regulator of O	(601 aa)	(560.22)	(563 aa)	(559.23)	(560.22)	(560.20)	(603.22)
νл	anrM	(No conserved	(0)1 aa) XP	(JOU aa) XP	(505 aa) XP	(JJ) aaj	(500 aa) XP	(JOO aa) XP	(005 aa) XP
VП	SPI M	domains	001391376.2	002372417 1	664284 1	748979 2	023088881 1	026626712.1	024701329.1
		domanis	(499 aa)	(490 aa)	(489.aa)	(497 aa)	(433 aa)	(499 aa)	(497 aa)
VIII	onr()	Hemolysin III	XP	XP	XP	XP	XP	XP	XP
VШ	Spro	related (broad	001397764.2	002374723.1	662536.1	754562.1	001819766.3	026627463.1	024708266.1
		range of ligands)	(479 aa)	(282 aa)	(318 aa)	(321 aa)	(318 aa)	(327 aa)	(317 aa)
	gprP	Hemolvsin III	XP	XP	XP	XP	XP	XP	XP
	or	related (broad	001392002.1	002373732.1	662755.1	750609.1	001818492.3	026632081.1	024700758.1
		range of ligands)	(500 aa)	(502 aa)	(498 aa)	(500 aa)	(502 aa)	(500 aa)	(499 aa)
	gprR	RGS domain	XP	XP	XP	XP	XP	XP	XP
	C1	(regulator of G	025448982.1	002373818.1	681064.1	746323.2	001826832.1	026619279.1	024702945.1
		protein signaling)	(691 aa)	(523 aa)	(563 aa)	(559 aa)	(560 aa)	(564 aa)	(603 aa)
	gprS	PQ loop repeat	XP_	XP_	/	KAH	XP_	XP_	XP_
		(S. pombe	001393900.2	002382832.1		2918632.1	001822712.3	026625697.1	024707194.1
		nitrogen sensor)	(266 aa)	(266 aa)		(218 aa)	(192 aa)	(266 aa)	(260 aa)
IX	nopA	Bacterio	XP_	XP_	XP_	XP_	XP_	XP_	XP_
		rhodopsin-like	001395233.1	002384504.1	660965.1	746789.1	001827251.1	026628840.1	024706887.1
		(photoreactive)	(305 aa)	(312 aa)	(320 aa)	(304 aa)	(312 aa)	(305 aa)	(308 aa)
/: GP	CR of	f this class has not l	been found in t	his strain.					

表1 曲霉属中 GPCRs 种类及 NCBI 数据库中蛋白质编号

Table 1 GPCRs class type and NCBI protein ID in Aspergillus sp.

🖂 actamicro@im.ac.cn, 🕾 010-64807516

2.2 赭曲霉 GPCRs 超家族成员跨膜结构 域分析

典型的 GPCR 具有 7个跨膜结构,基于 SMART 保守结构域分析,发现候选序列中 除 AoGprA、AoGprF、AoGprG 外均具有 7 次跨膜结构(CTNS 结构域具有 2 个跨膜螺 旋^[34]),其中 AoGprK 和 AoGprR 还存在 G 蛋 白 信 号 调 控 因 子 (regulators of G-protein signaling, RGS)结构域(图 1)。RGS 蛋白是 多功能的 GTP 酶加速蛋白,其通过异源三聚 体 G 蛋白的 α 亚基促进 GTP 水解,从而使 G 蛋白失活并快速切断 G 蛋白偶联受体信号传导途径。

由于 SMART 是基于 TMHMM 程序对跨膜 结构进行分析^[35],为了更好地分析 GPCR 跨膜 结构,同时利用 TMHMM、TMpred 和 HMMTOP 软件预测赭曲霉候选 GPCRs 的跨膜结构域(表 2), 3 种方法预测出的跨膜次数、跨膜起始位置、 终止位置并不相同,这可能是与各程序的算法 有关。15 条候选序列均能被至少一个软件预测 出 7 次跨膜结构,故需进一步探讨候选序列的 其他性质。

图 1 赭曲霉 GPCRs 的保守结构域示意图

Figure 1 Conserved domains of GPCRs in Aspergillus ochraceus.

表 2 赭曲霉 GPCRs 跨膜情况预测

 Table 2
 Prediction of GPCRs transmembrane status of Aspergillus ochraceus

		2.	TM1		TM2		TM3	}	TM4	,	TM5		TM6		TM7		TM8	
Name	Software	Time	From	То	From	То	Fron	n To	From	То	From	n To	From	То	From	То	From	То
AoGprA	TMHMM	4	45	64							158	180	200	222	235	257		
	TMpred(I-O)	7	47	65	76	96			121	142	158	181	203	224	240	258	271	289
	TMpred(O-I)	8	49	67	71	91	86	108	114	136	158	180	203	224	240	264	267	286
	HMMTOP	7	48	65			82	101	118	142	159	183	200	224	241	258	271	290
AoGprB	TMHMM	7	11	33	40	62	82	104	124	146	166	188	216	238	277	294		
	TMpred(I-O)	8	11	31	37	56	83	105	124	144	168	186	216	239	273	294	304	323
	TMpred(O-I)	7	11	31	38	56	82	105	124	146	165	193	216	239	278	298		
	HMMTOP	7	8	31	42	61	82	105	124	143	166	190	219	242	273	292		
AoGprC	TMHMM	7	45	67	87	109	129	151	164	186	209	231	258	280	290	312		
	TMpred(I-O)	7	39	64	89	115	128	149	159	179	209	227	254	275	288	308		
	TMpred(O-I)	7	39	64	89	113	126	149	158	178	212	230	254	277	288	311		
	HMMTOP	7	42	62	83	102	133	149	156	179	210	230	255	274	289	308		
AoGprD	TMHMM	7	10	32	52	74	94	116	129	151	174	196	223	245	255	277		
	TMpred(I-O)	7	47	69	81	109	139	155	167	184	213	230	258	279	292	312		
	TMpred(O-I)	7	45	69	81	109	139	156	164	184	216	232	263	282	291	315		
	HMMTOP	7	47	66	87	106	137	156	163	182	213	232	259	278	291	310		
AoGprF	TMHMM	4					137	159	174	196	213	235	267	289				
	TMpred(I-O)	5	2	22			137	157	178	195	212	230	262	285				
	TMpred(O-I)	5	1	21			137	157	181	205	213	230	269	285				
	HMMTOP	7	5	24	35	54	59	78	200	219	246	265	276	295	326	345		
AoGprG	TMHMM	5	36	58	75	97	102	124					286	308	339	361		
	TMpred(I-O)	7	42	64	69	92	104	122	218	237	254	270	286	304	339	358		
	TMpred(O-I)	7	40	58	77	97	104	123	219	237	254	270	286	305	335	358		
	HMMTOP	5	39	58	73	96	105	124					289	308	339	358		
AoGprH	TMHMM	7	20	39	46	68	83	105	118	140	164	186	302	324			339	361
	TMpred(I-O)	8	21	39	46	64	83	107	123	140	167	189	301	319	321	348	337	361
	TMpred(O-I)	7	20	39	46	64	86	107	122	140	167	186	296	318			330	361
	HMMTOP	7	17	35	46	63	90	107	122	140	167	185	296	314			341	358
AoGprJ	TMHMM	7	24	46	58	80	84	106	186	208	223	242	255	277	292	314		
	TMpred(I-O)	7	1	17	27	46	70	90	189	209	222	239	257	274	285	307		
	TMpred(O-I)	6			27	46	76	92	185	204	222	243	259	275	285	308		
	HMMTOP	7	24	43	56	75	84	105	186	203	222	239	256	277	284	301		
AoGprK	TMHMM	7	22	44	57	79	89	111	157	179	208	230	243	265	275	297		
	TMpred(I-O)	7	19	39	62	85	87	107	158	178	210	229	272	295	330	352		
	TMpred(O-I)	6	24	44	50	70	87	106	159	178	210	230	280	298				
	HMMTOP	7	20	43	56	80	89	106	157	179	210	229	246	265	280	298		
AoGprM	TMHMM	7	65	87	94	116	136	158	179	201	226	248	289	311	356	375		
	TMpred(I-O)	7	65	89	96	114	139	158	181	199	227	244	295	311	356	377		
	TMpred(O-I)	7	68	86	96	114	136	155	177	204	221	244	292	311	356	376		
	HMMTOP	7	69	88	97	116	139	158	179	202	225	244	292	311	358	377		

																	(到	(表 2)
AoGprO	TMHMM	6					117	139	154	176	183	205	215	237	244	263	283	305
	TMpred(I-O)	8	61	81	81	100	116	135	152	175	185	204	214	232	245	262	282	302
	TMpred(O-I)	8	55	76	83	100	116	134	155	174	183	204	214	232	245	265	284	305
	HMMTOP	7			81	100	117	135	156	174	183	201	214	232	245	264	285	302
AoGprP	TMHMM	7	261	283	296	318	333	355	362	384	394	413	420	442	457	479		
	TMpred(I-O)	7	263	283	296	315	335	355	364	380	394	414	427	446	461	479		
	TMpred(O-I)	7	263	283	295	315	330	356	362	380	394	413	421	445	459	477		
	HMMTOP	7	261	280	295	315	330	347	362	379	394	411	426	443	456	473		
AoGprR	TMHMM	7	10	32	45	67	77	99	145	167	196	218	231	253	263	285		
	TMpred(I-O)	7	7	27	50	73	75	95	146	166	198	217	260	283	318	340		
	TMpred(O-I)	6	12	32	38	58	75	94	147	166	198	218	268	286				
	HMMTOP	7	8	31	44	68	77	94	145	167	198	217	234	253	268	286		
AoGprS	TMHMM	7	2	24	39	61	68	87	128	147	154	176	186	208	215	237		
	TMpred(I-O)	7	3	25	38	61	63	83	128	146	149	177	191	210	219	238		
	TMpred(O-I)	7	6	25	38	61	63	83	131	150	149	177	200	220	212	235		
	HMMTOP	7	4	23	36	54	63	82	130	149	158	176	189	210	219	237		
AoNopA	TMHMM	6	49	66	81	103	140	162	182	204	217	239	254	273				
	TMpred(I-O)	7	48	67	77	98	156	180	183	201	218	238	253	270	257	284		
	TMpred(O-I)	6	49	67	76	96	157	180	183	201	218	236	257	284				
	HMMTOP	6	48	67	80	98	140	162	183	202	219	238	265	284				

I-O: transmembrane direction from intracellular to extracellular; O-I: transmembrane direction from extracellular to intracellular.

2.3 赭曲霉 GPCRs 超家族蛋白质理化性质及疏水性预测

赭曲霉中比对出的 GPCRs 在酸碱性、极 性与非极性氨基酸组成及所占比例存在差异 (表 3)。其相对分子质量在 30-65 kDa 之间,偏 中性或碱性;非极性疏水氨基酸比例均高于极 性亲水氨基酸,并且根据总平均亲水指数(grand average of hydropathicity, GRAVY)判断,除 AoGprG、AoGprK、AoGprR 为亲水性蛋白 外,其余 GPCRs 为疏水性蛋白,这符合膜蛋 白将疏水性残基暴露于蛋白分子表面接触磷脂 双分子层,跨膜区域为高疏水性的结构特点; 半衰期差异较大,且除 AoGprG、AoGprR、 AoGprS 不稳定系数小于 40 为稳定蛋白外,其 余 GPCRs 不稳定系数均大于 40,为不稳定蛋白 (表 4),不稳定系数与氨基酸长度及特定的二肽 有关^[36],侧面反映了 GPCR 的功能活跃。

2.4 赭曲霉 GPCRs 超蛋白家族的信号肽 及转运肽分析

信号肽是蛋白质 N-末端的一段疏水性的、用 于引导新合成蛋白质向通道转移的短肽链;转运 肽是一段引导蛋白质进入线粒体和叶绿体的富含 碱性氨基酸的前导序列。对赭曲霉候选 GPCRs 超 蛋白家族的信号肽及转运肽分析表明,其中均不 含有信号肽及转运肽(表 5)。首先,这符合 GPCR 定位于膜的特性,同时这与结果 2.3 中分析出 GPCRs 超家族碱性氨基酸比例较低的结果相符。

2.5 赭曲霉 GPCRs 超家族蛋白的二级结构分析

典型 GPCR 的跨膜区为 α 螺旋结构。通过 PHD 在线网站对赭曲霉 GPCR 超家族进行二级 结构分析,结果表明所有 GPCRs 均由 α-螺旋 (alpha helix)、延伸链(extended strand)和无规则 卷曲(random coil)组成,其中 α-螺旋占比为 24.18%–64.99% (表 6)。

(+++ +)

表 3 赭曲霉 GPCRs 的氨基酸组成

 Table 3
 Amino acid composition of GPCRs in Aspergillus ochraceus

Name		Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao	Ao
INAILIC		GprA	GprB	GprC	GprD	GprF	GprG	GprH	GprJ	GprK	GprM	GprO	GprP	GprR	GprS	NopA
Acidic	Glu	12	9	20	17	10	16	14	11	27	23	4	30	24	8	9
amino	(E)	3.2%	2.0%	4.8%	3.9%	2.7%	3.7%	3.4%	3.4%	4.6%	4.6%	1.3%	6.0%	4.3%	3.1%	2.9%
acid/%	Asp	11	19	15	20	19	24	9	11	26	14	11	21	25	9	13
	(D)	2.9%	4.2%	3.6%	4.5%	5.2%	5.6%	2.2%	3.4%	4.5%	2.8%	3.5%	4.2%	4.5%	3.5%	4.2%
Basic	Arg	20	25	31	28	14	21	30	15	24	23	19	34	22	10	11
amino	(R)	5.3%	5.5%	7.4%	6.4%	3.8%	4.9%	7.4%	4.7%	4.1%	4.6%	6.0%	6.8%	3.9%	3.8%	3.6%
acid/%	Lys	9	19	9	12	6	9	10	6	28	18	3	15	27	7	10
	(K)	2.4%	4.2%	2.2%	2.7%	1.6%	2.1%	2.5%	1.9%	4.8%	3.6%	0.9%	3.0%	4.8%	2.7%	3.3%
	His	3	12	13	13	7	9	6	2	14	11	16	16	14	4	9
	(H)	0.8%	2.6%	3.1%	3.0%	1.9%	2.1%	1.5%	0.6%	2.4%	2.2%	5.1%	3.2%	2.5%	1.5%	2.9%
Polar	Asn	15	24	11	12	11	13	12	18	13	13	5	13	13	5	6
amino	(N)	4.0%	5.3%	2.6%	2.7%	3.0%	3.0%	2.9%	5.6%	2.2%	2.6%	1.6%	2.6%	2.3%	1.9%	2.0%
acid/%	Cys	9	11	5	4	9	6	8	8	8	16	7	13	8	4	0
	(C)	2.4%	2.4%	1.2%	0.9%	2.5%	1.4%	2.0%	2.5%	1.4%	3.2%	2.2%	2.6%	1.4%	1.5%	0.0%
	Gln	16	10	16	16	19	16	13	14	23	14	13	12	23	9	7
	(Q)	4.3%	2.2%	3.8%	3.6%	5.2%	3.7%	3.2%	4.4%	3.9%	2.8%	4.1%	2.4%	4.1%	3.5%	2.3%
	Gly	19	24	26	27	27	35	19	28	43	36	25	25	40	15	23
	(G)	5.1%	5.3%	6.2%	6.1%	7.4%	8.2%	4.7%	8.7%	7.4%	7.3%	7.9%	5.0%	7.1%	5.8%	7.5%
	Ser	41	52	31	40	45	53	48	21	57	44	20	39	52	25	18
	(S)	11.0%	11.4%	7.4%	9.1%	12.3%	12.4%	11.8%	6.5%	9.8%	8.9%	6.3%	7.8%	9.3%	9.6%	5.9%
	Thr	24	27	23	27	17	23	20	18	30	27	16	30	28	11	22
	(T)	6.4%	5.9%	5.5%	6.1%	4.7%	5.4%	4.9%	5.6%	5.1%	5.4%	5.1%	6.0%	5.0%	4.2%	7.2%
	Tyr	11	13	21	17	15	18	21	12	16	17	13	24	16	14	12
	(Y)	2.9%	2.9%	5.0%	3.9%	4.1%	4.2%	5.2%	3.7%	2.7%	3.4%	4.1%	4.8%	2.9%	5.4%	3.9%
	Total	36.1%	35.4%	31.7%	32.4%	39.2%	38.3%	34.7%	37.0%	32.5%	33.6%	31.3%	31.2%	32.1%	31.9%	28.8%
Nonpo	Ala	30	28	33	36	27	32	36	38	42	33	32	50	40	23	32
lar	(A)	8.0%	6.2%	7.9%	8.2%	7.4%	7.5%	8.8%	11.8%	7.2%	6.7%	10.1%	10.1%	7.1%	8.8%	10.5%
amino	Val	38	35	37	31	25	24	25	22	41	39	26	34	41	18	36
acid/%	(V)	10.2%	7.7%	8.9%	7.0%	6.8%	5.6%	6.1%	6.9%	7.0%	7.9%	8.2%	6.8%	7.3%	6.9%	11.8%
	Leu	44	37	48	46	44	51	34	33	49	51	39	52	48	31	36
	(L)	11.8%	8.1%	11.5%	10.5%	12.1%	11.9%	8.4%	10.3%	8.4%	10.3%	12.3%	10.5%	8.6%	11.9%	11.8%
	Ile	24	38	27	39	22	17	33	22	37	29	14	22	36	16	2.0
	(II)	6.4%	8.4%	6.5%	8.9%	6.0%	4 0%	8.1%	6.9%	6.3%	5.8%	4 4%	4 4%	6.4%	6.2%	6.5%
	Trn	3	14	9	10	4	11	12	10	24	13	8	11	24	7	9
	(W)	0.8%	3.1%	2 2%	2 3%	1 1%	2.6%	2.9%	3 1%	4 1%	2.6%	2 5%	2.2%	4 3%	, 2.7%	2.9%
	Met	7	10	14	10	2	9	7	5	15	14	7	14	1.570	11	3
	(M)	1 0%	2 2%	3 30%	2 3%	0.5%	2 1%	1 7%	1.6%	2.6%	2.8%	2 20%	2 8%	2 5%	1 2%	1.0%
	(IVI) Dha	1.270	2.270	10	10	20	2.170	25	1.070	2.070	2.070	1.2.70	2.070	2.570	20	1.070
	(F)	22 5 00/	21 5 00/	10	17	20 5 50/	1/	23 6 10/	1.5	21 1 60/-	20 5.6%	10 5 70/	21 5 10/-	۲ م ۲ 80/	20 7 70/	12 2 00/
	(r) Dra	J.970	J.770	+.570	+.370 16	5.5% 22	4.070 25	0.170	+./70	+.070 20	22	20 20	J.470	+.070 20	1./70	J.770
	(D)	10	21 1 60/	11	10	22 6.00/	23 5 00/	23 6 10/	12	37 6 70/	33 6 70/	20 6 20/	1.5	30 6 00/	13 5 00/	10 5 00/
	(P)	4.3%	4.0%	2.0%	3.0%	0.0%	J.8%	0.1%	3./%	0./%	0./%	0.3%	3.0%	0.8%	J.U%	5.9%
	Total	49.3%	46.2%	47.2%	47.1%	45.4%	43.5%	48.2%	49.0%	46.9%	48.4%	51.7%	45.2%	47.8%	53.4%	54.3%

表 4 赭曲霉 GPCRs 的基本理化性质

Table 4 Basic physicochemical properties of GPCRs in Aspergillus ochraceus

	Molecular	Theoretical			1	Atom	5			Instability	Aliphatic	Grand average of
Name	weight/Da	pI	С	Н	N	0	S	Total number of atoms	rHalf-life	index	index	hydropathicity (GRAVY)
AoGprA	40 950.65	8.84	1 853	2 945	483	528	16	5 825	30.0	47.99	108.40	0.435
AoGprB	51 134.12	9.44	2 326	3 589	621	638	21	7 195	1.9	41.72	92.75	0.123
AoGprC	47 591.22	8.84	2 163	3 368	582	591	19	6 723	30.0	49.62	103.54	0.169
AoGprD	49 342.95	8.55	2 242	3 502	600	627	14	6 985	30.0	46.98	103.95	0.153
AoGprF	39 608.03	5.17	1 792	2 757	461	531	11	5 552	1.1	58.82	97.78	0.191
AoGprG	47 048.13	5.37	2 111	3 229	559	633	15	6 547	30.0	53.67	85.50	-0.087
AoGprH	46 103.31	9.64	2 1 2 2	3 2 3 4	556	568	15	6 495	30.0	50.90	90.86	0.127
AoGprJ	34 964.13	6.14	1 586	2 4 4 0	418	449	13	4 906	30.0	36.45	98.54	0.268
AoGprK	65 049.69	6.92	2 971	4 529	771	829	23	9 123	30.0	40.35	85.13	-0.064
AoGprM	55 171.24	8.26	2 522	3 877	645	686	30	7 760	30.0	49.78	92.36	0.211
AoGprO	35 060.80	9.14	1 618	2 456	434	414	14	4 936	30.0	46.81	99.40	0.323
AoGprP	56 482.84	6.76	7 884	3 906	682	718	27	7 884	30.0	55.91	87.97	0.016
AoGprR	62 701.16	7.47	2 877	4 371	741	791	22	8 802	>20.0	38.93	86.87	-0.029
AoGprS	29 350.35	6.89	1 372	2 064	326	359	15	4 136	30.0	35.35	99.42	0.466
AoNopA	33 317.78	6.82	1 556	2 409	389	416	3	4 773	100.0	40.38	115.95	0.469

表 5 赭曲霉 GPCRs 的信号肽及转运肽分析

Table 5	Analysis of	signal	peptide and	transport	peptide of	GPCRs in As	pergillus ochraceu
---------	-------------	--------	-------------	-----------	------------	-------------	--------------------

Name	Mitochondrial transporter peptide (mTP)	Signal peptide (SP)	Other	Signal peptide or not
AoGprA	0	0	1	NO
AoGprB	0.000 7	0.005 2	0.994 2	NO
AoGprC	0.001 2	0	0.998 7	NO
AoGprD	0.000 3	0	0.999 7	NO
AoGprF	0.000 3	0.038 3	0.961 4	NO
AoGprG	0.000 1	0.000 1	0.999 9	NO
AoGprH	0.000 2	0	0.999 8	NO
AoGprJ	0.001 2	0.001 4	0.997 3	NO
AoGprK	0.000 1	0.000 2	0.999 6	NO
AoGprM	0	0	1	NO
AoGprO	0	0	1	NO
AoGprP	0	0	1	NO
AoGprR	0.001 1	0.001 6	0.982 9	NO
AoGprS	0.002 5	0.022 6	0.974 9	NO
AoNopA	0	0	1	NO

http://journals.im.ac.cn/actamicrocn

	arysis of secondary structure	e of of otors in hsperginus bennu	сеиз	
Name	Alpha helix (Hh)	Extended strand (Ee)	Random coil (Cc)	
AoGprA	108 (28.88%)	124 (33.16%)	142 (37.97%)	
AoGprB	110 (24.18%)	114 (25.05%)	231 (50.77%)	
AoGprC	161 (38.52%)	71 (16.99%)	186 (44.50%)	
AoGprD	162 (36.82%)	72 (16.36%)	206 (46.82%)	
AoGprF	86 (28.38%)	50 (16.50%)	167 (55.12%)	
AoGprG	129 (30.07%)	64 (14.92%)	236 (55.01%)	
AoGprH	135 (33.17%)	76 (18.67%)	196 (48.16%)	
AoGprJ	51.71%	9.97%	38.32%	
AoGprK	236 (40.48%)	61 (10.46%)	286 (49.06%)	
AoGprM	170 (34.27%)	81 (16.33%)	245 (49.40%)	
AoGprO	163 (51.58%)	48 (15.19%)	105 (33.23%)	
AoGprP	323 (64.99%)	65 (13.08%)	109 (21.93%)	
AoGprR	231 (41.25%)	58 (10.36%)	271 (48.39%)	
AoGprS	129 (49.62%)	37 (14.23%)	94 (36.15%)	
AoNopA	112 (36.60%)	78 (25.49%)	116 (37.91%)	

表 6 赭曲霉 GPCRs 的二级结构分析

Table 6 Analysis of secondary structure of GPCRs in Aspergillus ochraceus

The secondary structure of AoGprJ sequence PHD cannot be calculated, and the results can be obtained by online analysis of predict protein.

2.6 赭曲霉 GPCRs 超蛋白家族的亚细胞 定位分析

曲霉 GPCRs 超蛋白家族的亚细胞定位分 析结果表明, AoGprA、AoGprC、AoGprD、 AoGprH、AoGprM、AoGprP、AoGprS 最可能 位于质膜, AoGprK、AoGprO、AoGprR、 AoNopA 可能位于内质网, AoGprF、 AoGprG、AoGprJ可能定位于液泡膜,AoGprB 可能位于高尔基体质膜。传统意义上 GPCRs 被认为定位于细胞表面,行使传递细胞内外信 号交流的作用(表 7)。但近年来的研究显示, 许多 GPCRs 也被发现可以结合不同的信号系 统,并分布于不同的胞内膜^[37-39],如人类内皮 细胞、大脑和/或肝细胞核发现的前列腺素 EP3 和 EP4 受体^[40];神经元内质网及核膜发现的代 谢型谷氨酸受体 mGlu5^[41-42]; GPCRs 还被发现 在囊泡、线粒体^[43]、核膜^[44-47],甚至在核体和 /或核内陷的核浆内^[48-50]。

2.7 赭曲霉 GPCRs 超家族成员遗传关系 分析

GPCRs 跨膜区域保守,根据序列同源性, 国际基础与临床药理学联合会(The International Union of Basic and Clinical Pharmacology, IUPHAR)药理学指南将其分为 6 类: A (视紫红素样受体 rhodopsin-like)、B (分泌素受体家族 secretin receptor family)、C (代谢型谷氨酸受体 metabotropic glutamate)、D (真菌交配信息素受体 fungal mating pheromone receptors)、E (环单磷酸腺苷受体 cyclic AMP receptors)以及 F (卷曲型受体 frizzled)即 GRAFS 分类系统^[51]。而由于真菌同 源性与哺乳动物较低,不能归为上述 GPCRdp 中的综合分类,所以对真菌有单独的划分系 统,目前发现了14类,包括6类典型GPCR: class I (α -factor pheromone), class II (a-factor pheromone), class III (carbon source), class IV

Tuble /	Treatetto	II OI Sut		JeanZain			perginus e	ichi accus			
Nama	Subcellular	Nuclear	Plasma	Extracel-	Cytoplas-	Mitochon-	Endoplasm.	Peroxiso-	Lucocomol	Galai	Vacualar
Name	localization		membrane	lular	mic	drial	retic.	mal	Lysosoniai	Goigi	vacuolai
AoGprA	Plasma membrane	1.08	6.31	0.00	0.00	0.15	1.27	0.00	0.00	0.38	0.83
AoGprB	Golgi	0.33	1.59	0.31	0.15	0.32	1.01	0.00	0.31	5.28	0.70
AoGprC	Plasma membrane	0.00	8.39	0.16	0.20	0.48	0.00	0.00	0.00	0.78	0.00
AoGprD	Plasma membrane	0.02	3.46	0.00	0.32	0.00	2.88	0.00	1.31	0.30	1.70
AoGprF	Vacuolar	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	9.97
AoGprG	Vacuolar	0.00	0.21	0.05	0.00	0.00	0.51	0.57	0.02	0.02	8.62
AoGprH	Plasma membrane	0.26	5.64	1.27	0.32	1.24	0.26	0.16	0.00	0.85	0.00
AoGprJ	Vacuolar	0.03	0.17	0.00	0.00	0.02	0.00	0.01	0.00	0.03	9.74
AoGprK	Endoplasm. retic	0.32	2.34	0.97	0.35	0.90	4.23	0.12	0.00	0.77	0.00
AoGprM	Plasma membrane	0.01	7.57	0.12	0.10	0.28	0.00	0.00	0.00	1.91	0.00
AoGprO	Endoplasm. retic	0.02	4.42	0.00	0.00	0.07	5.44	0.00	0.00	0.00	0.04
AoGprP	Plasma membrane	0.00	9.92	0.00	0.00	0.05	0.00	0.00	0.00	0.02	0.01
AoGprR	Endoplasm. retic	0.12	2.15	1.35	0.23	0.45	5.13	0.13	0.00	0.43	0.00
AoGprS	Plasma membrane	0.95	3.96	0.33	0.30	0.85	2.15	0.00	0.20	0.42	0.85
AoNopA	Endoplasm. retic	0.17	0.00	0.00	0.00	0.00	9.83	0.00	0.00	0.00	0.00

表 / 赭田莓 GPCRs 的业细胞定位的

 Table 7
 Prediction of subcellular localization of GPCRs in Aspergillus ochraceus

(nitrogen/nutrient)、class V (cAMP)、class IX (microbial opsins),此外还有 8 类新发现的受体 class VI (RGS domain)、 class VI (MG00532-like)、class VII (mPR-like)、class X (PTMI-like)、class XII (GPCR89/ABA)、class X II (family C-like)、class XII (SGPR11)、class XIV (Pth11-like)^[52-54],而随着技术的不断升 级,GPCRs 家族种类还在进一步扩增。

对赭曲霉中 15 条候选 GPCRs 的氨基酸序 列进行亲缘关系分析,所得的系统发育树中出 现了几个较明显的聚类(图 2):GprK 和 GprR 同 根的支持度为 100%,二者可能为同一序列, 事实上, GprK和GprR都代表具有RGS结构域的 class VI GPCR, A. niger、A. flavus、A. nidulans、A. fumigatus、A. oryzae、A. welwitschiae、A. steynii中二者均为同一序列;GprC和GprD亲缘关系较近,二者在模式菌株A. nidulans和A. flavus中已有研究,归类为Class III,可感知碳源及脂氧合物,下游通路为 cAMP-PKA,调节菌株的毒素产生;GprF、GprJ、GprG 归为一类,代表感知氮源的 class IV。另外进行赭曲霉中 GPCR 序列于其他曲霉属中同源序列的系统发育分析,各类 GPCR 聚类情况基本与赭曲霉中相似(图 3),反映了GPCR 进化上的保守性。

Figure 2 Cluster analysis of GPCRs family in Aspergillus ochraceus.

图 3 曲霉属中 GPCRs 家族的系统发育树

Figure 3 Phylogenetic tree of the GPCRs family in Aspergillus sp..

3 讨论与结论

中国是谷物粮食生产及消费大国, 而主要 由 A. ochraceus 产生的 OTA 在谷物类农产品中 广泛分布,潜伏着巨大的食品安全隐患。目前 粮食中 OTA 的脱毒方法主要采用物理吸附 剂,而被认为很有应用前景的微生物脱毒法, 由于菌株脱毒功能的不稳定而限制了其应用。 因而, 深入研究靶向控制 OTA 产生的阻断剂 成为一个热点领域,而这一工作的前提是找到 特异的减少 OTA 产生的分子靶点。GPCRs 是 调控多个重要信号通路的起点,也是药物靶点 和药物设计的丰富资源,超过 40%的临床药物 靶标于 GPCRs^[55], 如目前广泛应用的肾上腺受 体激动剂和阻滞剂、胆碱受体激动剂和阻滞剂 等。另一方面, GPCRs 配体种类多样, 已确定 的仅占一小部分,更多的是配体及下游效应器 均未阐明的孤儿 GPCRs (orphan GPCRs),其作 为药物靶点的巨大潜力尚待挖掘。随着测序技 术的发展与成熟,包括 A. ochraceus 在内的多 种曲霉全基因组被成功解析,为从全基因组水 平分析和鉴定蛋白家族提供了便利。目前,虽 然没有 GPCRs 作为直接靶蛋白的抑制剂报道, 但已有研究将真菌中的 GPCRs 与毒素产生联 系起来。A. fumigatus 转录组分析显示, 与野生 型相比, $\Delta g pr M$ 、 $\Delta g pr J$ 菌株与次级代谢、黑色 素和非核糖体多肽代谢相关基因表达上调, GprM (class VII)、GprJ (class IV)通过有丝分裂 原蛋白激酶(mitogen-activated protein kinase, MAPK)通路负调控次级代谢物(黑色素)编码基 因^[56]; gprK 基因缺失抑制 A. fumigatus 的无性 发育,关键的发育激活因子表达减少,同时与 转运有关的基因下调^[57]。A. nidulans 的全基因 组转录数据的代谢网络分析显示, GPCRs 与不 同碳源的感知^[58]、氧化应激^[59]有关。但 A. ochraceus 中还尚无 GPCR 相应的报道,因此, 从全基因组中筛选、预测与分析赭曲霉 GPCRs 超家族,可以完善 GPCRs 的理论基础,进而深 入探究赭曲霉中调控生长发育和 OTA 产生的 GPCRs 及其信号途径,为控制食品 OTA 生物合 成的阻断剂研究提供靶向信号通路或靶分子, 具有巨大的研究潜力和良好的应用前景。

本研究利用 BLASTp 对赭曲霉全基因组进 行氨基酸序列比对,获得了15条 GPCR 候选蛋 白,有6条候选序列与已鉴定的同源序列相似 性达 70%以上。利用 SMART 分析其保守结构, 同时利用 TMHMM、TMpred 和 HMMTOP 重点 分析其是否具有 GPCRs 超家族的典型 7 次跨膜 结构特征, 15条序列均被至少一种软件预测出 7 次跨膜结构域。其次分析候选序列的理化性 质,12个候选蛋白为疏水蛋白;12个候选蛋白 为不稳定蛋白,这符合膜蛋白的疏水特性。候 选蛋白均非信号肽或转运肽,均由 α-螺旋、延 伸链和无规则卷曲组成。7个候选蛋白定位于 细胞膜上,但不排除胞内膜蛋白存在的可能, 还需要进一步实验验证。15条候选蛋白可归为 9类, class III、class IV和 class VI有明显的聚类, 同时也与其他曲霉属中的同源蛋白基于保守结 构的归属一致。本研究下一步将从基因层面研 究赭曲霉中预测出各 GPCR 的功能,寻找其配 体、下游激活通路以及对 OTA 合成基因簇上关 键基因的调控作用,最终期望以 GPCRs 为靶 标,从源头防控粮食中的 OTA 污染。

参考文献

- [1] San-Martín, Rovirosa J, Vaca I, Vergara K, Acevedo L, Viña D, Orallo F, Chamy MC. New butyrolactone from a marine-derived fungus *Aspergillus* sp.. *Journal of the Chilean Chemical Society*, 2011, 56(1): 625–627.
- [2] Kőszegi T, Poór M. Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at

the molecular level. Toxins, 2016, 8(4): 111.

- [3] Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors. *The EMBO Journal*, 1993, 12(4): 1693–1703.
- [4] Ja B, Ad J, Liapakis G, Sg R, Shi L, Gether U, Ja J. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. *The Journal* of Biological Chemistry, 2001, 276(31): 29171–29177.
- [5] Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbe JC, Miller GJ, Hebert TE. The expanding roles of G beta gamma subunits in G protein-coupled receptor signaling and drug action. *Pharmacological Reviews*, 2013, 65(2): 545–577.
- [6] Brown NA, Schrevens S, Van Dijck P, Goldman GH. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. *Nature Microbiology*, 2018, 3(4): 402–414.
- [7] Xue C, Bahn YS, Cox GM, Heitman J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in *Cryptococcus* neoformans. Molecular Biology of the Cell, 2006, 17(2): 667–679.
- [8] Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 2007, 1773(8): 1311–1340.
- [9] Atoui A, Bao DP, Kaur N, Grayburn WS, Calvo AM. Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase. Applied and Environmental Microbiology, 2007, 74(11): 3596–3600.
- [10] Hamel LP, Nicole MC, Duplessis S, Ellis BE. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. *Plant Cell*, 2012, 24(4): 1327–1351.
- [11] Ma DM, Li RY. Current understanding of HOG-MAPK pathway in *Aspergillus fumigatus*. *Mycopathologia*, 2013, 175(1/2): 13–23.
- [12] Ansari K, Martin S, Farkasovsky M, Ehbrecht IM, Küntzel H. Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 1999, 274(42): 30052–30058.
- [13] Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler

A, Huguet R, Perez-Nadales E, Poli AN, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. *Fungal Genetics and Biology*, 2009, 46(4): 287–298.

- [14] Gao J, Xu XG, Huang KL, Liang ZH. Fungal G-protein-coupled receptors: a promising mediator of the impact of extracellular signals on biosynthesis of ochratoxin A. *Frontiers in Microbiology*, 2021, 12: 631392.
- [15] De Souza WR, Morais ER, Krohn NG, Savoldi M, Goldman MHS, Rodrigues F, Caldana C, Semelka CT, Tikunov AP, Macdonald JM, Goldman GH. Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS One, 2013, 8(5): e62088.
- [16] Brown NA, Dos Reis TF, Ries LNA, Caldana C, Mah JH, Yu JH, Macdonald JM, Goldman GH. G-protein coupled receptor-mediated nutrient sensing and developmental control in *Aspergillus nidulans*. *Molecular Microbiology*. 2015, 98(3): 420–439.
- [17] Yang KL, Qin QP, Liu YH, Zhang LM, Liang LL, Lan HH, Chen CH, You YC, Zhang F, Wang SH. Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in *Aspergillus flavus*. *Frontiers in Cellular and Infection Microbiology*, 2016, 6: 190.
- [18] Jiang C, Zhang CK, Wu CL, Sun PP, Hou R, Liu HQ, Wang CF, Xu JR. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in *Fusarium graminearum*. *Environmental Microbiology*, 2016, 18(11): 3689–3701.
- [19] Affeldt KJ, Carrig J, Amare M, Keller NP. Global survey of canonical *Aspergillus flavus* G proteincoupled receptors. *mBio*, 2014, 5(5): e01501–14.
- [20] Shimizu K, Keller NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in *Aspergillus nidulans*. *Genetics*, 2001, 157(2): 591–600.
- [21] Choi YE, Xu JR. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Molecular Plant Microbe Interactions, 2010, 23(4): 522–533.

- [22] Tag A, Hicks J, Garifullina G, Ake C, Phillips TD, Beremand M, Keller N. G-protein signalling mediates differential production of toxic secondary metabolites. *Molecular Microbiology*, 2000, 38(3): 658–665.
- [23] Tsitsigiannis DI, Keller NP. Oxylipins act as determinants of natural product biosynthesis and seed colonization in *Aspergillus nidulans*. *Molecular Microbiology*, 2006, 59(3): 882–892.
- [24] Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing FG. Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. *Toxins* 2016, 8(3): 10.3390.
- [25] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. *Nucleic Acids Research*, 2020, 49(D1): D458–D460.
- [26] Hofmann K, Stoffel W. TMbase: a database of membrane spanning protein segments. *Biological Chemistry*, 1993, 374: 166.
- [27] Möller S, Croning MDR, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. *Bioinformatics*, 2002, 18(1): 218.
- [28] Walker JM. The Proteomics Protocols Handbook || Protein identification by in-gel digestion and mass spectrometric analysis. 2005, (Chapter 30): 311–314.
- [29] Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nature Methods*, 2011, 8(10): 785–786.
- [30] Armenteros J, Salvatore M, Emanuelsson O, Winther O, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. *Life Science Alliance*. 2019, 2(5): e201900429.
- [31] Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. *Current Protocols in Bioinformatics*, 2002, Chapter 2: Unit 2.3.
- [32] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution*, 2011, 28(10): 2731–2739.
- [33] Lafon A, Han KH, Seo JA, Yu JH, D'Enfert C. G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. *Fungal Genetics Biology*. 2006, 43(7): 490–502.
- [34] Ponting CP, Mott R, Bork P, Copley RR. Novel protein domains and repeats in *Drosophila melanogaster*: insights into structure, function, and evolution.

Genome Research, 2001, 11(12): 1996-2008.

- [35] Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. *Nucleic Acids Research*, 2011, 40(D1): D302–D305.
- [36] Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting *in vivo* stability of a protein from its primary sequence. *Protein Engineering, Design and Selection*, 1990, 4(2): 155–161.
- [37] Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB, Conti M, Von Zastrow M. Functional selectivity of GPCR-directed drug action through location bias. *Nature Chemical Biology*, 2017, 13(7): 799–806.
- [38] Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SGF, Sunahara RK, El-Samad H, Huang B, Von Zastrow M. Conformational biosensors reveal GPCR signalling from endosomes. *Nature*, 2013, 495(7442): 534–538.
- [39] Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. *British Journal of Pharmacology*, 2018, 175(21): 4026–4035.
- [40] Bhattacharya M, Peri K, Ribeiro Da Silva A, Almazan G, Shichi H, Hou X, Varma DR, Chemtob S. Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. *The Journal of Biological Chemistry*, 1999, 274(22): 15719–15724.
- [41] O'Malley KL, Jong YJI, Gonchar Y, Burkhalter A, Romano C. Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca²⁺ changes in heterologous cell types and neurons. *The Journal of Biological Chemistry*, 2003, 278(30): 28210–28219.
- [42] Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutiérrez S, Martín-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, López-Rodríguez ML, Grandes P, Rossignol R, Marsicano G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. *Nature Neuroscience*, 2012, 15(4): 558–564.
- [43] Maggio-Hall LA, Lyne P, Wolff JA, Keller NP. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in *Aspergillus nidulans. Fungal Genetics and Biology*, 2008, 45(3): 180–189.
- [44] Calebiro D, Nikolaev VO, Persani L, Lohse MJ.

Signaling by internalized G-protein-coupled receptors. *Trends in Pharmacological Sciences*, 2010, 31(5): 221–228.

- [45] Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D. G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. *Canadian Journal of Physiology and Pharmacology*. 2006, 84(3-4): 287-297.
- [46] Tadevosyan A, Vaniotis G, Allen BG, Hébert TE, Nattel S. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. *The Journal of Physiology*, 2012, 590(6): 1313–1330.
- [47] Joyal JS, Nim S, Tang Z, Sitaras N, Rivera JC, Zhuo S, Sapieha P, Hamel D, Sanchez M, Zaniolo K. Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. *Nature Medicine*, 2014, 20: 1165–1173.
- [48] Lee DK, Lança AJ, Cheng R, Nguyen T, Ji XD, Gobeil F, Chemtob S, George SR, O'Dowd BF. Agonist-independent nuclear localization of the apelin, angiotensin AT1, and bradykinin B2 receptors. *The Journal of Biological Chemistry*, 2004, 279(9): 7901–7908.
- [49] Morinelli TA, Raymond JR, Baldys A, Yang Q, Lee MH, Luttrell L, Ullian ME. Identification of a putative nuclear localization sequence within ANG II AT(1A) receptor associated with nuclear activation. *American Journal of Physiology Cell Physiology*, 2007, 292(4): C1398–C1408.
- [50] Wright CD, Wu SC, Dahl EF, Sazama AJ, O'Connell TD. Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes. *Cellular Signalling*, 2012, 24(3): 794–802.
- [51] Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, CGTP Collaborators. The concise guide to pharmacology 2017/18: G protein-coupled receptors. *British journal* of pharmacology, 2017, 174(suppl1): S17–S129.
- [52] 韩长志. 植物病原丝状真菌 G 蛋白偶联受体的研究

进展. 微生物学通报, 2015, 42(2): 374-383.

Han CZ. Advance in functional research of G protein-coupled receptors in phytopathogenic filamentous fungi. *Microbiology China*, 2015, 42(2): 374–383. (in Chinese)

- [53] Han KH, Seo JA, Yu JH. A putative G protein-coupled receptor negatively controls sexual development in *Aspergillus nidulans*. *Molecular Microbiology*, 2004, 51(5): 1333–1345.
- [54] Xue CY, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. *FEMS Microbiology Reviews*, 2008, 32(6): 1010–1032.
- [55] Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP. Morphological transitions governed by density dependence and lipoxygenase activity in *Aspergillus flavus*. *Applied and Environmental Microbiology*, 2008, 74(18): 5674–5685.
- [56] Da Costa Filho AP, Brancini GTP, De Castro PA, Ferreira JA, Silva LP, Rocha MC, Malavazi I, De Moraes Pontes JG, Fill T, Silva RN, Almeida F, Steenwyk JL, Rokas A, Dos Reis TF, Ries LNA, Goldman GH. Aspergillus fumigatus G-protein coupled receptors GprM and GprJ are important for the regulation of the cell wall integrity pathway, secondary metabolite production, and virulence. bioRxiv, 2020. DOI: 10.1101/2020.08.03.235119.
- [57] Jung MG, Kim SS, Yu JH, Shin KS. Characterization of gprK encoding a putative hybrid G-protein-coupled receptor in *Aspergillus fumigatus*. *PLoS One*, 2016, 11(9): e0161312.
- [58] David H, Hofmann G, Oliveira AP, Jarmer H, Nielsen J. Metabolic network driven analysis of genome-wide transcription data from *Aspergillus nidulans*. *Genome Biology*, 2006, 7(11): R108.
- [59] Pusztahelyi T, Klement E, Szajli E, Klem J, Miskei M, Karányi Z, Emri T, Kovács S, Orosz G, Kovács KL, Medzihradszky KF, Prade RA, Pócsi I. Comparison of transcriptional and translational changes caused by long-term menadione exposure in *Aspergillus nidulans*. *Fungal Genetics and Biology*, 2011, 48(2): 92–103.